Exo-Endocytotic Recycling of Synaptic Vesicles in Developing Neurons

  • Michela Matteoli
  • Pietro De Camilli


Regulated secretion of neurotransmitters from neurons involves a cocktail of neurotransmitter molecules and at least two classes of secretory organdies: synaptic vesicles (SVs) and large dense core vesicles (LDCVs). SVs are small vesicles highly homogeneous in size (about 50 nm) which are clustered under the presynaptic plasmalemmma and contain non-peptide neurotransmitters.Their exocytosis is responsible for the fast, point-to-point signalling typical of synaptic transmission. LDCVs are larger organelles with an electron dense core which contain neuroactive peptides and may also contain amines. Their exocytosis is involved in a slower, modulatory intercellular signalling.


Hippocampal Neuron Synaptic Vesicle Endocrine Cell Transferrin Receptor Immature Neuron 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    De Camilli P, Jahn R. Pathways to regulated exocytosis in neurons. Ann Rev Physiol 1990; 52, 625–645.CrossRefGoogle Scholar
  2. 2.
    Matteoli M, Thomas Reetz A, De Camilli P. Small synaptic vesicle and large dense core vesicles: secretory organelles involved in two modes of neuronal signalling. In: Volume transmission in the brain: novel mechanisms for neural transmission. New York: Raven Press, 1991: 181–193.Google Scholar
  3. 3.
    Südhof TC, Jahn R. Proteins of synaptic vesicles involved in exocytosis and membrane recycling. Neuron 1991; 6, 665–677.PubMedCrossRefGoogle Scholar
  4. 4.
    De Camilli P, Benfenati F, Valtorta F, Greengard P. The synapsins. Ann Rev Cell Biol 1990; 6: 433–460.CrossRefGoogle Scholar
  5. 5.
    Trimble WS, Linial M, Scheller RH. Cellular and molecular biology of the presynaptic nerve terminal. Ann Rev Neurosci 1991; 14: 93–122.PubMedCrossRefGoogle Scholar
  6. 6.
    Matteoli M, De Camilli P. Molecular mechanisms in neurotransmitter release. Curr Opinion in Neurobiol 1991; 1: 91–97.CrossRefGoogle Scholar
  7. 7.
    Bartlett WP, Banker GA. An electron microscopic study of the development of axon and dendrites by hippocampal neurons in culture. I. Cells which develop without intracellular contacts. J Neurosci 1984a; 4, 1944–1953.PubMedGoogle Scholar
  8. 8.
    Bartlett WP, Banker GA. An electron microscopic study of the development of axon and dendrites by hippocampal neurons in culture. Il Synaptic relationships. J Neurosci 1984b; 4, 1954–1965.PubMedGoogle Scholar
  9. 9.
    Dotti CG, Sullivan CA, Banker GA. The establishment of polarity by hippocampal neurons in culture. J Neurosci 1988; 8: 1454–1468.PubMedGoogle Scholar
  10. 10.
    Goslin K, Banker G. Experimental observations on the development of polarity by hippocampal neurons in culture. J Cell Biol 1989: 108: 1507–1516.PubMedCrossRefGoogle Scholar
  11. 11.
    Fletcher TL, Cameron PL, De Camilli P, Banker, G. The distribution of synapsin I and synaptophysin in hippocampal neurons developing in culture. J Neurosci 1991; 11: 1617–1626PubMedGoogle Scholar
  12. 12.
    De Camilli P, Cameron R, Greengard P. Synapsin I (protein 1), a nerve terminal specific phosphoprotein. I. Its general distribution in synapses of the central and peripheral nervous system demonstrated by immunofluorescence in frozen and plastic sections. J Cell Biol 1983; 96, 1337–1354.PubMedCrossRefGoogle Scholar
  13. 13.
    Hirokawa N, Sobue K, Kanda K, Harada A, Yorifuji H. The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin I. J Cell Biol 1989; 108: 111–126.PubMedCrossRefGoogle Scholar
  14. 14.
    Benfenati F, Valtorta F, Greengard P. Computer modeling of synapsin I binding to synaptic vesicles and F-actin: implications for regulation of neurotransmitter release. Proc Natl Acad Sci 1991; 88: 575–579.PubMedCrossRefGoogle Scholar
  15. 15.
