Antigenic Structure of Botulinum Neurotoxins: Similarity and Dissimilarity to the Toxin Associated with Infant Botulism

  • Shunji Kozaki
  • Teiichi Nishiki
  • Shoji Nakaue
  • Yoichi Kamata
  • Genji Sakaguchi


Clostridium botulinum toxin has been classified into seven immunological types A through G. The toxin consists of a highly potent neurotoxin and a nontoxic component. The neurotoxin exerts its toxic action by inhibition of acetylcholine release, which results in neuromuscular paralysis.1,2 The neurotoxin is produced as a single polypeptide with a molecular weight of about 150 KDa, and is nicked by an endogenous or exogenous protease such as trypsin and other trypsin-like enzymes. The neurotoxin in a nicked form, is made up of two chains, the heavy (ca. 100 KDa) and the light (ca. 50 KDa) chains, which are covalently linked together with at least one disulfide bond.2¨C4 The heavy chain is responsible for binding the neurotoxin to the receptor on neural membrane,5,6 and the light chain is related to blockade of neurotransmitter release in presynaptic nerve endings.7,8 The significance of the nontoxic component in the botulinum toxin molecule as an oral poison has been reviewed by Sakaguchi.9


Light Chain Heavy Chain Botulinum Toxin Botulinum Neurotoxin Clostridium Botulinum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burgen ASV, Dickens F, Zatman LJ. The action of botulinum toxin on the neuro-muscular junction. J. Physiol. 1949; 109: 10–24.PubMedGoogle Scholar
  2. 2.
    Sugiyama H. Clostridium botulinum neurotoxin. Microbiol. Rev. 1980;44:419-448.PubMedGoogle Scholar
  3. 3.
    Sathyamoorthy V, DasGupta BR. Separation, purification, partical characterization and comparison of the heavy and light chains of botulinum neurotoxin types A, B, and E. J. Biol. Chem. 1985; 260: 10461–10466.PubMedGoogle Scholar
  4. 4.
    DasGupta BR, Sugiyama H. A common subunit structure in Clostridium botulinum type A, B, and E toxins. Biochem. Biophys. Res. Commun. 1972; 48: 108–112.PubMedCrossRefGoogle Scholar
  5. 5.
    Simpson LL. Molecular pharmacology of botulinum toxin and tetanus toxin. Ann. Rev. Pharmacol. Toxicol. 1986; 26: 427–453.CrossRefGoogle Scholar
  6. 6.
    Niemann H. Molecular biology of clostridial neurotoxins. In: Sourcebook of bacterial protein toxins. Academic Press, 1991: 303–348.Google Scholar
  7. 7.
    Bittner MA, DasGupta BR, Holz RW. Isolated light chain of botulinum neurotoxins inhibit exocytosis. J. Biol, Chem. 1989; 264: 10354–10360.Google Scholar
  8. 8.
    Poulain B, Mochida S, Wadsworth JDF, et al. Inhibition of neurotransmitter release by botulinum neurotoxins and tetanus toxin at Aplisia synapses: role of the constituent chains. J. Physiol. (Paris) 1990; 84: 247–261.Google Scholar
  9. 9.
    Sakaguchi G. Clostridium botulinum toxins. Pharmac. Ther. 1983;19:165-194.CrossRefGoogle Scholar
  10. 10.
    Pickett J, Berg B, Chaplin E, Shafer MB. Syndrome of botulism in infancy: clinical and electrophysiologic study. New Eng. J. Med. 1976; 295: 770–772.CrossRefGoogle Scholar
  11. 11.
    Midura TF, Amon SS. Infant botulism: identification of Clostridium botulinum and its toxin in faeces. Lancet 1976; 11: 934–936.CrossRefGoogle Scholar
  12. 12.
    Amon SS. Infant botulism: anticipating the second decade. J. Infect. Dis. 1986; 154: 201–205.CrossRefGoogle Scholar
  13. 13.
