Advertisement

The Kidd Blood Group and Urea Transport

  • Joann M. Moulds
Part of the Blood Cell Biochemistry book series (BLBI, volume 6)

Abstract

Shortly after the development of the antiglobulin test for the detection of red cell antibodies, the first example of a Kidd antibody was reported by Allen et al. (1951). They described a patient, Mrs. Kidd, who produced an antibody that caused hemolytic disease in her newborn son. After determining that the new antigen was independent of the other then-known blood groups, it was given the name Jk a. Soon afterwards, the allele was found by Plaut et al. (1953) and designated Jk b . Pinkerton et al.(1959) found the first example of the null phenotype, i.e., Jk(a—b—), in a woman who had produced an antibody that appeared to be anti-Jka plus anti-Jkb. Since the specificities were inseparable, the antibody was renamed anti-Jk3 which recognizes an antigen found whenever Jka or Jkb is present. To date, no low-frequency antigens have been associated with the Kidd blood group. Thus, the International Society of Blood Transfusion has designated Kidd as the ninth blood group system (009000) comprised of the three antigens Jka (009001), Jkb (009002), and Jkab (009003).

Keywords

Blood Group Blood Group Antigen Urea Transport Aqueous Urea Blood Group System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen. F. H.. Diamond, L. K.. and Niedziela, B., 1951, A new blood group antigen. Nature 167:482.CrossRefGoogle Scholar
  2. Arcara, P. C., O’Connor. M. A., and Dimmette, R. M., 1969, A family with three Jk(a—b—) members (abstract), Transfusion 9: 282.Google Scholar
  3. Barbosa, J., Rich, S., Dunsworth, T., and Swanson, J., 1982, Linkage disequilibrium between insulindependent-diabetes mellitus and the Kidd blood group JO allele, J. Clin. Endocrinol. Metab. 55: 193–195.PubMedCrossRefGoogle Scholar
  4. Benga, G., Pop, V. I., Popescu, O., Ionescu, M., and Mihele, V., 1983, Water exchange through erythrocyte membranes: Nuclear magnetic resonance studies on the effects of inhibitors and of chemical modification of human membranes, J. Membr. Biol. 76: 129–137.PubMedCrossRefGoogle Scholar
  5. Branch, D. R., and Petz, L. D., 1982, A new reagent (ZZAP) having multiple applications in immunohematology, Am. J. Clin. Pathol. 78: 161–167.PubMedGoogle Scholar
  6. Chown, B., Lewis, M., and Kaita, H., 1965, The Kidd blood group system in Caucasians, Transfusion 5: 506–507.PubMedCrossRefGoogle Scholar
  7. Daniels, G., 1992, Effect of enzymes on and chemical modifications of high-frequency red cell antigens, Immunohematology 3: 53–57.Google Scholar
  8. Dix, J. A., Ausiello, D. A., Jung, C. Y., and Verkman, A. S., 1985, Target analysis studies of red cell water and urea transport, Biochim. Biophys. Acta 821: 243–252.PubMedCrossRefGoogle Scholar
  9. Dorogi, P. L., and Solomon, A. K., 1985, Interaction of thiourea with band 3 in human red cell membranes, J. Membr. Biol. 85: 37–48.PubMedCrossRefGoogle Scholar
  10. Dunstan, R. A., 1986, Status of major red cell group antigens on neutrophils, lymphocytes, and monocytes. Br. J. Haematol. 62: 301–309.PubMedCrossRefGoogle Scholar
  11. Dunstan, R. A., Simpson, M. B., and Rosse, W. F., 1984, Erythrocyte antigens on human platelets. Absence of Rh, Duffy, Kell, Kidd, and Lutheran antigens, Transfusion 24: 243–246.PubMedCrossRefGoogle Scholar
  12. Edwards, J. M., Moulds, J. J., and Judd, W. J., 1982, Chloroquine dissociation of antigen—antibody complexes, Transfusion 22: 59–61.PubMedCrossRefGoogle Scholar
  13. Edwards-Moulds, J., 1988, The Kidd blood group system: Drug-related antibodies and biochemistry, in Blood Group Systems: Duffy, Kidd and Lutheran ( S. R. Pierce and C. R. Macpherson, eds.), pp. 73–92, American Association of Blood Banks, Arlington, VA.Google Scholar
