Advertisement

Enzyme-Linked Immunosorbent Assays (ELISAs) to Detect Botulinum Toxins Using High Titer Rabbit Antisera

  • Gerri M. Ransom
  • Wei H. Lee
  • Elisa L. Elliot
  • Charles P. Lattuada

Abstract

Botulinum toxin types A through G are potent neurotoxic proteins produced by heterogeneous clostridia.1–5 Conventional testing for botulinum toxin is done by mouse bioassay. Toxin type is determined by the mouse protection assay using specific botulinum toxin antisera.6 The mouse bioassay is a useful test allowing a direct and sensitive determination of LD50 and antibody titers. However the test involves tedious manipulations and the use of live animals. Notermans et al.7 pioneered the development of enzyme-linked immunosorbent assays (ELISAs) for toxins A, B, and E. Since then, numerous radioimmunoassays8 and ELISAs9–18 for detecting botulinum toxins have been published. All are immunoassays, and therefore the results are not strictly comparable to the biological activity measured in the mouse bioassay. Since antibodies and toxin standards needed to perform ELISAs are not generally available, these tests cannot readily be duplicated by other laboratories.

Keywords

Botulinum Toxin Capture Antibody Botulinum Toxin Type Botulinum Neurotoxin Clostridium Botulinum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hauschild AHW. Clostridium botulinum toxins. Int. J. Food Microbiol. 1990; 10:113–24.Google Scholar
  2. 2.
    Lee WH, Riemann H. Correlation of toxic and non-toxic strains of Clostridium botulinum by DNA composition and homology. J. Gen. Microbiol. 1970; 60: 117–23.PubMedCrossRefGoogle Scholar
  3. 3.
    Lee WH, Riemann H. The genetic relatedness of Clostridium botulinum strains. J. Gen. Microbiol. 1970; 64: 85–90.PubMedCrossRefGoogle Scholar
  4. 4.
    Suen JC, Hatheway CL, Steigerwalt AG et al. Genetic confirmation of identities of neurotoxigenic Clostridium barati and Clostridium butyricum implicated as agents of infant botulism. J. Clin. Microbiol. 1988; 26: 2191–92.PubMedGoogle Scholar
  5. 5.
    Suen JC, Hatheway CL, Steigerwalt AG et al. Clostridium argentinense sp. nov.: a genetically homogenous group composed of all strains of Clostridium botulinum toxin type G and some nontoxigenic strains previously identified as Clostridium subterminale or Clostridium hastiforme. Int. J. System. Bacteriol. 1988; 38: 375–81.CrossRefGoogle Scholar
  6. 6.
    Kautter DA, Lynt RK. Clostridium botulinum In: Speck ML, ed. Compendium of methods for the microbiological examination of foods. Washington, DC: American Public Health Assoc., 1976: 424–36.Google Scholar
  7. 7.
    Notermans S, Hagenaars M, Kozaki S. The enzyme-linked immunosorbent assay (ELISA) for the detection and determination of Clostridium botulinum A, B, and E. Methods Enzymol. 1982; 84: 223–38.CrossRefGoogle Scholar
  8. 8.
    Ashton AC, Growther JS, Dolly JD. A sensitive and useful radioimmunoassay for neurotoxin and its hemagglutinin complex for Clostridium botulinum. Toxicon. 1985; 23: 235–46.Google Scholar
  9. 9.
    Dezfulian M, Hatheway CL, Yolken RH et al. Enzyme-linked immunosorbent assay for detection of Clostridium botulinum type A and B toxins in stool samples of infants with botulism. J. Clin. Microbiol. 1984; 20: 379–83.PubMedGoogle Scholar
  10. 10.
    Ferreira JL, Hamdy MK, Herd ZL et al. Monoclonal antibody for the detection of Clostridium botulinum type A toxin. Mol. Cell. Probes. 1987; 1: 337–45.PubMedCrossRefGoogle Scholar
  11. 11.
    Ferreira JL, Hamdy MK, McCay SG et al., Monoclonal antibody to type F Clostridium botulinum toxin. Appl. Environ. Microbiol. 1990; 56: 808–11.PubMedGoogle Scholar
  12. 12.
    Gibson AM, Modi NK, Roberts TA et al. Evaluation of a monoclonal antibody-based immunoassay for detecting type A Clostridium botulinum toxin produced in pure culture and an inoculated model cured meat system. J. Appl. Bacteriol. 1987; 63: 217–26.PubMedCrossRefGoogle Scholar
