Serology, Biochemistry, and Pathology of Antigens Defined by Cold Agglutinins

  • Dieter Roelcke
Part of the Blood Cell Biochemistry book series (BLBI, volume 6)


This chapter covers antigens recognized by a distinct group of antibodies, the so-called cold agglutinins (CAs). CAs and some of the principal characteristics of the antigens they recognize will be briefly described introducing the chapter.


Blood Group Mycoplasma Pneumoniae Congenital Cataract Cold Agglutinin Human Erythrocyte Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alland, W. J., and Lienhard, G. E., 1985, Monoclonal antibodies to the glucose transporter from human erythrocytes, J. Biol. Chem. 160: 8668–8675.Google Scholar
  2. Anstee, D. J., 1980, Blood group MNSs-active sialoglycoproteins of the human erythrocyte membrane, in Immunobiology of the Erythrocytes ( S. G. Sandler, J. Nusbacher, and M. S. Schanfield, eds.), pp. 67–98, Liss, New York.Google Scholar
  3. Anstee, D. J., 1990, Blood group-active surface molecules of the human red blood cell, Vox Sang. 58: 1–20.PubMedCrossRefGoogle Scholar
  4. Arai, M., Yoshino, H., Kusano, Y., Yazaki, Y., Ohnishi, Y., and Miyatake, T., 1992, Ataxic polyneuropathy and anti-Pr, IgMK M proteinemia, J. Neurol. 239: 147–151.PubMedCrossRefGoogle Scholar
  5. Avent, N. D., Ridgwell, K., Mawby, W. J., Tanner, M. J. A., Anstee, D. J., and Kumpel, B., 1988, Protein sequence studies on Rh-related polypeptides suggest the presence of at least two groups of proteins which associate in the human red-cell membrane, Biochem. J. 256: 1043–1046.PubMedGoogle Scholar
  6. Basu, M., and Basu, S., 1984, Biosynthesis in vitro of Ii core glycosphingolipids from neolactotetraosylceramide by (31–3- and 131–6-N-acetylglucosaminyltransferases from mouse T-lymphoma, J. Biol. Chem. 259: 12557–12562.PubMedGoogle Scholar
  7. Basu, M. K., Lee, M. M., Maniatis, A., and Bertles, J. F., 1984, Characteristics of 1 and i antigen receptors on the membrane of erythrocytes in sickle cell anemia, J. Lab. Clin. Med. 103 (5): 712–719.PubMedGoogle Scholar
  8. Blanken, W. M., Hooghwinkel, G. J. M., and Van den Eijnden, D. H., 1982, Biosynthesis of blood-group I and i substances. Specificity of bovine colostrum 3-N-acetyl-D-glucosaminide 13 1–4 galactosyltransferase. Eur. J. Biochem. 127: 547–552.PubMedCrossRefGoogle Scholar
  9. Booth, P. B., Jenkins, W. J., and Marsh, W. L., 1966. Anti-I’: A new antibody of the I blood group system occurring in certain Melanesian sera. Br. J. Haematol. 12: 341–344.PubMedCrossRefGoogle Scholar
  10. Brockhausen, I., Williams, D., Matta, K. L., Orr, J., and Schachter, H., 1983, Mucin synthesis. III. UDP- GIcNAc:Ga1ß1–3(GIcNAcf3I-6)Ga1NAc-R (GIcNAc to Gal) 133-N-acetylglucosaminyltransferase, an enzyme in porcine gastric mucosa involved in the elongation of mucin-type oligosaccharides, Can. J. Biochem. Cell Biol. 61: 1322–1333.PubMedCrossRefGoogle Scholar
  11. Brockhausen, I., Matta, K. L., On, J., Schachter, H., Koenderman, A. H. L., and Van den Eijnden, D. H., 1986, Mucin synthesis: Conversion of R,-13l-3Gal-R2 to R,-3l-3(GIcNAcßl-6)Gal-R2 and of R,-131–3Ga1NAc-R2 to R,431–3(G1cNAc131–6)GaINAc-R, by a 136-N-acetylglucosaminyltransferase in pig gastric mucosa, Eur. J. Biochem. 157: 463–474.PubMedCrossRefGoogle Scholar
  12. Clausen, H., and Hakomori, S., 1989, ABH and related histoblood group antigens: immunochemical differences in carrier isotypes and their distribution, Vox Sang. 56: 1–20.PubMedCrossRefGoogle Scholar
  13. Crookston, J. H., Crookston, M. C., and Rosse, W. F., 1973, Red cell abnormalities in HEMPAS (hereditary erythroblastic multinuclearity with a positive acidified-serum test), Br. J. Haematol. 23 (Suppl.): 83–92.CrossRefGoogle Scholar