  14. Edwards-Moulds, J., and Kasschau, M., 1986. The effect of lytic agents on Jk(a—b—) red cells (abstract), in The Abstracts of the 21st Congress of the International Society of Haematology and 19th Congress of the International Society of Blood Transfusion, Sydney, Australia, p. 357.Google Scholar
  15. Edwards-Moulds, J., and Kasschau, M., 1988a, The effect of 2 molar urea on Jk(a—b—) red cells, Vox Sang. 55: 181–185.PubMedCrossRefGoogle Scholar
  16. Edwards-Moulds, J., and Kasschau, M. R., 1988b, Methods for the detection of Jk heterozygotes: Interpretations and applications, Transfusion 28: 545–548.PubMedCrossRefGoogle Scholar
  17. Fröhlich, O., Macey, R. I., Edwards-Moulds, J., Gargus, J. J., and Gunn. R. B., 1991, Urea transport deficiency in Jk(a—b—) erythrocytes, Am. J. Physiol. 260: C778 — C783.PubMedGoogle Scholar
  18. Gaidulis, L., Branch, D. R.. bazar, G. S., Petz, L. D.. and Blume, K. G., 1985, The red cell antigens A, B, D. U, Gerbich (Ge), Jk’ Jk°, (Jk3), and Cartwright (Yt°) are not detected on human granulocytes, Br. J. Haematol. 60: 659–668.PubMedCrossRefGoogle Scholar
  19. Geitvik, G. A., Hoyheim, B., and Gedde-Dahl, T., 1987, The Kidd (Jk) blood group locus assigned to chromosome 18 by close linkage to a DNA-RFLP, Hum. Genet. 77: 205–209.PubMedCrossRefGoogle Scholar
  20. Gunn, R. B., Gargus, J. J., and Fröhlich, O., 1992, The Kidd antigens and urea transport. in Protein Blood Group Antigens of the Human Red Cell: Structure, Function and Clinical Significance ( P. Afire and J.-P. Cartron, eds.), pp. 88–100, Johns Hopkins University Press, Baltimore.Google Scholar
  21. Habibi, B., Aveil, J., Fouillade, M. T., Lopez, M., Vaucelle, R., and Salmon, C., 1976, Jk(a—b—) phenotype in a French family, Haematologia 10: 403–410.PubMedGoogle Scholar
  22. Harris, H. W. Jr., 1992, Basic science review: molecular aspects of water transport, Pediatr. Nephrol. 6: 304–310.PubMedCrossRefGoogle Scholar
  23. Hasegawa, H., Skach, W., Baker, O., Calayag, M. C., Lingappa, V., and Verkman, A. S., 1992, A multifunctional aqueous channel formed by CFTR, Science 258: 1477–1479.PubMedCrossRefGoogle Scholar
  24. Heaton, D. C., and McLoughlin, K., 1982, Jk(a—b—) red blood cells resist urea lysis, Transfusion 22: 70–71.PubMedCrossRefGoogle Scholar
  25. Heaton, D. C., Wong, L. T., and McLoughlin, K., 1982, The Jk(a—b—) phenotype and urea transport (abstract), in The Abstracts of the 19th Congress of the International Society of Haematology and 17th Congress of the International Society of Blood Transfusion, Budapest, Hungary, p. 222.Google Scholar
  26. Hodge, S. E., Anderson, C. E., and Neiswanger, K., 1981, Close genetic linkage between diabetes mellitus and Kidd blood group, Lancet 2: 893–895.PubMedCrossRefGoogle Scholar
  27. Humphrey, A. J., and Morel, P. A., 1976, Further evidence of heterogeneity within the Kidd blood group system, Transfusion 16: 242–243.PubMedCrossRefGoogle Scholar
  28. Issitt, P. D., 1993, Null red blood cell phenotypes: Associated biological changes, Transfus. Med. Rev. 7: 139–155.PubMedCrossRefGoogle Scholar
  29. Jay, A. W. L., and Rowlands, S., 1975, The stages of osmotic haemolysis, J. Physiol. (London) 252: 817–832.Google Scholar
  30. Kasahara, M., and Hinkle, P. C., 1977, Reconstitution and purification of the D-glucose transporter from human erythrocytes, J. Biol. Chem. 252: 7384–7390.PubMedGoogle Scholar
  31. Klarkowski, D., 1984, An avid anti-Jk3 antibody detected in a Jk(a—b—) Caucasian propositus: An unusual prenatal finding, Aust. J. Med. Lab. Sci. 5: 26–27.Google Scholar
  32. Logue, G. L., Boyd, A. E., III, and Rosse, W. F., 1970, Chlorpropamide-induced immune hemolytic anemia, N. Engl. J. Med. 283: 900–903.PubMedCrossRefGoogle Scholar
