Functional Roles of Domains of Clostridial Neurotoxins: The Contribution from Studies on Aplysia

  • Bernard Poulain
  • Ulrich Weller
  • Thomas Binz
  • Heiner Niemann
  • Anton de Paiva
  • J. Oliver Dolly
  • Christiane Leprince
  • Ladislav Tauc


In recent years there has been increasing interest in the study of the mode of action of botulinum neurotoxin (BoNT) and tetanus toxin (TeTx) at the cellular level (for recent reviews see Simpson, 1986, 1989; Habermann and Dreyer, 1986; Niemann, 1991; Poulain and Molgo, 1992; Wellhöner, 1992, Dolly, 1992, and this volume). This is mainly due to the unique ability of these toxins to effectively block neurotransmitter release in all types of nerve terminals once they gain access inside the nerve endings; BoNTs and TeTx are, thus, useful research tools to study transmitter release mechanisms and tools in medicine. Deciphering their intracellular modes of action still remains a challenge for future research; however, during the last decade continuous progress has been made in the identification of the functional domains of BoNTs and TeTx implicated in the multiple facets of the intoxication. Using neuronal preparations from Aplysra, an identification of the functional role of different protein domains of BoNTs and TeTx has been made which contrasts somewhat with those proposed for vertebrates. Thus the aim of the present paper is to review data in Aplysra and, also, to stress the similarities and differences into observations made in the various models.


Botulinum Toxin Nerve Ending Transmitter Release Acetylcholine Release Botulinum Neurotoxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguilera, J., Ahnert-Hilger, G., Bigalke, H., DasGupta, B.R., Dolly, J.O., Habermann, E., Halpern, J., Middlebrook, J., Mochida, S., Montecucco, C., Niemann, H., Oguma, K., Popoff, M., Poulain, B., Simpson L., Shone, C.C., Thompson, D.E., Weller, U., Wellhiiner, H.H. and Whelan S.M., 1992, Clostridial Neurotoxins–Proposal of a common Nomenclature, F.E.M.S. 90: 99.Google Scholar
  2. Ahnert-Hilger, G., Bader, M.-F., Bhakdi, S. and Gratzl, M., 1989a, Introduction of macromolecules into bovine adrenal medullary chromaffm cells and rat pheochromocytoma cells (PC12) by permeabilization with streptolysin O: Inhibitory effect of tetanus toxin on catecholaline secretion, J. Neurochein. 52: 1751.CrossRefGoogle Scholar
  3. Ahnert-Hilger, G., Dauzenroth, M.E., Habermann, E., Henschen, A., Krieglstein, K., Mauler, M. and Weller, U., 1990, Chains and fragments of tetanus toxin and their contribution to toxicity, J. Physiol. (Paris) 84: 229.Google Scholar
  4. Ahnert-Hilger, G., Weller, U., Dauzenroth, M.E., Habermann, E and Gratzl, M., 1989b, The tetanus toxin light chain inhibit exocytosis, FEBS Letters242:245.Google Scholar
  5. Bakry, N., Kamata, Y. and Simpson, L.L., 1991, Lectins from Triticum vulgaris and Limax flavus are universal antagonists of botulinum neurotoxin and tetanus toxin, J. Pharnracol. Exp. Ther. 258: 830.Google Scholar
  6. Baux, G., Fossier, P. and Tauc, L., 1990, Histamine and FMRFamideregulate in opposite ways acetycholine release at an identified neuro neuronal synapse in Aplysia, J. Physiol (London)429: 147.Google Scholar
  7. Beaude, P., Delacour, A., Bizzini, B., Domualdo, D. and Remy, M.-H., 1990, Retrograde transport of an exogenous enzyme covalently linked to B-IIb fragment of tetanus toxin, Binchem. L271: 87.Google Scholar
  8. Binz, T., Grebenstein, O., Kurazono, H., Eisel, U., Wernars, K., Popoff, M., Mochida, S., Poulain, B., Tauc, L., Kozaki, L. and H., Niemann, 1992, Molecular biology of the L chains of clostridial neurotoxins, Zentralblatt furBakteriologie Supp. 23: 56.Google Scholar
  9. Bittner, M.A., DasGupta, B.R. and Holz, R.W., 1989, Isolated light chains ofbotulinum neurotoxins inhibit exocytosis. Studies in digitonin permeabilized chromaffm cells, J. Biol Chem. 264: 10354.PubMedGoogle Scholar
