Altered Sensitivity of Recognition Sites for a Neurotransmitter in the Absence of Changes in Receptor Binding Parameters: Co-Sensitization of an Alternate System

  • Richard M. Kostrzewa


During a period of about 5 years we have attempted to permanently modify the organization of different components of the dopamine (DA) neurotransmitter system in the brain. As part of this approach rats have been treated either as neonates or adults with DA receptor agonists, DA receptor antagonists or overt DA neurotoxins. In several instances we successfully attenuated the neuroteratogenic effects of these agents. And as a continuum of these studies we have ascertained that another neurotransmitter system, serotoninergic, actually mediates supersensitization of DA systems. While the study of DA and other neurotransmitter systems may seem remote from the symposium objectives, there are common themes with the neural adaptation and neural mediation that can be expected when botulinum and tetanus neurotoxins exert their effects. As important, is the message that simple measurements of presynaptic and postsynaptic elements (e.g., receptor site status and second messenger changes) are simply inadequate for determining the functional changes that are consequent to the injury produced by these neurotoxins.


Striatal Dopamine Behavioral Sensitivity Saline Control Group Postnatal Ontogeny Oral Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berger, T. W., Kaul, S., Stricker, E. M. and Zigmond, M. J., 1985, Hyperinnervation of the striatum by dorsal raphe afferents after dopamine-depleting brain lesions in neonatal rats, Brain Res. 366: 354–358.CrossRefGoogle Scholar
  2. Bhargava, H. N., 1984, Effects of prolyl-leucyl-glycinamide and cyclo (leucylglycine) on the supersensitivity of dopamine receptors in brain induced by chronic administration of haloperidol, Neuropharmacology 23: 439–444.PubMedCrossRefGoogle Scholar
  3. Bhargava, H. N., 1984, Enhanced striatal [3H] spiroperidol binding induced by chronic haloperidol treatment inhibited by peptides administered during the withdrawal phase, Life Sci. 34: 873–879.PubMedCrossRefGoogle Scholar
  4. Breese, G. R. and Traylor, T.D., 1972, Developmental characteristics of brain catecholamines and tyrosine hydroxylase in the rat: effects of 6-hydroxydopamine, Br. J. Pharmacol. 44: 210–222.PubMedCrossRefGoogle Scholar
  5. Breese, G. R., Baumeister, A. A., McCown, T. J., Emerick, S. G., Frye, G. D., Crotty, K and Mueller, R. A., 1984, Behavioral differences between neonatal and adult 6-hydroxydopamine-treated rats to dopamine agonists: relevance to neurological symptoms in clinical syndromes with reduced brain dopamine, J. Phannacol. Exp. Ther. 231: 343–354.Google Scholar
  6. Breese, G. R., Baumeister, A., Napier, T. C., Frye, G. D. and Mueller, R. A., 1985a, Evidence that D-1 dopamine receptors contribute to the supersensitive behavioral responses induced by L-dihydroxyphenylalanine in rats treated neonatally with 6-hydroxydopamine, J. Pharmacol. Exp. Ther. 235: 287–295.PubMedGoogle Scholar
  7. Breese, G. R., Napier, T. C. and Mueller, R. A., 1985b, Dopamine agonist-induced locomotor activity in rats treated with 6-hydroxydopamine at differing ages: functional supersensitivity of D-1 dopamine receptors in neonatally-lesioned rats, J. Pharmacol. Exp. Ther. 234: 447–455.PubMedGoogle Scholar
