Advertisement

Identification of Linear Objects with Bounded Disturbances in Both Input and Output Channels

  • Y. A. Merkuryev

Abstract

The problem under consideration is to identify an object that is described by a linear equation
$$ y = {a_1}{x_1} + \ldots + {a_n}{x_n}, $$
(19.1)
where x 1..., x n are input scalar signals, y is an output scalar signal, and a 1,..., a n are the model coefficients, which must be estimated.

Keywords

Model Coefficient Output Channel Linear Object 26th IEEE ConFerence Bounded Disturbance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Milanese and G. Belforte, IEEE Trans. Autom. Control 27, 408 (1982).MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    E. Fogel and Y.-F. Huang, Automatica 18, 229 (1982).MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    J. P. Norton and S. H. Mo, Comput. Simul. 32, 527 (1990).MathSciNetCrossRefGoogle Scholar
  4. 4.
    E. Walter and H. Piet-Lahanier, in: Proceedings of the 26th IEEE Conference on Decision and Control, pp. 1921-1922 (1987).Google Scholar
  5. 5.
    J. P. Norton, Int. J. Control 45, 375 (1987).MATHCrossRefGoogle Scholar
  6. 6.
    V. Cerone, in: Prep. 9th IFAC/IFORS Symposium on Identification and System Parameter Estimation, pp. 1518-1522 (1991).Google Scholar
  7. 7.
    E. Walter and H. Piet-Lahanier, Math. Comput. Simul 32, 449 (1990).MathSciNetCrossRefGoogle Scholar
  8. 8.
    Y. A. Merkuryev, Int. J. Control. 50, 2333 (1989).MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Y. A. Merkuryev, Minimax Estimation of the Model Parameters for Control Objects when the Initial Information is of Interval Character, Ph.D. Thesis, Riga Polytechnical Institute, Riga, Latvia (1982).Google Scholar
  10. 10.
    W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes, The Art of Scientific Computing, Cambridge University Press, Cambridge (1986).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Y. A. Merkuryev
    • 1
  1. 1.Riga Technical UniversityRigaLatvia

Personalised recommendations