  10. Bizzini, B., Grob, P. and Akert, K., 1981, Papain-derived fragment IIc of tetanus toxin-binding to isolated synaptic membrane and retrograde transport, Brain Research 210: 291.PubMedCrossRefGoogle Scholar
  11. Blaustein, R.O., German, W.J., Finkelstein, A. and DasGupta, B.R., 1987, The N-terminal half of the heavy chain of botulinum type A neurotoxin forms channels in planar phopholipid bilayers, FEBS Letters 226: 115.PubMedCrossRefGoogle Scholar
  12. Dayanithi, G., Ahnert-Hilger, G., Weller, U., Nordmann, J.J. and Gratzl, M., 1990, Release of vasopressin from isolated permeabilized neurosecretory nerve terminals is blocked by the light chain of botulinum A toxin, Neuroscience, 39: 711.PubMedCrossRefGoogle Scholar
  13. Dayanithi, G., Weller, U., Ahnert-Hilger, G., Link, H., Nordmann, J.J. and Gratzl, M., 1992, The light chain of tetanus toxin inhibits calcium-dependent vasopressin release from permeabilized nerve endings, Neuroscience, 46: 489.PubMedCrossRefGoogle Scholar
  14. Paiva, A. and Dolly, J.O., 1990, Light chain of botulinum ncurotoxin is active in mammalian motor-nerve terminal when delivered via liposomes, FEBSLetters 277: 171.CrossRefGoogle Scholar
  15. Dolly, J.O., 1992, Peptide toxins that alter neurotransmitter release, ín. “Handbook of Experimental Pharmacology”, H. Herkin and F. Hucho, eds, Springer, Berlin.Google Scholar
  16. Dolly, J.O., Black, J.D., Williams R.S. and Melling, J., 1984, Acceptors for botulinum neurotoxin resisde on motor nerve terminals and mediate its internalization, Nature 307: 457.Google Scholar
  17. Dolly, J.O., de Paiva, A, Poulain, B., Foran, P., Ashton, A and Taue, L., 1992, Insights into the neuronal binding, uptake and intracellular activity of botulinum neurotoxins, ZentlalblattfurBakteriologie, Supp. 23: 31.Google Scholar
  18. Dolly, J.O., Poulain, B, Maisey, E.A., Breeze, A.L., Wadsworth, J.D., Ashton, A.C. and Tauc, L., 1988, Neurotransmitter release and K+ channels probed with botulinum neurotoxins and dendrotxin, irr “Neurotoxins in Neurochemistry”, J.O. Dolly, ed., Ellis Horwood Limited, Chichester.Google Scholar
  19. Fishman, P S, Savitt, J.M. and Farrand, D.A., 1990, Enhanced CNS uptake of systematically administered proteins through conjugation with tetanus C-fragment, J. Neural. Sci 98: 311.CrossRefGoogle Scholar
  20. Gaillard, W.D. and Carpenter, D.O., 1986, On the transmitter at the A-to-B cell in Aplysia califomica, Brain Research 373: 311.PubMedCrossRefGoogle Scholar
  21. Gardner, D., 1971, Bilateral symmetry and interneuronal organization in the buccal ganglion of Aplysia, Science, 173: 550.PubMedCrossRefGoogle Scholar
  22. Habermann, E. and Dreyer, F., 1986, Clostridial Neurotoxins- Handling and action at the cellular and molecular level, Current Topic Microbiol. hnarunol 129: 93.CrossRefGoogle Scholar
  23. Hoch, D.H., Romero-Mira, M., Ehrlich, B.E., Finkelstein, A. DasGupta, B.R. and Simpson, L.L., 1985, Channels formed by botulinum, tetanus and diphteria toxins in planar lipid bilayers. Relevance to translocation of proteins accross membranes, Proc. Natl. Acad Scí USA 82: 1692.Google Scholar
  24. Hiigy, B., Dauzenroth, M.-E., Hudel, M., Weller, U., and Habermann, E., 1992, Increase of permeability of synaptosomes and liposomes by the heavy chain of tetanus toxin, Toxicon 30:63.Google Scholar
  25. Kurazono, H., Mochida, S., Binz, T., Eisel, U., Quanz, M., Grebenstein, O., Poulain, B., Tauc, L., and Niemann, H., 1992, Minimal essential domains specifying toxicity of the light chains of tetanus toxin and botulinum neurotoxin type A,.1 Biol. Chem,in-press.Google Scholar
  26. Lomneth, R., Martin, T.F.J. and DasGupta, B.R., 1991, Botulinum neurotoxin light chain inhibits norepinephrine secretion in PC 12 cells at an intracellular membranous or cytoskeletal site,.1 Neurochem. 57: 1413.Google Scholar