    McCroskey LM, Hetheway CL, Fenicia L, Pasolini B, Aureli P. Characterization of an organism that produces type E botulinal toxin but which resembles Clostridium butyricum from the feces of an infant with type E botulism. J. Clin. Microbiol. 1986; 23: 201–202.Google Scholar
  14. 14.
    Hall JD, McCrosky LM, Pincomb BJ, Hatheway CL. Isolation of an organism resembling Clostridium barati which produces type F botulinum toxin from an infant with botulism. J. Clin. Microbiol. 1985; 21: 654–655.PubMedGoogle Scholar
  15. 15.
    Giménez JA, Sugiyama H. Comparison of toxins of Clostridium butyricum and Clostridium botulinum type E. Infect. Immun. 1988; 56: 926–929.Google Scholar
  16. 16.
    Sakaguchi G, Sakaguchi S, Kamata Y, Tabita K, Asao T, Kozaki S. Distinct characters of Clostridium botulinum type A strains and their toxin associated with infant botulism in Japan. Int. J. Food Microbiol. 1990; 11: 231–242.PubMedCrossRefGoogle Scholar
  17. 17.
    Kozaki S, Miki A, Kamata Y, Ogasawara J, Sakaguchi G. Immunological characterization of papaininduced fragments of Clostridium botulinum type A neurotoxin and interaction of the fragments with brain synaptosomes. Infect. Immun. 1989; 57: 2634–2639.PubMedGoogle Scholar
  18. 18.
    Gretch DR, Suter M, Stinski. MF. The use of biotynylated monoclonal antibodies and streptavidin affinity chromatography to isolate herpesvirus hydrophobic proteins or glycoproteins. Anal. Biochem. 1987; 163: 270–277.PubMedCrossRefGoogle Scholar
  19. 19.
    Tabita K, Sakaguchi S, Kozaki S, Sakaguchi G. Comparative studies on Clostridium botulinum type A strains associated with infant botulism in Japan and in California, USA. Jpn. J. Med. Sci. Biol. 1990; 43: 219–231.PubMedGoogle Scholar
  20. 20.
    Shone CC, Hambelton P, Melling J. Inactivation of Clostridium botulinum type A neurotoxin by trypsin and purification of two tryptic fragments: proteolytic action near the COOH-terminus of the heavy subunits destroys toxin-binding activity. Eur. J. Biochem. 1985; 151: 75–82.PubMedCrossRefGoogle Scholar
  21. 21.
    Binz T, Kurazono H, Wille M, Frevert J, Wemars K, Niemann H. The complete sequence of botulinum neurotoxin type A and comparison with other clostridial neurotoxins. J. Biol. Chem. 1990; 265: 9153–9158.PubMedGoogle Scholar
  22. 22.
    DasGupta BR, Dekleva ML. Botulinum neurotoxin type A: sequence of amino acids at the N-terminus and around the nicking site. Biochimie 1990; 72: 661–664.PubMedCrossRefGoogle Scholar
  23. 23.
    Thompson EE, Brehm JK, Outram JO, et al. The complete amino acid sequence of the Clostridium botulinum type A neurotoxin, deduced by nucleotide sequence analysis of the encoding gene. Eur. J. Biochem. 1990; 189: 73–81.PubMedCrossRefGoogle Scholar
  24. 24.
    Kozaki S, Ogasawara J, Shimote Y, Kamata Y, Sakaguchi G. Antigenic structure of Clostridium botulinum type B neurotoxin and its interaction with gangliosides, cerebroside, and free fatty acids. Infect. Immun. 1987; 55: 3051–3056.PubMedGoogle Scholar
  25. 25.
    Kozaki S, Kamata Y, Nagai T, Ogasawara J, Sakaguchi G. The use of monoclonal antiboies to analyze the structure of Clostridium botulinum type E derivative toxin. Infect. Immun. 1986; 52: 786–791.Google Scholar
  26. 26.