    Benfenati F, Valtorta F, Chieregatti E, Greengard P. Interation of free and synaptic vesicle-bound synapsin I with F-actin. Neuron 1992; 8: 377–386.PubMedCrossRefGoogle Scholar
  16. 16.
    Fischer v. Mollard G, Mignery G, Baumert M, Perin MS, Hanson TJ, Burger PM, Jahn R, Siidhof TC. Rab3 is a small GTP-binding protein exclusively localized to synaptic vesicles. Proc Natl Acad Sci USA 1990; 87: 1988–1992.CrossRefGoogle Scholar
  17. 17.
    Fischer v. Mollard G, Südhof TC, Jahn R. A small G protein dissociates from vesicles during exocytosis. Nature 1991; 349: 79–82.CrossRefGoogle Scholar
  18. 18.
    Matteoli M, Takei K, Cameron R, Hurlbut P, Johnston PA, Südhof TC, Jahn R, De Camilli P. Association of rab3A with synaptic vesicles at late stages of the secretory pathway. J.Cell Biol 1991; 115: 625–633.PubMedCrossRefGoogle Scholar
  19. 19.
    Matteoli M, Takei K, Perin MS, Südhof TC, De Camilli P. Exo-endocytotic recycling of synaptic vesicles in developing processes of cultured hippocampal neurons. J Cell Biol 117: 849–861.Google Scholar
  20. 20.
    Matthew, W.D., Tsavaler, L. and Reichardt, L.F. (1981) Identification of a synaptic vesicle-specific membrane protein with a wide distribution in neuronal and neurosecretory tissue. J. Cell Biol. 91, 257–269.PubMedCrossRefGoogle Scholar
  21. 21.
    Perin MS, Fried VA, Mignery GA, Jahn R, Siidhof TC. Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature 1990; 345: 260–263.PubMedCrossRefGoogle Scholar
  22. 22.
    Perin MS, Brose N, Jahn R, Siidhof T. Domain structure of synaptotagmin (p65). J Biol Chem 1991; 266: 623–629.PubMedGoogle Scholar
  23. 23.
    Perin MS, Johnston P., Ozcelik T, Jahn R, Francke U, Sudhöf TC. Structural and functional conservation of synaptophysin (p65) in Drosophila and humans. J Biol Chem 1991; 266: 615–622.PubMedGoogle Scholar
  24. 24.
    Geppert M,Archer BT, Siidhof TC. Synaptotagmin I1: a novel differentially distributed form of synaptotagmin I. J Biol Chem 1991; 266,:13548–13552.Google Scholar
  25. 25.
    Wendland B, Miller KG, Schilling J, Schellen RH. Differential expression of the p65 gene family. Neuron 1991; 6: 993–1007.PubMedCrossRefGoogle Scholar
  26. 26.
    Ceccarelli B, Hurlbut WP, Mauro A. Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J Cell Biol. 1973; 57: 499–524.PubMedCrossRefGoogle Scholar
  27. 27.
    Heuser JE, Reese TS. Evidence for recycling of synaptic vesicles membranes during transmitter release at the frog neuromuscular junction. J Cell Biol 1973; 57: 315344.Google Scholar
  28. 28.
    Hume RI, Role LW, Fishbach GD. Acetylcholine release from growth cones detected with patches of acetylcholine rich membranes. Nature 1983; 305: 632–634.PubMedCrossRefGoogle Scholar
  29. 29.
    Young SH, Poo MM. Spontaneous release of transmitter from growth cones of embryonic neurones. Nature 1983; 305, 634–637.PubMedCrossRefGoogle Scholar
  30. 30.
    Sun Y, Poo MM. Evoked release of acetylcholine from the growing embryonic neuron. Proc Natl Acad Sci. 1987; 84: 2540–2544.PubMedCrossRefGoogle Scholar
  31. 31.
    Evers J, Laser M, Sun YA, Xie ZP, Poo MM. Studies of nerve-muscle interactions in Xenopus cell cultures: Analysis of early synaptic currents. J Neurosci 1989; 9: 1523–1539.PubMedGoogle Scholar
  32. 32.
