Advertisement

Identification of Proteins Involved in Endosome Fusion: Implications for Toxin Activity

  • James M. Lenhard
  • Maria I. Colombo
  • Michael Koval
  • Guangpu Li
  • Luis S. Mayorga
  • Philip D. Stahl

Abstract

Endocytosis of proteins is a fundamental aspect of protein transport required for cell survival. Binding of a number of ligands including hormones, growth factors, nutrients and antigens to cell-surface receptors initiates internalization of these macromolecules. The receptor-ligand complexes that form at the cell surface sequester within clathrin-coated pits and the pits pinch off the plasma membrane to form coated vesicles1. After uncoating, the vesicles fuse with other endocytic vesicles, the compartment acidifies and the ligands dissociate from their receptors2. The lumenal contents of the endocytic vesicles are commonly delivered to lysosomes or the Golgi apparatus while the majority of the membrane components are recycled to the plasma membrane3.

Keywords

Cholera Toxin Okadaic Acid Early Endosome Endocytic Vesicle Transport Machinery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. M. Pearse and M. S. Robinson, Clathrin, adaptors, and sorting, Annu. Rev. Cell Biol. 6: 151 (1990).PubMedCrossRefGoogle Scholar
  2. 2.
    S. Kornfeld and I. Mellman, The biogenesis of lysosomes, Annu. Rev. Cell BioL 5: 483 (1989).PubMedCrossRefGoogle Scholar
  3. 3.
    B. Van Deurs, O. Peterson, S. Olsnes and K. Sandvig, The ways of endocytosis, Int. Rev. Cyt. 117: 131 (1989).CrossRefGoogle Scholar
  4. 4.
    J. E. Alouf and J. H. Freer. “Sourcebook of Bacterial Protein Toxins,” Academic Press, San Diego (1991).Google Scholar
  5. 5.
    S. Merion, P. Schlesinger, R. Brooks, J. Moehring, T. Moehring, and W. Sly, Defective acidification of endosomes in chinese hamster ovary cell mutants “cross resistant” to toxins and viruses, Proc. NatL Acad. ScL USA 80: 5315 (1983).CrossRefGoogle Scholar
  6. 6.
    L. I. Simpson, The binary toxin produced by clostridium botulinum enters cells by receptor-mediated endocytosis to exert its pharmacologic effects. J. PharmacoL Exp. Ther. 251: 1223 (1989).PubMedGoogle Scholar
  7. 7.
    J. S. Blum, M. L. Fiani, and P. D. Stahl, Proteolytic cleavage of ricin A chain in endosomal vesicles, J. BioL Chem. 266: 22091 (1991).PubMedGoogle Scholar
  8. 8.
    R. Diaz, L. Mayorga, and P. Stahl, In vitro fusion of endosomes following receptor-mediated endocytosis, J. Biol. Chem. 263: 6093 (1988).Google Scholar
  9. 9.
    M. Colombo, J. Lenhard, L. Mayorga and P. Stahl, Reconstitution of endosome fusion: Identification of factors necessary for fusion competency, Meth. Enz. 219: 32 (1992).CrossRefGoogle Scholar
  10. 10.
    J. P. Gorvel, P. Chavrier, M. Zerial, and J. Gruenberg, rab5 controls early endosome fusion in vitro, Cell 64: 915 (1991).PubMedCrossRefGoogle Scholar
  11. 11.
    P. G. Woodman and G. Warren, Fusion of endocytic vesicles in a cell-free system, Methods Cell Biol. 31: 197 (1989).PubMedCrossRefGoogle Scholar
  12. 12.
    W. A. Braell, Fusion between endocytic vesicles in a cell-free system, Proc. Natl. Acad. Sci. 84: 1137 (1987).PubMedCrossRefGoogle Scholar
  13. 13.
    G. Drivas, S. Palmieri, P. D’Eustachio and M. Rush, Evolutionary grouping of the ras-protein family, Biochem. and Biophys. Res. Comm. 176: 1130 (1991).CrossRefGoogle Scholar
  14. 14.
    A. Gilman, G proteins: Transducers of receptor-generated signals, Ann. Rev. Biochem. 56: 615 (1987).PubMedCrossRefGoogle Scholar
