Advertisement

Tetanus Toxin as a Tool for Investigating the Structural Bases of Neurotropism

  • Bernard Bizzini
  • Mohamed Khiri
  • Martine Carlotti

Abstract

Tetanus toxin binds with high affinity to fixation sites at the nerve terminal membrane. As a result the toxin molecule is internalized and transported retrogradely within the axon to the central nervous system (CNS). This neurotoxin is a “neurotropic” agent, since it is endowed with the capacity to migrate selectively to the CNS.

Keywords

Nerve Growth Factor Rabies Virus Wheat Germ Agglutinin Retrograde Transport Tetanus Toxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Besançon F, Ankel H. Binding of interferon to gangliosides. Nature 1974; 252: 478.PubMedCrossRefGoogle Scholar
  2. Bizzini B, Turpin A, Raynaud M. Production et purification de la toxine tétanique. Ann Inst Pasteur (Paris) 1969; 116: 686.Google Scholar
  3. Bizzini B, Grob P, Akert K. Papain-derived fragment IIc of tetanus toxin: its binding to isolated synaptic membranes and retrograde axonal transport. Brain Res 1981; 210: 291.PubMedCrossRefGoogle Scholar
  4. Bizzini B, Toth P, Fedinec AH. Defining a region on tetanus toxin responsible for neuromuscular blockade. Toxicon 1988; 26: 309.PubMedCrossRefGoogle Scholar
  5. Conti C, Tsiang H. Effect of concanavalin A on the early events of rabies virus infection of CER cells. Intervirol 1985; 24: 166.CrossRefGoogle Scholar
  6. Conti C, Hauttecoeur B, Morelec MJ, Bizzini B, Orsi N, Tsiang M. Inhibition of rabies virus infection by a soluble membrane fraction from the rat central nervous system. Arch Virol 1988; 98: 73.PubMedCrossRefGoogle Scholar
  7. Cook ML, Stevens JG. Pathogenesis of herpetic neuritis and ganglionitis in mice: evidence for intra-axonal transport of infection. Infect Immun 1973; 34: 272.Google Scholar
  8. Dumas M, Schwab ME, Thoenen H. Retrograde axonal transport of specific molecules as a tool for characterizing nerve terminal membrane, J Neurobiol 1979; 10: 179.PubMedCrossRefGoogle Scholar
  9. Fedinec AA. Studies on the mode of the spread of tetanus toxin in experimental animal. In: Raudonat HW, ed. Recent Advances in the Pharmacology of Toxins. Oxford: Pergamon, 1965.Google Scholar
  10. Fillenz M, Gagnon C, Stoeckel K, Thoenen H. Selective uptake and retrograde axonal transport of dopamine beta-hydroxylase antibodies in peripheral adrenergic neurons. Brain Res 1976; 114: 293.PubMedCrossRefGoogle Scholar
  11. Guillon JC. Un modèle expérimental d’infection herpétique: l’infection cutanée Herpesvirus eidolon (nov. sp.) chez la souris. Sci Tech Anim Lab 1976; 1, n°2:79.Google Scholar
  12. Habermann E. 1251-labelled neurotoxin from Clostridium botulinum A. Preparation binding to synaptosomes and ascent to the spinal cord. Naunyn-Schmiedeberg’s Arch Pharmacol 1974; 281:47.Google Scholar
  13. Harper CG, Gonatas JO, Stieber A, Gonatas NK. In vivo uptake of wheat germ agglutinin-horse radish peroxydase conjugates into neuronal GERL and lysosomes. Brain Res 1980; 188: 465.PubMedCrossRefGoogle Scholar
  14. Hendry IA, Stoeckel K, Thoenen H, Iversen LL. The retrograde axonal transport of nerve growth factor. Brain Res 1974; 68: 103.PubMedCrossRefGoogle Scholar