  33. Macey, R. I., 1979, Transport of water and nonelectrolytes across red cell membranes, in Membrane Transport in Biology. II. Transport Across Single Biological Membranes ( D.C. Tosteson, ed.), pp. 1–57, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  34. Macey, R. I., 1984, Transport of urea and water in red blood cells, Am. J. Physiol. 246:195–203.Google Scholar
  35. Mannuzzu, L. M., Moronne, M. M., and Macey, R. I., 1993, Estimate of the number of urea transport sites in erythrocyte ghosts using a hydrophobic mercurial, J. Membrane Biol. 133: 85–97.CrossRefGoogle Scholar
  36. Marsh, W. L., 1983, Deleted antigens of the Rhesus and Kell blood groups: association with cell membrane defects, in Blood Group Antigens and Disease ( G. Garratty, ed.), pp. 165–185. American Association of Blood Banks. Arlington, Virginia.Google Scholar
  37. Marsh, W. L., Oyen, R., and Nichols, M. E., 1974, Kidd blood group antigens of leukocytes and platelets, Transfusion 14: 378–381.PubMedCrossRefGoogle Scholar
  38. Masouredis, S. P., Sudora, E., Mahan, L., and Victoria, E. J., 1980, Quantitative immunoferritin microscopy of Fy’, Fÿ, Jk’, U and Di’ antigen site numbers in human red cells, Blood 56: 969–977.PubMedGoogle Scholar
  39. McDougall, D. C. J., and McGregor, M., 1988, Jk-3 red cells have a defect in urea transport: a new urea-dependent lysis test (letter), Transfusion 28: 197–198.PubMedCrossRefGoogle Scholar
  40. Mizui, M., Uchiyama, E., Kikuchi, M., Murata, S., Seno, T., Okubo, Y., Yamaguchi, H., and Yuasa, I., 1983, First Japanese example of the rare blood phenotype Jk(a—b—) and incidence of the phenotype in Japanese population (abstract), Jpn. J. Human Genet. 28: 1–18.CrossRefGoogle Scholar
  41. Moulds, J.. 1986, The Role of the Kidd Blood Group Antigens in Red Cell Membrane Permeability, thesis, University of Houston at Clear Lake, Houston.Google Scholar
  42. Mourant, A. E., Kopec, A. C., and Domaniewska-Soloczak, K.. 1976, The Distribution of the Human Blood Groups and Other Polymorphisms, Oxford University Press, London.Google Scholar
  43. Nathan, D. G., and Shohet, S. B., 1970, Erythrocyte ion transport defects and hemolytic anemia: “hydrocytosis” and “desiccytosis”, Semin. Hematol. 7: 381–408.PubMedGoogle Scholar
  44. Okubo, Y., Yamaguchi, H., Nagao, N., Tomita, T.. and Seno, T., 1986, Heterogeneity of the phenotype Jk(a—b—) found in Japanese, Transfusion 26: 237–239.PubMedCrossRefGoogle Scholar
  45. Paz, D., Perkins, H. A., and Sams. B., 1965, The minus-minus phenotype in the Kidd system, Transfusion 5: 315–319.CrossRefGoogle Scholar
  46. Pinkerton, F. J., Mermod, L. E., Liles, B. A., Jack, J. A., Jr., and Noudes, J., 1959, The phenotype Jk(a—b—) in the Kidd blood group system, Vox Sang. 4: 155–160.PubMedCrossRefGoogle Scholar
  47. Plaut, G., Ikin, E. W., Mourant, A. E., Sanger, R., and Race, R., 1953, A new blood-group antibody, anti-Jle, Nature 171: 431–432.PubMedCrossRefGoogle Scholar
  48. Preston, G. M., Carroll, T. P., Guggino, W. B., and Agre, P., 1992, Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein, Science 256: 385–387.PubMedCrossRefGoogle Scholar
  49. Race, R. R.. and Sanger, R., 1975, Blood Groups in Man, Blackwell, Oxford.Google Scholar
  50. Race, R. R., Sanger, R., Allen, F. H., Diamond, L. K., and Niedziela, B., 1951, Inheritance of the human blood group antigen Jk, Nature 168: 207.PubMedCrossRefGoogle Scholar
  51. Roberts, D. F., Papiha, S. S.. Rao, G. N., Habeebullah, C. M., Kumar, N., and Murty, K. J. R., 1980, A genetic study of some Andhra Pradesh populations, Ann. Hum. Biol. 7: 199–212.CrossRefGoogle Scholar