  15. 15.
    H. Bourne, D. Sanders, and F. McCormick, The GTPase superfamily: a conserved switch for diverse cell function, Nature 348: 125 (1990).PubMedCrossRefGoogle Scholar
  16. 16.
    S. Pfeffer, GTP-binding proteins in intracellular transport, Trends in cell Biol. 2: 41 (1992).CrossRefGoogle Scholar
  17. 17.
    H. Bourne, Do GTPases direct membrane traffic in secretion?, Cell 53: 669 (1988).PubMedCrossRefGoogle Scholar
  18. 18.
    M.I. Colombo, L.S. Mayorga, P.J. Casey, and P.D. Stahl, Evidence of a role for heterotrimeric GTP-binding proteins in endosome fusion, Science 255: 1695 (1992).PubMedCrossRefGoogle Scholar
  19. 19.
    J.M. Lenhard, R.A. Kahn, and P.D. Stahl, Evidence for ADP-ribosylation factor (ARF) as a regulator of in vitro endosome-endosome fusion, J. Biol. Chem. 267: 13047 (1992).PubMedGoogle Scholar
  20. 20.
    L.S. Mayorga, R. Diaz, and P.D. Stahl, Regulatory role for GTP-binding proteins in endocytosis, Science 244: 1475 (1989).PubMedCrossRefGoogle Scholar
  21. 21.
    M. Wessling-Resnick and W. Braell, Characterization of endocytic vesicle fusion in vitro, J. Biol. Chem. 265: 16751 (1990).PubMedGoogle Scholar
  22. 22.
    L.S. Mayorga, R. Diaz, M.I. Colombo, and P.D. Stahl, GTPyS stimulation of endosome fusion suggests a role for a GTP-binding protein in the priming of vesicles before fusion, Cell Regul. 1: 113 (1989).PubMedGoogle Scholar
  23. 23.
    J.M. Lenhard, L.S. Mayorga, and P.D. Stahl, Characterization of endosomeendosome fusion in a cell-free system using Dictyostelium discoideum, J. Biol. Chem. 267: 1896 (1992).PubMedGoogle Scholar
  24. 24.
    R. Kahn and A. Gilman, Purification of a protein cofactor required for ADP-ribosylation of the stimulatory regulatory component of adenylate cyclase by cholera toxin, J . Biol. Chem. 259: 6228 (1984).PubMedGoogle Scholar
  25. 25.
    R. Kahn, P. Randazzo, T. Serafini, O. Weiss, C. Rulka, J. Clark, M. Amherdt, P. Roller, L. Orci, and J. Rothman, The amino terminus of ADP-ribosylation factor (ARF) is a critical determinant of ARF activities and is a potent and specific inhibitor of protein transport, J . Biol. Chem. 267: 13039 (1992).PubMedGoogle Scholar
  26. 26.
    D. Towler, J. Gordon, S. Adams, and L. Glaser, Amino terminal processing of proteins by N-myristoylation, Annu. Rev. Biochem. 57: 69 (1988).PubMedCrossRefGoogle Scholar
  27. 27.
    J. Donaldson, R. Kahn, J. Lippincott-Schwartz and R. Klausner, Binding of ARF and ß-COP to Golgi membranes: possible regulation by a trimeric G protein, Science 254: 1197 (1991).PubMedCrossRefGoogle Scholar
  28. 28.
    M. Janicot, F. Fouque and B. Desbuquois, Activation of rat liver adenylate cyclase by cholera toxin requires toxin internalization and processsing in endosomes, J . Biol. Chem 266: 12858 (1991).PubMedGoogle Scholar
  29. 29.
    W. Lencer, C. Delp, M. Neutra and J. Madara, Mechanism of cholera toxin action on a polarized human epithelial cell line: role of vesicular traffic, J . Cell BioL 117: 1197 (1992).PubMedCrossRefGoogle Scholar
  30. 30.
    P. Van Der Sluijs, M. Hull, A. Zahraoui, A. Tavitian, B. Goud, and I. Mellman, The small GTP-binding protein rab4 is associated with early endosomes, Proc. Natl. Acad. Sci. USA 88: 6313 (1991).CrossRefGoogle Scholar
  31. 31.
    P. Chavrier, R. Parton, H. Hauri, K. Simons, and M. Zerial, Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments, Cell 62: 317 (1990).PubMedCrossRefGoogle Scholar