  27. Maisey, E.A., Wadsworth, J.D.F., Poulain, B., Shone, C.C., Melling, J., Gibbs, P., Tauc, L. and Dolly, J.O., 1988, Involvement of the constituent chains of botulinum neurotoxins A and B in the blockade of neurotransmitter release, Eur. J. Biochem., 177: 683.PubMedCrossRefGoogle Scholar
  28. McInnes, C. and Dolly, J.O., 1990, Cat+-dependent noradrenaline release from permeabilized PC 12 cells is blocked by botulinum neurotoxin A or its light chain, FEBSLetters261:323.Google Scholar
  29. Mochida, S., Poulain, B., Eisel, U., Binz, T., Kurazono, H., Niemann, H. and Tauc, L., 1990, Exogenous mRNA encoding tetanus or botulinum neurotoxins expressed in Aplysia neurons, Proc. Natl. Acad Sci. 87: 7844.PubMedCrossRefGoogle Scholar
  30. Mochida, S., Poulain, B, Weller, U., Habermann, E. and Tauc, L., 1989, Light chain of tetanus toxin intracellularly inhibits acetylcholine release at neuro-neuronal synapses, and its internalization is mediated by heavy chain, FEBSLetters253:47.Google Scholar
  31. Molgo, J.,Cornelia, J.X., Angaut-Petit, D., Pécot-Dechavassine, M., Tabti, N., Faille, L., Mallart, A. and Thesleff, S., 1990, Presynaptic actions of botulinal neurotoxins at vertebrate neuromuscular junctions, J. Physiol (Paris) 84:152.Google Scholar
  32. Montecucco, C., 1986, How do tetanus and botulinum toxins bind to neuronal membranes?, T.I.N.S. 11: 314.Google Scholar
  33. Montecucco, C., Papini, E. and Schiavo, G., 1991, Molecular models of toxin membrane translocation, irr. “Sourcebook of Bacterial Protein Toxin”, J. Alouf and J. Freer, eds, Academic Press, London.Google Scholar
  34. Niemann, H., 1991, Molecular biology of clostridia) toxins, in. “Sourcebook of Bacterial Protein Toxin”, J. Alouf and J. Freer, eds, Academic Press, London.Google Scholar
  35. Niemann, H., Binz, Th., Grebenstein, O., Kurazono, H., Thierer, J., Mochida, S., Poulain, B. and Tauc, L., 1991, Clostridia) Neurotoxins: From Toxins to Therapeutic tools?, Behring Institute Mítteihrngen 89: 153.Google Scholar
  36. Penner, R., Neher, E. and Dreyer, F., 1986, Intracellularly injected tetanus toxin inhibits exocytosis in bovine adrenal chromaffin cells, Nature 324: 76.PubMedCrossRefGoogle Scholar
  37. Poulain, B., de Paiva, A., Dolly, J.O., Weller, U. and Tauc, L., 1992b, Differences in temperature dependence of botulinum and tetanus uptake in Aplysia, Neuroscience Letters 139: 289.PubMedCrossRefGoogle Scholar
  38. Poulain, B., Mochida, S., Weller, U., Högy, B., Habermann, E., Wadsworth, J.D.F., Dolly, J.O., Shone, C.C. and Tauc, L., 1991 Heterologous combinations of heavy and light chains from botulinum neurotoxin A and tetanus toxin inhibit neuro-transmitter release in Aplysia, J. Biol. Chem. 266: 2580.Google Scholar
  39. Poulain, B., Mochida, S. Wadsworth, J.D.F., Weller, U., Habennann E., Dolly, J.O. and Tauc, L., 1990Google Scholar
  40. Inhibition of neurotransmitter release by botulinum neurotoxins and tetanus toxin at Aplysia synapses: Role of the constituent chains. T. Physíol (Parts) 84:247.Google Scholar
  41. Poulain, B. and Molgo, J., 1992, Botulinal neurotoxins. Methods used in the study of their mode of action on neuro-transmitter release, in. “Methods in Neurosciences”, P.M. Conn, ed., Academic Press, San Diego.Google Scholar
  42. Poulain, B, Tauc, L., Maisey, E.A., Wadsworth, J.D.F., Mohan, P.M. and Dolly J.O., 1988, Neurotransmitter release is blocked intracellularly by botulinum neurotoxin, and this requires uptake of both toxin polypeptides by a process mediated by the larger chain, Fret. Nati Acad. Sci USA 85: 4090.CrossRefGoogle Scholar
  43. Poulain, B., Wadsworth, J.D.F., Maisey, E.A., Shone, C.C., Melling, J., Tauc, L. and Dolly, J.O., 1989a, Inhibition of transmitter release by botulinum neurotoxin A. Contribution of various fragments to the intoxication process, Ear… Btochem. 185: 197.CrossRefGoogle Scholar
  44. Poulain, B., Wadsworth, J.D.F., Shone, C.C., Mochida, S., Lande, S., Melling, J., Dolly, J.O. and Tauc, L., 1989b, Multiple domains of botulinum neurotoxin contribute to its inhibition of transmitter release in Aplysia Neurons, J. Bid Chem. 264: 2 1928.Google Scholar