  14. Dabelsteen, E., Vedtofte, P., Hakomori, S., and Young, W. W. Jr., 1982. Carbohydrate chains specific for blood group antigens in differentiation of human oral epithelium. J. Invest. Dermatol. 79: 3–7.PubMedCrossRefGoogle Scholar
  15. Dabrowski, J., Dabrowski, U., Bermel, W., Kordowicz, M., and Hanfland, P., 1988, Structure elucidation of the blood group B like and blood group I active octaantennary ceramide tetracontasaccharide from rabbit erythrocyte membranes by two-dimensional ‘H NMR spectroscopy at 600 MHz, Biochemistry 27: 5149–5155.PubMedCrossRefGoogle Scholar
  16. Dahr, W., 1986, lmmunochemistry of sialoglycoproteins in human red blood cell membranes, in Recent Advances in Blood Group Biochemistry (V. Vengelen-Tyler and W. J. Judd, eds.), pp. 23–65, American Association of Blood Banks, Arlington, VA.Google Scholar
  17. Dahr, W., Lichthardt, D., and Roelcke, D., 1981, Studies on the receptor sites of the monoclonal anti-Pr and -Sa cold agglutinins, Prot. Biol. Fluids 29: 365–368.Google Scholar
  18. Dennis, J. W., Laferté, S., Waghorne, C., Breitman, M. L., and Kerbel, R. S., 1987, (31–6 branching of Asn-linked oligosaccharides is directly associated with metastasis, Science 236: 582–585.Google Scholar
  19. Ducos, J., Ruffle, J., Colombies, P., Marty, Y., and Ohayon, E., 1965, Antigen in leukaemic patients, Nature 208: 1329–1330.PubMedCrossRefGoogle Scholar
  20. Duran-Suarez, J. R., Martin-Vega, C., Argelagues, E., Massuet, L., Ribera, A., and Triginer, J., 1981, Red cell I antigen as immune complex receptor in drug-induced hemolytic anemias, Vox Sang. 41: 313–315.PubMedCrossRefGoogle Scholar
  21. Ebert, W., Metz, J., and Roelcke, D., 1972, Modifications of N-acetylneuraminic acid and their influence on the antigen activity of erythrocyte glycoproteins, Eur. J. Biochem. 27: 470–472.PubMedCrossRefGoogle Scholar
  22. Ebert, W., Fey, J., Gärtner, C. H., Geisen, H. P., Rautenberg, U., Roelcke, D., and Weicker, H., 1979, Isolation and partial characterization of the Pr autoantigen determinants, Mol. Immunol. 16: 413–419.PubMedCrossRefGoogle Scholar
  23. Egge, H., Kordowicz, M., Peter-Katalinic, J., and Hanfland, P., 1985, Immunochemistry of I/i-active oligo-and polyglycosylceramides from rabbit erythrocyte membranes, J. Biol. Chem. 260: 4927–4935.PubMedGoogle Scholar
  24. Feizi, T., 1980, Structural and biologic aspects of blood group I and i antigens on glycolipids and glycoproteins, Blood Transfus. Immunohaematol. 23: 563–577.CrossRefGoogle Scholar
  25. Feizi, T., 1985, Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are oncodevelopmental antigens, Nature 314: 53–57.PubMedCrossRefGoogle Scholar
  26. Feizi, T., and Kabat, E. A., 1972, Immunochemical studies on blood groups. LIV. Classification of anti-I and anti-i sera into groups based on reactivity patterns with various antigens related to the blood group A, B, Le, Le’ and precursor substances, J. Exp. Med. 135: 1247–1258.PubMedCrossRefGoogle Scholar
  27. Feizi, T., and Taylor-Robinson, D., 1967, Cold agglutinin anti-1 and Mycoplasma pneumoniae, Immunology 13: 405–409.PubMedGoogle Scholar
  28. Feizi, T., Kabat, E. A., Vicari, G., Anderson, B., and Marsh, W. L., 1971a, Immunochemical studies on blood groups. XLIX. The I antigen complex: Specificity differences among anti-I sera revealed by quantitative precipitin studies, J. Immunol. 106: 1578–1592.PubMedGoogle Scholar
  29. Feizi, T., Kabat, E. A., Vicari, G., Anderson, B., and Marsh, W. L., 1971b, Immunochemical studies on blood groups. XLVII. The I antigen complex precursors in A, AB, H, Le’ and Le’ blood group system, J. Exp. Med. 133: 39–52.PubMedCrossRefGoogle Scholar