  13. 13.
    Gibson AM, Modi NK, Roberts TA et al. Evaluation of a monoclonal antibody based immunoassay for detecting type B Clostridium botulinum toxin produced in pure culture and an inoculated cured meat system. J. Appl. Bacteriol. 1988; 64: 285–91.PubMedCrossRefGoogle Scholar
  14. 14.
    Henning VK, Meyer H, Cremer J. Schnellnachweis der Clostridium botulinum-Toxine A and B mittels Enzym-Immuno-Assay (ELISA). Arch. Lebensmittelhyg. 1991; 42: 49–71.Google Scholar
  15. 15.
    Kamata Y, Kozaki S, Nagai T et al. Evaluation of ELISA techniques for titration of monoclonal antibodies against botulinum toxin. Jpn. J. Vet. Sci. 1986; 48: 909–14.CrossRefGoogle Scholar
  16. 16.
    Michalik M, Grzybowski J, Ligieza J et al. Enzyme-linked immunosorbent assay (ELISA) for the detection and differentiation of Clostridium botulinum toxins type A and B. J. Immunol. Meth. 1986; 93: 225–30.CrossRefGoogle Scholar
  17. 17.
    Shone CP, Wilton-Smith P, Appleton N et al. Monoclonal antibody-based immunoassay for type A Clostridium botulinum toxin is comparable to the mouse bioassay. Appl. Environ. Microbiol. 1985; 50: 63–7.PubMedGoogle Scholar
  18. 18.
    Wang YC, Sugiyama H. An ELISA for screening and detecting botulinum toxins (A, B, and E). Chin. J. Microbiol. Immunol 1986; 6: 253–56.Google Scholar
  19. 19.
    DasGupta BR. Structure and structure function relation of botulinum neurotoxins. In: Lewis Jr. GE ed. Biomedical aspects of botulism. New York, NY: Academic Press, 1981: 1–20.Google Scholar
  20. 20.
    Onishi I, Sugii S, Sakaguchi G. Oral toxicities of Clostridium botulinum toxins in response to molecular size. Infect. Immun 1977; 16: 107–9.Google Scholar
  21. 21.
    Sakaguchi G, Onishi I, Kozaki S. Purification and oral toxicities of Clostridium botulinum progenitor toxins. In: Lewis Jr. GE ed., Biomedical aspects of botulism. Academic Press, New York, NY: 1981: 21–34.Google Scholar
  22. 22.
    Anderson Jr. JH, Lewis Jr. GE. Clinical evaluation of botulinum toxoids. In: Lewis Jr. GE ed. Biomedical aspects of botulism, New York, NY: Academic Press, 1981: 233–46.Google Scholar
  23. 23.
    Moberg LT, Sugiyama H Affinity chromatography purification of type A botulinum neurotoxin from crystalline toxic complex. Appl. Environ. Microbiol. 1978; 35: 878–80.PubMedGoogle Scholar
  24. 24.
    Lowry OH, Rosebrough NJ, Farr AL et al. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951; 193: 265–75.PubMedGoogle Scholar
  25. 25.
    Gimenez JA, Sugiyama H. Simplified purification method for Clostridium botulinum type E toxin. Appl. Environ. Microbiol. 1987; 53: 2827–30.Google Scholar
  26. 26.
    Gimenez JA, Sugiyama H. Comparison of toxins of Clostridium butyricum and Clostridium botulinum type E. Infect. Immun. 1988; 56: 926–29.Google Scholar
  27. 27.
    Woody M, DasGupta BR. E.fect of tetranitromethane on the biological activities of botulinum neurotoxin types A, B and E. Mol. Cell. Biochem. 1989; 85: 159–69.Google Scholar
  28. 28.
    Sakaguchi G, Sakaguchi S, Kurazono H et al. Persistence of specific antigenic protein in the serum of chickens given intravenous botulinum toxin type B, C, D, E, or F. FEMS Microbiol. Let. 1987; 43: 355–9.Google Scholar
  29. 29.
    De Paiva A, Dolly JO. Light chain of botulinum neurotoxin is active in the mammalian motor nerve terminals when delivered via liposomes. FEBS Let. 1990; 277: 171–7.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Gerri M. Ransom
    • 1
  • Wei H. Lee
    • 1
  • Elisa L. Elliot
    • 1
  • Charles P. Lattuada
    • 1
  1. 1.Food Safety and Inspection ServiceUnited States Department of AgricultureBeltsvilleUSA

Personalised recommendations