    Giménez JA, Sugiyama H. Simplified purification methods for Clostridium botulinum type E toxin. Allp. Environ. Microbiol. 1987; 53: 2827–2830.Google Scholar
  27. 27.
    Kozaki S, Onimaru J, Kamata Y, Sakaguchi G Immunological characterization of Clostridium butyricum neurotoxin and its trypsin-induced fragments by use of monoclonal antibodies against Clostridium botulinum type E neurotoxin. Infect. Immun 1991; 59: 457–459.Google Scholar
  28. 28.
    Habermann E. 125I-labeled neurotoxin from Clostridium botulinum A: preparation, binding to synaptosomes and ascent to the spinal cord. Naunyn-Schmiedeberg’s. Arch. Pharmacol. 1974;281:47–56.CrossRefGoogle Scholar
  29. 29.
    Evans DM, Williams RS, Shone CC, Hambleton P, Melling J, Dolly JO. Botulinum neurotoxin type B: its purification, radioiodination and interaction with rat-brain synaptosomal membrane. Eur. J. Biochem. 1986; 154: 409–416.PubMedCrossRefGoogle Scholar
  30. 30.
    Kitamura M, Sone S. Binding ability of Clostridium botulinum neurotoxin to the synaptosomes upon treatment of various kinds of enzymes. Biochem. Biophys. Res. Commun. 1987; 143: 928–933.PubMedCrossRefGoogle Scholar
  31. 31.
    Kozaki S. Interaction of botulinum type A, B and E derivative toxins with synaptosomes of rat brain. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1979; 308: 67–70.Google Scholar
  32. 32.
    Murayama S, Syuto B, Oguma K, Iida H, Kudo S. Comparison of Clostridium botulinum toxins type D and C1 in molecular property, antigenicity and binding ability to rat-brain synaptosomes. Eur. J. Biochem. 1984; 142: 487–492.PubMedCrossRefGoogle Scholar
  33. 33.
    Kitamura M, Iwamori M, Nagai Y. Interaction between Clostridium botulinum neurotoxin and gangliosides. Biochim. Biophys. Acta 1980; 628: 328–335.PubMedCrossRefGoogle Scholar
  34. 34.
    Kozaki S, Sakaguchi G, Nishimura M, Iwamori M, Nagai Y. Inhibitory effect of ganglioside GT1b on the activities of Clostridium botulinum toxins. FEMS Microbiol. Lett. 1984; 21: 219–223.Google Scholar
  35. 35.
    Ochanda JO, Syuto B, Ohishi I, Naiki M, Kubo S. Binding of Clostridium botulinum neurotoxin to gagnliosides. J. Biochem. (Tokyo) 1986; 100: 27–33.Google Scholar
  36. 36.
    Kamata Y, Kozaki S, Sakaguchi G, Iwamori M, Nagai Y. Evidence for direct binding of Clostridium botulinum type E derivative toxin and its fragments to gangliosides and free fatty acids. Biochem. Biophys. Res. Commun. 1986; 140: 1015–1019.CrossRefGoogle Scholar
  37. 37.
    Binz T, Kurazono H, Popoff M, et al. Nucleotide sequence of the gene encoding Clostridium botulinum neurotoxin type D. Nucl. Acids Res. 1990; 18: 5556–5556.PubMedCrossRefGoogle Scholar
  38. 38.
    Hauser D, Eklund MW, Kurazono H, et al. Nucleotide sequence of Clostridium botulinum Cl neurotoxin. Nucl. Acids Res. 1990; 18: 4924–4924.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Shunji Kozaki
    • 1
  • Teiichi Nishiki
    • 1
  • Shoji Nakaue
    • 1
  • Yoichi Kamata
    • 1
  • Genji Sakaguchi
    • 1
  1. 1.University of Osaka Prefecture, College of AgricultureSakai-shi, Osaka, 593Japan

Personalised recommendations