  32. 32.
    P. van der Sluijs, M. Hull, P. Webster, P. Malle, B. Goud and I. Mellman, The small GTP-binding protein rab4 controls an early sorting event of the endocytic pathway, Cell In Press (1992).Google Scholar
  33. 33.
    G. Li and P. D. Stahl, Post-translational processing of the two early endosome-associated rab GTP-binding proteins (rab4 and rab 5), submitted (1992).Google Scholar
  34. 34.
    B. T. Kinsella and W. Maltese, rab GTP-binding proteins with three different carboxyl-terminal cysteine motifs are modified in vivo by 20-carbon isoprenoids, J. Biol. Chem. 267: 3940 (1992).PubMedGoogle Scholar
  35. 35.
    P. Chavrier, J. P. Gorvel, E. Stelzer, K. Simons, J. Gruenberg, and M. Zerial, Hypervariable C-terminal domain of rab proteins acts as a targeting signal, Nature 353: 769 (1991).PubMedCrossRefGoogle Scholar
  36. 36.
    M. Bollen and W. Stalmans, The structure, role, and regulation of type 1 protein phosphatases, Crit. Rev. Biochem. Mol. Biol. 27: 227 (1992).PubMedCrossRefGoogle Scholar
  37. 37.
    P. Nurse, Universal control mechanism regulating onset of M-phase, Nature 344: 503 (1990).PubMedCrossRefGoogle Scholar
  38. 38.
    T. Tuomikoski, M. Felix, M. Doree, and J. Gruenberg, Inhibition of endocytic vesicle fusion in vitro by the cell-cycle control protein kinase cdc2. Nature 342: 942 (1989).PubMedCrossRefGoogle Scholar
  39. 39.
    R. Berlin, J. Oliver, and R. Walter, Surface functions during mitosis. I. Phagocytosis, pinocytosis, and mobility of surface-bound Con-A, Cell 15: 327 (1978).PubMedCrossRefGoogle Scholar
  40. 40.
    E. Bailley, N. Touchet, A. Zahraoui, B. Goud, and M. Bornens, p34cdc2 protein kinase phosphorylates two small GTP-binding proteins of the rab family, Nature 350: 715 (1991).CrossRefGoogle Scholar
  41. 41.
    P. van der Sluijs, M. Hull, P. Male, B. Goud, and I. Mellman, Reversible phosphorylation-dephosphorylation determines the localization of rab4 during the cell cycle, EMBO J. In Press (1992).Google Scholar
  42. 42.
    P. Woodman, D. Mundy, P. Cohen, and G. Warren, Cell-free fusion of endocytic vesicles is regulated by phosphorylation, J. Cell BioL 116: 331 (1992).PubMedCrossRefGoogle Scholar
  43. 43.
    A. Ullrich and J. Schlessinger, Signal transduction by receptors with tyrosine kinase activity, Cell 61: 203 (1990).PubMedCrossRefGoogle Scholar
  44. 44.
    N. T. Kistakis, D. Thomas, and M. G. Roth, Characterization of the tyrosine recognition signal for internalization of transmembrane surface glycoproteins, J. Cell Biol. 111: 1393 (1990).CrossRefGoogle Scholar
  45. 45.
    A. Pelchen-Matthews, I. Boulet, D. Littman, R. Fagard, and M. Marsh, The protein tyrosine kinase p56kk inhibits CD4 endocytosis by preventing entry of CD4 into coated pits, J. Cell Biol. 117: 279 (1992).CrossRefGoogle Scholar
  46. 46.
    M. Block, B. Glick, C. Wilcox, F. Wieland and J. Rothman, Purification of an N-ethyhnaleimide-sensitive protein catalyzing vesicular transport, Proc. Natl. Acad. Sci. 85: 7852 (1988).PubMedCrossRefGoogle Scholar
  47. 47.
    C. Beckers, M. Block, B. Glick, J. Rothman and W. Balch, Vesicular transport between the endoplasmic reticulum and the Golgi stack requires the NEM-sensitive fusion protein, Nature 339: 397 (1989).PubMedCrossRefGoogle Scholar
  48. 48.