  8. Breese, G. R., Duncan, G. E., Napier, T. C., Bondy, S. C., Iorio, L. C. and Mueller, R. A., 1987, 6-hydroxydopamine treatments enhance behavioral responses to intracerebral microinjection of Di and D2-dopamine agonists into nucleus accumbens and striatum without changing dopamine antagonist binding, J. Pharmacol. Exp. Ther. 240: 167–176.PubMedGoogle Scholar
  9. Bruno, J. P., Stricker, E. M. and Zigmond, M. J., 1985, Rats given dopamine-depleting brain lesions as neonates are subsensitive to dopaminergic antagonists as adults, Behay. Neurosci. 99: 771–775.CrossRefGoogle Scholar
  10. Burt, D. R., Creese I. and Snyder, S.H., 1977, Antischizophrenic drugs: chronic treatment elevates dopamine receptor binding in brain, Science 196: 326–328.PubMedCrossRefGoogle Scholar
  11. Chiu, S.C., Paulose, C.S., and Mishra, R. K., 198la, Effect of L-prolyl-L-Ieucyl-glycinamide (PLG) on neuroleptic-induced catalepsy and dopamine neuroleptic receptor binding, Peptides 2: 105–111.Google Scholar
  12. Chiu, S.C., Paulose, C. S., and Mishra, R. K., 198 lb, Neuroleptic drug-induced dopamine receptor supersensitivity: antagonism by L-prolyl-L-leucyl-glycinamide, Science 214: 1261–1262.Google Scholar
  13. Chiu, S. C., Rajakumar, G., Chiu, S., Johnson, R.L., and Mishra, R. K., 1985, Mesolimbic and striatal dopamine receptor supersensitivity: prophylactic and reversal effects of L-prolyl-L-leucylglycinamide ( PLG ), Peptides 6: 179–183.Google Scholar
  14. Cooper, B.R., Smith, R. D., Konkol, R. J. and Breese, G. R., 1975, Alteration of growth and development after neonatal treatments with 6-hydroxydopamine. In Chemical Tools in Catecholamine Research, ed. by G. Johsson, T. Malormfors and C. H. Sachs, North Holland Publishing Co., New York, vol. 1, 197–210.Google Scholar
  15. Coyle, J. T. and Axelrod, J., 1972, Tyrosine hydroxylase in rat brain: developmental characteristics, J. Neurochem. 19: 117–123.CrossRefGoogle Scholar
  16. Creese, I. and Chen, A., 1985, Selective DI dopamine receptor increase following chronic treatment with SCH 23390, Eur. J. Pharmacol. 109: 127–128.PubMedCrossRefGoogle Scholar
  17. Criswell, H., Mueller, R. A. and Breese, G. R., 1989, Priming of D1-dopamine receptor responses: long-lasting behavioral supersensitivity to a D1-dopamine agonist following repeated administration to neonatal 6-OHDA-lesioned rats, J. Neurosci. 9: 125–133.PubMedGoogle Scholar
  18. Dewar, K. M., Soghomonian, J. J., Bruno, J. P., Descarries, L. and Reader, T.A., 1990, Elevation of dopamine D2 but not D1 receptors in adult rat neostriatum after neonatal 6-hydroxydopamine denervation, Brain Res. 536: 287–296.PubMedCrossRefGoogle Scholar
  19. Duncan, G. E., Criswell, H. E., McCown, T. J., Paul, I. A., Mueller, R. A. and Breese, G. R., 1987, Behavioral and neurochemical responses to haloperidol and SCH 23390 in rats treated neonatally or as adults with 6-hydroxydopamine, J. Pharmacol. Exp. Ther. 243: 1027–1034.PubMedGoogle Scholar
  20. Giorgi, O., De Montis, G., Porceddu, M. L., Mele, S., Calderini, G., Tofano, G., and Biggio, G., 1987, Developmental and age-related changes in D1-dopamine receptors and dopamine content in the rat striatum, Dev. Brain Res. 35: 283–290.CrossRefGoogle Scholar
  21. Gong, L. and Kostrzewa, R. M., 1992, Supersensitized oral responses to a serotonin agonist in neonatal 6OHDA-treated rats, Pharmacol. Biochem. Behay. 41: 621–623.CrossRefGoogle Scholar