  52. Roychoudhury, A. K., and Nei, M., 1988, Human Polymorphic Genes World Distribution, Oxford University Press, London.Google Scholar
  53. Salmon, C., Cartron, J.-P., and Rouger, P., 1984, The Human Blood Groups, Masson, New York. Sands, J. M., Gargus, J. J., Fröhlich. O., Gunn, R. B., and Kokko, J. P., 1992, Urinary concentrating ability in patients with Jk(a—b—) blood type who lack carrier-mediated urea transport, J. Am. Soc. Nephrol. 2: 1689–1696.Google Scholar
  54. Sha’afi, R. I., 1977, Water and small nonelectrolyte permeation in red cells, in Membrane Transport in Red Cells (J. L. Ellory and V. Lew, eds.), pp. 221–256, Academic Press, New York.Google Scholar
  55. Sha’afi, R. I., Gary-Bobo, C. M., and Solomon, A. K., 1971, Permeability of red cell membranes to small hydrophobic and lipophilic solutes, J. Gen. Physiol. 58: 238–258.PubMedCrossRefGoogle Scholar
  56. Shokeir, M. H. K., Ying, K. L., and Pabello, P., 1973. Deletion of the long arm of chromosome number 7: Tentative assignment of the Kidd (Jk) locus. Clin. Genet. 4: 360–368.PubMedCrossRefGoogle Scholar
  57. Silver, R. T., Haber, J. M., and Kellner, A., 1960, Evidence for a new allele in the Kidd blood group in Indians of northern Mato Grosso, Brazil, Nature 186: 481.PubMedCrossRefGoogle Scholar
  58. Sinor, L. T.. Eastwood, K. L., and Plapp, F. V., 1987, Dot-blot purification of the Kidd blood group antigen, Med. Lab. Sci. 44: 294–296.PubMedGoogle Scholar
  59. Sistonen, P.. 1984, The Jk(a—b—) phenotype in a Finnish family (abstract), in The Abstracts of the 18 th Congress of the International Society of Blood Transfusion, Munich, West Germany, p. 164.Google Scholar
  60. Solomon. A. K., 1968. Characterization of biological membranes by equivalent pores, J. Gen. Physiol. 51: 33–58.Google Scholar
  61. Solomon. A. K.. Chasan, B., and Dix. J. A., 1983, The aqueous pore in the red cell membrane: Band 3 as a channel for anions, cations, nonelectrolytes and water, in Biomembranes and Cell Functions, Vol. 414 ( F. A. Kummerow, G. Benga, and R. P. Holmes, eds.), Annals of the New York Academy of Sciences, New York. pp. 93–124.Google Scholar
  62. Sosler, S. D.. Behzad, O., Garratty, G., Lee, C. L., Postaway, N., and Khomo, O., 1984, Acute hemolytic anemia associated with a chlorpropamide-induced apparent auto-anti-Jk’, Transfusion 24: 206–209.PubMedCrossRefGoogle Scholar
  63. Toon, M. R.. and Solomon. A. K.. 1986, Control of red cell urea and water permeability by sulfhydryl reagents, Biochim. Biophys. Acta 860: 361–375.PubMedCrossRefGoogle Scholar
  64. Toon. M. R., and Solomon, A. K., 1987. Modulation of water and urea transport in red cells: Effects of pH and phloretin, J. Membr. Biol. 99: 157–164.PubMedCrossRefGoogle Scholar
  65. Whitfield, C. F.. Coleman. D. B., Kay, M. M. B., Shiffer, K. A., and Goodman, S. R., 1985. Human erythrocyte membrane proteins of zone 4.5 exist as families of related proteins, Am. J. Physiol. 248: C70–79.PubMedGoogle Scholar
  66. Woodfield, D. G., Douglas, R., Smith, J., Simpson, A., Pinder, L., and Staveley, J. M., 1982, The Jk(a—b—) phenotype in New Zealand Polynesians, Transfusion 22: 276–278.PubMedCrossRefGoogle Scholar
  67. Yokogama, M., Mermod, L. E., and Stegmaier, A., 1967, Further examples of Jk(a—b—) blood in Hawaii, Vox Sang. 12: 154–156.CrossRefGoogle Scholar
  68. Zhang R., Alper S. L., Thorens, B., Verkman A. S., 1991, Evidence from oocyte expression that the erythrocyte water channel is distinct from band 3 and the glucose transporter, J. Clin. Invest. 88: 1553–1558.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Joann M. Moulds
    • 1
  1. 1.Division of Rheumatology and Clinical ImmunogeneticsUniversity of Texas. Health Science Center at HoustonHoustonUSA

Personalised recommendations