  15. Kristensson K, Lycke E, Sjöstrand J. Spread of herpes simplex virus in peripheral nerves. Acta Neuropath 1971; 17: 44.PubMedCrossRefGoogle Scholar
  16. Knypers HGJM, Ugolini G. Viruses as transneuronal tracers. Trends in Neurosci 1990; 13: 71.CrossRefGoogle Scholar
  17. Marconi P, Pitzurra M, Vecchiarelli A, Pitzurra L, Bistoni F. Resistance induced by concanavalin A and phytohaemagglutinin P against tetanus toxin in mice. Ann. Immunol (Inst Pasteur) 1982; 133D: 15.CrossRefGoogle Scholar
  18. Matsuda M, Yoneda M. Isolation and purification of two antigenically active “complementary” polypeptide fragments of tetanus neurotoxin. Infect Immun 1975; 12: 1147.PubMedGoogle Scholar
  19. Severin MJ, White RJ. The neural transmission of herpes simplex virus in mice. Am J Pathol 1968; 53: 1009.PubMedGoogle Scholar
  20. Stoeckel K, Schwab M, Thoenen H. Role of gangliosides in retrograde axonal transport of tetanus and cholera toxin. Experientia 1971; 32: 783.Google Scholar
  21. Stoeckel K, Paravicini U, Thoenen H. Specificity of the retrograde axonal transport of nerve growth factor. Brain Res 1974; 76: 413.CrossRefGoogle Scholar
  22. Stoeckel K, Schwab M, Thoenen H. Comparison between the retrograde axonal transport of growth factor and tetanus toxin in motor, sensory and adrenergic neurons. Brain Res 1975; 99: 1.CrossRefGoogle Scholar
  23. Stoeckel K, Schwab ME, Thoenen H. Role of gangliosides in the uptake and retrograde axonal transport of cholera and tetanus toxin as compared to nerve growth factor and wheat germ agglutinin. Brain Res 1977; 132: 273.PubMedCrossRefGoogle Scholar
  24. Superti F, Hauttecoeur B, Morelec MJ, Goldoni P, Bizzini B, Tsiang MJ. Involvement of gangliosides in rabies virus infection. J Gen Virol 1986; 67: 47.PubMedCrossRefGoogle Scholar
  25. Taylor CF, Britton P, Van Heyningen S. Similarities in the heavy and light chains of tetanus toxin suggested by their amino acid composition. Biochem J 1983; 209: 897.PubMedGoogle Scholar
  26. Tsiang H. Evidence for an intraaxonal transport of fixed and street rabies virus. J Neuropath Exp Neurol 1979; 38: 286.PubMedCrossRefGoogle Scholar
  27. Tsiang H, Koulakoff A, Bizzini B, Berwald-Netter Y. Neurotropism of rabies virus. An in vitro study of neurons and glia. J Neuropath Exp Neurol 1983; 42: 439.PubMedCrossRefGoogle Scholar
  28. Van Heyningen WE, Miller PA. The fixation of the tetanus toxin by ganglioside, J Gen Microbiol 1961; 24: 107.CrossRefGoogle Scholar
  29. Wiegand H, Erdmann G, Wellhöner HH. 125I-labelled botulinum A neurotoxin: pharmacokinetics in cats after intramuscular injection. Naunyn-Schmiedeberg’s Arch Pharmacol 1976; 292: 161.PubMedCrossRefGoogle Scholar
  30. Wildy P. The progression of herpes simplex virus to the CNS of the mouse. J Hyg 1967; 65: 173.PubMedCrossRefGoogle Scholar
  31. Young AB, Snyder SH. Strychnine binding associated with glycine receptors of the central nervous system. Proc Natl Acad Sci (Wash) 1973; 70: 2832.Google Scholar
  32. Ziegler MG, Thomas JA, Jacobowitz DM. Retrograde axonal transport of antibody to dopamine betahydroxylase. Brain Res 1976; 104: 390.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Bernard Bizzini
    • 1
  • Mohamed Khiri
    • 1
  • Martine Carlotti
    • 1
  1. 1.Department of Molecular ToxinologyPasteur InstituteParis CedexFrance

Personalised recommendations