    R. Diaz, L. Mayorga, P. Weidman, J. Rothman and P. Stahl, Vesicle fusion following receptor-mediated endocytosis requires a protein active in Golgi transport, Nature 339: 398 (1989).PubMedCrossRefGoogle Scholar
  49. 49.
    D. Wilson, C. Wilcox, G. Flynn, E. Chen, W. Kuang, W. Henzel, M. Block, A. Ullrich and J. Rothman, A fusion protein required for vesicles-mediated transport in both mammalian cells and yeast, Nature 339: 355 (1989).PubMedCrossRefGoogle Scholar
  50. 50.
    P. Novick, S. Ferro, and R. Schelunan, Order of events in the yeast secretory pathway, Cell 25: 461 (1981).PubMedCrossRefGoogle Scholar
  51. 51.
    H. Reizman, Endocytosis in yeast: Several of the yeast secretory mutants are defective in endocytosis, Cell 40: 1001 (1985).CrossRefGoogle Scholar
  52. 52.
    V. Malhotra, L. Orci, B. Glick, M. Block and J. Rothman, Role of an Nethyhnaleimide-sensitive transport component in promoting fusion of transport vesicles with cisternae of the Golgi, Cell 54: 221 (1988).PubMedCrossRefGoogle Scholar
  53. 53.
    P. Weidman, P. Melancon, M. Block and J. Rothman, Binding of an Nethylmaleimide-sensitive fusion protein to Golgi membranes requires both a soluble protein(s) and an integral membrane receptor, J. Cell BioL 108: 1589 (1989).PubMedCrossRefGoogle Scholar
  54. 54.
    D. Clary, I. Griff, and J. Rothman, SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animal and yeast, Cell 61: 709 (1990).PubMedCrossRefGoogle Scholar
  55. 55.
    D. Clary and J. Rothman, Purification of three related peripheral membrane proteins needed for vesicular transport, J. Biol’. Chem. 265: 10109 (1990).PubMedGoogle Scholar
  56. 56.
    D. Wilson, S. Whiteheart, M. Wiedmann, M. Brunner and J. Rothman, A multisubunit particle implicated in membrane fusion, J. Cell Biol. 117: 531 (1992).PubMedCrossRefGoogle Scholar
  57. 57.
    B. Wattenberg, T. Raub, R. Hiebsch and P. Weidman, The activity of Golgi transport vesicles depends on the presence of the N-ethylmaleimide sensitive factor (NSF) and a soluble NSF attachment protein (SNAP) during vesicle formation, J. Cell Biot In press (1992).Google Scholar
  58. 58.
    B. Glick and J. Rothman, Possible role for fatty acyl-coenzyme A in intracellular protein transport, Nature 326: 309 (1987).PubMedCrossRefGoogle Scholar
  59. 59.
    N. Pfanner, L. Orci, B. Glick, M. Amherdt, S. Arden, V. Malhotra and J. Rothman, Fatty Acyl-Coenzyme A is required for budding of transport vesicles from the Golgi Cisternae, Cell 59: 95 (1989).PubMedCrossRefGoogle Scholar
  60. 60.
    N. Pfanner, B. Glick, S. Arden and J. Rothman, Fatty acylation promotes fusion of transport vesicles with Golgi cisternae, J. Cell Biol. 110: 955 (1990).PubMedCrossRefGoogle Scholar
  61. 61.
    M. Koval, Plasma membrane lipid transport in cultured cells: studies using lipid analogs and model systems, in: “Advances in Cell and Molecular Biology of Membranes,” B. Storrie and R. Murphy, ed., JAI Press, Greenwich (1992).Google Scholar
  62. 62.
    M.I. Colombo, S. Gonzalo, P. Weidman, and P.D. Stahl, Characterization of trypsin-sensitive factor(s) required for endosome-endosome fusion, J . BioL Chem. 266: 23438 (1991).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • James M. Lenhard
    • 1
  • Maria I. Colombo
    • 1
  • Michael Koval
    • 1
  • Guangpu Li
    • 1
  • Luis S. Mayorga
    • 1
  • Philip D. Stahl
    • 1
  1. 1.Department of Cell Biology and PhysiologyWashington University School of MedicineSt. LouisUSA

Personalised recommendations