  30. Feizi, T., Wood, E., Augé, C., David, S., and Veyrières, A., 1978, Blood group 1 activities of synthetic oligosaccharides assessed by radioimmunoassay, Immunochemistry 15: 733–736.PubMedCrossRefGoogle Scholar
  31. Feizi, T., Childs, R. A., Watanabe, K., and Hakomori, S. J., 1979, Three types of blood group I specificity among monoclonal anti-I autoantibodies revealed by analogues of a branched erythrocyte glycolipid, J. Exp. Med. 149: 975–980.PubMedCrossRefGoogle Scholar
  32. Friedman, H. D., and Dracker, R. A., 1992, Cold agglutinin disease after chicken pox. An uncommon complication of a common disease, Am. J. Clin. Pathol. 97: 92–96.PubMedGoogle Scholar
  33. Fukuda, M., and Fukuda, M. N., 1981, Changes in cell surface glycoproteins and carbohydrate structures during the development and differentiation of human erythroid cells, J. Supramol. Struct. 17: 313–324.CrossRefGoogle Scholar
  34. Fukuda, M., Fukuda, M. N., and Hakomori, S., 1979, The developmental change and genetic defect in carbohydrate structure of band 3 glycoprotein of human erythrocyte membranes, J. Biol. Chem. 254: 3700–3703.PubMedGoogle Scholar
  35. Fukuda, M., Fukuda, M. N., Papayannopoulou, T., and Hakomori, S. J., 1980, Membrane differentiation in human erythroid cells: The unique profile of cell surface glycoproteins expressed in erythroblasts in vitro from three ontogenic stages, Proc. Natl. Acad. Sci. USA 77: 3474–3478.PubMedCrossRefGoogle Scholar
  36. Fukuda, M., Dell, A., Oates, J. E., and Fukuda, M. N., 1984, Structure of branched lactosaminoglycan, the carbohydrate moiety of band 3 isolated from adult human erythrocytes, J. Biol. Chem. 259: 8260–8273.PubMedGoogle Scholar
  37. Fukuda, M. N., and Matsumura, G., 1976, Endo-3-galactosidase of Escherichia freundii. Purification and endoglycosidic action on keratan sulfates. oligosaccharides, and blood group active glycoprotein, J. Biol. Chem. 251: 6218–6225.PubMedGoogle Scholar
  38. Fukuda, M. N., Watanabe, K., and Hakomori, S., 1978, Release of oligosaccharides from various glycosphingolipids by endo-ß-galactosidase, J. Biol. Chem. 253: 6814–6819.PubMedGoogle Scholar
  39. Fukuda, M. N., Fukuda, M., and Hakomori, S., 1979, Cell surface modification by endo-ß-galactosidase. Change of blood group activities and release of oligosaccharides from glycoproteins and sphingolipids of human erythrocytes J. Biol. Chem. 254: 5458–5465.PubMedGoogle Scholar
  40. Fukuda, M. N., Bothner, B., Scartezzini, P., and Dell, A., 1986, Isolation and characterization of polyN-acetyllactosaminylceramides accumulated in the erythrocytes of congenital dyserythropoietic anemia type II patients, Chem. Phys. Lipids 42: 185–197.PubMedCrossRefGoogle Scholar
  41. Fukuda, M. N., Dell, A., and Scartezzini, P., 1987, Primary defect of congenital dyserythropoietic anemia type II. Failure in glycosylation of erythrocyte lactosaminoglycan proteins caused by lowered N-acetylaminyltransferase II, J. Biol. Chem. 262: 7195–7206.PubMedGoogle Scholar
  42. Gardas, A., 1976, Studies on the I-blood-group-active site on macro-glycolipids from human erythrocytes, Eur. J. Biochem. 68: 185–191.PubMedCrossRefGoogle Scholar
  43. Gardas, A., 1982, Immunochemical study of the blood group-active poly(glycosyl)-ceramides isolated from human erythrocytes, Arch. Biochem. Biophys. 216: 440–448.PubMedCrossRefGoogle Scholar
  44. Garratty, G., Haffleigh, B., Dalziel, J., and Petz, L. D., 1972, An IgG anti-IT detected in a Caucasian American, Transfusion 12: 325–329.PubMedCrossRefGoogle Scholar