  22. Gong, L., Kostrzewa, R. M., Fuller, R. W. and Perry, K., 1992, Supersensitization of the oral response to SKF 38393 in neonatal 6-OHDA-lesioned rats is mediated through a serotonin system, J. Pharmacol. Exp. Ther. 261: 1000–1007.PubMedGoogle Scholar
  23. Hamdi, A. and Kostrzewa, R. M., 1991, Ontogenic homologous supersensitization of dopamine D1 receptors, Eur. J. Pharmacol. 203: 115–120.PubMedCrossRefGoogle Scholar
  24. Kostrzewa, R. M. and Garey, R. E., 1976, Effects of 6-hydroxydopa on noradrenergic neurons in developing rat brain, J. Pharmacol. Exp. Ther. 197: 105–118.PubMedGoogle Scholar
  25. Kostrzewa, R. M., Kastin, A. J., and Sobrian, S. K., 1978, Potentiation of apomorphine action in rats by 1prolyl-l-leucyl-glycine amide, Pharmacol. Biochem. Behay. 9: 375–378.CrossRefGoogle Scholar
  26. Kostrzewa, R. M., Fukushima, H., Harston, C. T., Perry, K. W., Fuller, R. W. and Kastin, A. J., 1979, Striatal dopamine turnover and MIF-1, Brain Res. Bull. 4: 799–802.PubMedCrossRefGoogle Scholar
  27. Kostrzewa, R. M., Hardin, J. C., Snell, R. L., Kastin, A. J., and Bymaster, F., 1979, MIF-1 and dopamine postsynaptic receptor sites, Brain Res. Bull. 4: 657–662.PubMedCrossRefGoogle Scholar
  28. Kostrzewa, R. M., 1988, Reorganization of noradrenergic neuronal systems following neonatal chemical and surgical injury, Prog. Brain Res. 73: 405–423.PubMedCrossRefGoogle Scholar
  29. Kostrzewa, R. M., 1989, Neurotoxins that affect central and peripheral catecholamine neurons, in: Neuromethods Vol. 12, eds. A. A. Boulton, G. B. Baker and J. M. Baker ( Humana Press, Clinton, NJ ) 1–48.Google Scholar
  30. Kostrzewa, R. M., White, T. G., Zadina, J. E. and Kastin, A. J., 1989, MIF-1 attenuates apomorphine stereotypies in adult rats after neonatal 6-hydroxydopamine, Eur. J. Pharmacol. 163: 33–42.PubMedCrossRefGoogle Scholar
  31. Kostrzewa, R. M. and Saleh, M. I., 1989a, Attenuation of SCH 23390-inducedalteration of striatal dopamine Dl receptor ontogeny by prolyl-leucyl-glycinamide in the rat, Neuropharmacol. 28: 805–810.CrossRefGoogle Scholar
  32. Kostrzewa, R. M. and Saleh, M. I., 1989b, Impaired ontogeny of striatal dopamine D1 and D2 binding sites after postnatal treatment of rats with SCH-23390 and spiroperidol, Dev. Brain Res. 45: 95–101.CrossRefGoogle Scholar
  33. Kostrzewa, R. M., Hamdi, A. and Kostrzewa, F. P., 1990, Production of prolonged supersensitization of dopamine D2 receptors, Eur. J. Pharmacol. 183: 1411–1412.CrossRefGoogle Scholar
  34. Kostrzewa, R. M. and Brus, R., 1991a, Is dopamine-agonist induced yawning behavior a D3 mediated event, Life Sci. 48: PL-129.Google Scholar
  35. Kostrzewa, R. M. and Brus, R., 1991b, Ontogenic homologous supersensitization of quinpirole-induced yawning in rats, Pharmacol. Biochem. Behay. 39: 517–519.CrossRefGoogle Scholar
  36. Kostrzewa, R.M. and Gong, L., 1991, Supersensitized D1 receptors mediate enhanced oral activity after neonatal 6-OHDA, Pharmacol. Biochem. Behay. 39: 677–682.CrossRefGoogle Scholar
  37. Kostrzewa, R. M. and Hamdi, A., 1991, Potentiation of spiperone-induced oral activity in rats after neonatal 6-hydroxydopamine, Pharmacol. Biochem. Behay. 38: 215–218.CrossRefGoogle Scholar