    Mattson MP. Neurotransmitters in the regulation of neuronal cytoarchitecture. Br Res Rev 1988; 13: 179–212.CrossRefGoogle Scholar
  33. 33.
    Fatt, P. and Katz, B. (1952) Spontaneous subtreshold activity at motor nerve endings. J. Physiol. ( London ) 117, 109–128.Google Scholar
  34. 34.
    Hubbard, J.I., Jones, S.F. and Landau, E.M. (1968) On the mechanism by which calcium and magnesium affect the spontaneous release of transmitter from mammalian motor nerve terminals. J. Phyisiol. 194, 355–380.Google Scholar
  35. 35.
    Zoran MJ, Doyle RT, Haydon PG. Target contact regulates the calcium responsiveness of the secretory machinery during synaptogenesis. Neuron 1991; 6: 145–151.PubMedCrossRefGoogle Scholar
  36. 36.
    Cameron PL, Südhof TC, Jahn R, De Camilli P. Colocalization of synaptophysin with transferrin receptors: implications for synaptic vesicle biogenesis. J Cell Biol 1991; 115: 151–164.PubMedCrossRefGoogle Scholar
  37. 37.
    Fuller SD, Simons K. Transferrin receptor polarity and recycling accuracy in “Tight” and “Leaky” strains of Madine-Darby canine kidney cells. J Cell Biol 1986; 103: 1767–1779.PubMedCrossRefGoogle Scholar
  38. 38.
    Navone F, Jahn R, Di Gioia G, Stukenbrok H, Greengard P, De Camilli P. Protein p38: an integral membrane protein specific for small vesicles of neurons and neuroendocrine cells. J Cell Biol 1986; 103: 2511–2527.PubMedCrossRefGoogle Scholar
  39. 39.
    Wiedenmann B, Rehm H, Knierim M, Becker CM. Fractionation of synaptophysincontaining vesicles from rat brain and cultured PC12 pheochromocytoma cells. FEBS Lett. 1988; 240: 71–77.PubMedCrossRefGoogle Scholar
  40. 40.
    Reetz AT, Solimena M, Matteoli M, Folli F,Takei K, De Camilli P. GABA and pancreatic beta cells: colocalization of glutamic acid decarboxylase (GAD) and GABA with synaptic-like microvesicles suggests their role in GABA storage and secretion. EMBO J. 1991; 10: 1275–1284.PubMedGoogle Scholar
  41. 41.
    Johnston PA, Cameron PL, Stukenbrok H, Jahn R, De Camilli P, Südhof TC. Synaptophysin is targeted to similar microvesicles in CHO and PC12 cells. EMBO J 1989; 8: 2863–2872.PubMedGoogle Scholar
  42. 42.
    Linstedt AD, Kelly RB. Synaptophysin is sorted from endocytotic markers in neuroendocrine PC12 cells but not transfected fibroblasts. Neuron 1991; 7: 309317.Google Scholar
  43. 43.
    Kim YI, Lomo T, Lupa MT, Thesleff S. Miniature end-plate potentials in rat skeletal muscle poisoned with botulinum toxin. J Physiol 1984; 356: 587–599.PubMedGoogle Scholar
  44. 44.
    Molgo J, Comella JX, Angaut-Petit D, Pecot-Dechavassine M, Tabti N, Faille L, Mallart A, Thesleff S. Presynaptic actions of botulinal neurotoxins at vertebrate neuromuscular junctions. J Physiol Paris 1990; 84: 152–166.PubMedGoogle Scholar
  45. 45.
    Alderson K, Holds JB, Anderson RL. Botulinum-induced alteration of nerve-muscle interactions in the human orbicularis oculi following treatment for blepharospasm. Neurology 1991; 41: 1800–1805.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Michela Matteoli
    • 1
  • Pietro De Camilli
    • 2
  1. 1.CNR Center of Cytopharmacology and Department of Medical PharmacologyUniversity of MilanoItaly
  2. 2.Howard Hughes Medical Institute and Department of Cell BiologyYale University Medical SchoolUSA

Personalised recommendations