  45. Poulain, B., Wadsworth, J.D.F., Weller, U., Mochida, S., Leprince, C., Dolly, J.O., and Tauc, L., 1992a, Functional studies in Aplysia caGfomica on chimeras of botulinum and tetanus toxins, Zentmlblatt frBakteríologie Supp. 23: 46.Google Scholar
  46. Schiavo, G., Bocquet, P., DasGupta, B.R. and Montecucco, C., 1990, Membrane interactions of tetanus and botulinum neurotoxins: a photolabelling study with photoactivable phospholipids, J. Physíol. (Paris) 84: 180.Google Scholar
  47. Schiavo, G., Ferrari, G., Rossetto, O. and Montecucco, C., 1991, Specific cross-linking of tetanus toxin to a protein on NGF-differentiated PC12 cells, FEBSLetters290:227.Google Scholar
  48. Schmitt, A., Dreyer, F. and John, C., 1981, At least three sequential steps are involved in the tetanus toxin-induced block of neuromuscular transmission, Naanyn-Scher edeberg’sArch. Pharmacol 317: 326.CrossRefGoogle Scholar
  49. Shone, C.C., Hambleton, P. and Melling, J., 1985, Inactivation of Clostridium botulinum type A neurotoxin by trypsin and purification of two tryptic fragments. Proteolytic action near the COOH-terminus of the heavy subunit destroys toxin-binding activity, Ear..1 Biochem. 151: 75.PubMedCrossRefGoogle Scholar
  50. Simpson, L.L., 1981, The origin, structure, and pharmacological activity of botulinum toxin, Pharmacologicalrev., 33: 155.Google Scholar
  51. Simpson, L.L., 1986, Molecular pharmacology of botulinum toxin and tetanus toxin, And Rev. Pha nacol Toxtcol. 26: 427.CrossRefGoogle Scholar
  52. Simpson, L.L., 1989, Peripheral actions of the botulinum toxins, tn. “Botulinum neurotoxin and tetanus toxin”, L. L. Simpson, ed., Academic Press, San Diego.Google Scholar
  53. Simpson, L.L. and Hoch, D.H., 1985, Neuropharmacological characterisation of fragment B from tetanus toxin, I. Pharmacol Exp. Thar. 232: 223.Google Scholar
  54. Stecher, B., Weller, U., Habermann, E., Gratzl, M. and Ahnert-Hilger, G., 1989, The light chain but not the heavy chain of botulinum A toxin inhibits exocytosis from permeabilized adrenal chromaffm cells, FEBSLetters255:391.Google Scholar
  55. Takano, K., Kirchner, F., Gremmelt, A., Matsuda, M., Ozutsumi, N. and Sugimoto, N., 1989, Blocking effects of tetanus toxin and its fragment (A-B) on excitatory and inhibitory synapses of the spinal motoneurone of the cat, Toxícon, 27: 385.PubMedCrossRefGoogle Scholar
  56. Weller, U., Dauzenroth, M.-E., Gansel, M., and Dreyer, F., 1991, Cooperative action of the light chain of tetanus toxin and the heavy chain of botulinum toxin type A on transmitter release of mammalian motor endplates, Neuroscience Letters 122: 132.PubMedCrossRefGoogle Scholar
  57. Weller, U., Dauzenroth, M.-E., Meyer zu Heringdorf, D. and Habermann, E., 1989, Chains and fragments of tetanus toxin: separation, reassociation and pharmacological properties Ear. J. Biochem. 182: 649.CrossRefGoogle Scholar
  58. Weller, U., Taylor, C.F. and Habermann, E., 1986, Quantitative comparison between tetanus toxin, some fragments and toxoid for binding and axonal transport in the rat, Toxícon 24: 1055.PubMedCrossRefGoogle Scholar
  59. Wellhöner, H.H., 1992, Tetanus and botulinum Neurotoxins. iu. “Handbook of Experimental Pharmacology”, H. Herkin and F. Hucho, eds, Springer, Berlin.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Bernard Poulain
    • 1
  • Ulrich Weller
    • 2
  • Thomas Binz
    • 3
  • Heiner Niemann
    • 3
  • Anton de Paiva
    • 4
  • J. Oliver Dolly
    • 4
  • Christiane Leprince
    • 1
  • Ladislav Tauc
    • 1
  1. 1.Laboratoire de Neurobiologie Cellulaire et MoléculaireCNRSGif-sur-YvetteFrance
  2. 2.Institut für Medizinische MikrobiologieJ.Gutenberg UniversitätMainzGermany
  3. 3.Bundesforschungsanstalt für Viruskrankheiten der TiereTübingenGermany
  4. 4.Department of BiochemistryImperial College of Science, Technology and MedicineLondonUK

Personalised recommendations