  38. Kostrzewa, R. M., Brus, R. and Kalbfleisch, J., 1991, Ontogenic homologous sensitization to the antinociceptive action of quinpirole in rats, Eur. J. Pharmacol. 209: 157–161.PubMedCrossRefGoogle Scholar
  39. Luthman, J., Bolioli, B., Tustsumi, T. Verhofstad, A. and Jonsson, G., 1987, Sprouting of striatal serotonin nerve terminals following selective lesions of nigrostriatal dopamine neurons in neonatal rat., Brain Res. Bull. 19: 269–274.PubMedCrossRefGoogle Scholar
  40. Morelli, M. and Di Chiara, G., 1990, Stereospecific blockade of N-Methyl-D-aspartate transmission by MK 801 prevents priming of SKF 38393-induced turning, Psychopharmacology (Berlin) 101: 287–288.CrossRefGoogle Scholar
  41. Morelli, lMl., De Montis, G., and Di Chiara, G., 1990, Changes in the D1 receptor-adenylate cyclase complex after priming, Eur. J. Pharmacol. 180: 365–367.PubMedCrossRefGoogle Scholar
  42. Muller, P. and Seeman, P., 1977, Brain neurotransmitter receptors after long-term haloperidol: dopamine, acetylcholine, serotonin, -noradrenergic and naloxone receptors, Life Sci. 21: 1751–1758.PubMedCrossRefGoogle Scholar
  43. Pardo, J. V., Creese, I., Burt, D. R., and Snyder, S.H., 1977, Ontogenesis of dopamine receptor binding in corpus striatum of the rat, Brain Res. 125: 376–382.PubMedCrossRefGoogle Scholar
  44. Porceddu, M.L., Ongini, E. and Biggio, G., 1985, 3H-SCH 23390 binding sites increase after chronic blockade of Dl dopamine receptors. Eur. J. Pharmacol. 118: 367–370.PubMedCrossRefGoogle Scholar
  45. Saleh, M. I. and Kostrzewa, R. M., 1988, Impaired striatal dopamine receptor development: differential D-1 regulation in adults, Eur. J. Pharmacol. 154: 305–311.PubMedCrossRefGoogle Scholar
  46. Saleh, M. I. and Kostrzewa, R. M., 1989, MIF-1 attenuates spiroperidol alteration of striatal dopamine D2 receptor ontogeny, Peptides, 10: 35–39.PubMedCrossRefGoogle Scholar
  47. Smith, R. D., Cooper, B. R., and Breese, G. R., 1973, Growth and behavioral changes in developing rats treated intracistemally with 6-hydroxydopamine• evidence for involvement of brain dopamine, J. Pharmacol. Exp. Ther. 185: 609–619.PubMedGoogle Scholar
  48. Spines, M. A., Plotnikoff, N. P., Kostrzewa, R. M., Harston, C. T., Kastin, A. J., and Christensen, C.W., 1976, Possible association of increased rat behavioral effects and increased striatal dopamine and norepinephrine levels during the DOPA-potentiation test, Pharmacol. Biochem. Behay. 5 (Suppl. 1): 121–124.Google Scholar
  49. Stachowiak, M. K., Bruno, J. P., Snyder, A. M., Stricker, E. M. and Zigmond, M. J., 1984, Apparent sprouting of striatal serotonergic terminals after dopamine-depleting brain lesions in neonatal rats, Brain Res. 291: 164–167.PubMedCrossRefGoogle Scholar
  50. Stewart, B. R., Jenner, P. and Marsden, C. D., 1989, Induction of purposeless chewing behavior in rats by 5-HT agonist drugs., Eur. J. Pharmacol. 162: 101–107.PubMedCrossRefGoogle Scholar
  51. Towle, A. C., Criswell, H. E., Maynard, E. H., Lauder, J. M., Joh, T. H., Mueller, R.A. and Breese, G. R., 1989, Serotonergic innervation of the rat caudate following a neonatal 6-hydroxydopamine lesion: an anatomical, biochemical and pharmacological study, Pharmacol. Biochem. Behay. 34: 367–374.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Richard M. Kostrzewa
    • 1
  1. 1.Department of Pharmacology James H. Quillen College of MedicineEast Tennessee State UniversityJohnson CityUSA

Personalised recommendations