  45. Geisen, H. P., Roelcke, D., Rehr, K., and Konrad, G., 1975. Hochtitrige Kälteagglutinine der Spezifität Anti-Pr nach Rötelninfektion, Klin. Wochenschr. 53: 767–772.PubMedCrossRefGoogle Scholar
  46. Giblett, E. R., and Crookston, M. C., 1964. Agglutinability of red cells by anti-i in patients with thalassaemia major and other haematological disorders, Nature 201: 1138–1139.PubMedCrossRefGoogle Scholar
  47. Göttsche, B., Salama, A., and Mueller-Eckhardt, C., 1990. Autoimmune hemolytic anemia caused by a cold agglutinin with a new specificity (anti-Ju), Transfusion 30: 261–262.PubMedCrossRefGoogle Scholar
  48. Green, E. D., Curtis, B. R., Issitt, P. D., Gutgsell, N. S., Roelcke, D., Farrar, R. P., and Chaplin, H., 1990, Inhibition of an anti-Prld cold agglutinin by citrate present in commercial red cell preservative solutions, Transfusion 30: 267–270.PubMedCrossRefGoogle Scholar
  49. Gu, J., Nishikawa, A., Fujii, S., Gasa, S., and Taniguchi. N., 1992, Biosynthesis of blood group I and i antigens in rat tissues. Identification of a novel 13l-6-N-acetylglucosaminyltransferase, J. Biol. Chem. 267: 2994–2999.PubMedGoogle Scholar
  50. Habibi, B., Basty, R., Chodez, S., and Prunat, A., 1985, Thiopental-related immune hemolytic anemia and renal failure. Specific involvement of red-cell antigen I, N. Engl. J. Med. 312: 353–355.PubMedCrossRefGoogle Scholar
  51. Hakomori, S., 1981, Blood group ABH and Ii antigens of human erythrocytes: Chemistry, polymorphism, and their developmental change, Semin. Hematol. 18: 39–62.PubMedGoogle Scholar
  52. Hakomori, S., 1985, Aberrant glycosylation in cancer cell membranes as focused on glycolipids. Overview and perspective, Cancer Res. 45: 2405–2414.PubMedGoogle Scholar
  53. Hakomori, S., and Kannagi, R., 1983. Glycosphingolipids as tumor-associated and differentiation markers, J. Natl. Cancer Inst. 71: 231–251.PubMedGoogle Scholar
  54. Hanfland, P., Egge, H., Dabrowski, U., Kuhn, S., Roelcke, D., and Dabrowski, J., 1981, Isolation and characterization of an I-active ceramide decasaccharide from rabbit erythrocyte membranes, Biochemistry 20: 5310–5319.PubMedCrossRefGoogle Scholar
  55. Hengge, U. R., Kirschfink, M., König, A. L., Nicklas, W., and Roelcke, D., 1992. Characterization of I/F1 glycoprotein as a receptor for Mycoplasma pneumoniae, Infect. Immun. 60: 79–83.PubMedGoogle Scholar
  56. Herron, B., Roelcke, D., Orson, G., Myint, H., and Boulton, F. E., 1993, Cold autoagglutinins with anti-Pr specificity associated with fresh varicella infection, Vox Sang. 65: 239–242.PubMedCrossRefGoogle Scholar
  57. Hillman, R. S., and Giblett, E. R., 1965, Red cell membrane alteration associated with “marrow stress,” J. Clin. Invest. 44: 1730–1736.PubMedCrossRefGoogle Scholar
  58. Hinz, C. F. Jr., and Boyer, J. T., 1963, Dysgammaglobulinemia in the adult manifested as autoimmune hemolytic anemia, N. Engl. J. Med. 269: 1329–1335.PubMedCrossRefGoogle Scholar
  59. Hirohashi, S., Clausen, H., Nudelman, E., Inoue, H., Shimosato, Y., and Hakomori, S., 1986, A human monoclonal antibody directed to blood group i antigen: Heterohybridoma between human lymphocytes from regional lymph nodes of a lung cancer patient and mouse myeloma, J. Immunol. 136: 4163–4168.PubMedGoogle Scholar
  60. Hoare, D. G., and Koshland, D. E., 1967, A method for the quantitative modification and estimation of carboxylic acid groups in proteins, J. Biol. Chem. 242: 2447–2453.PubMedGoogle Scholar
  61. Inglis, G., Willison, H. J., Paterson, G., Forrest, A. H., Templeton, J. G., Fraser, R. H., Behan, P. O., and Peterkin, M., 1992, IgM lambda cold agglutinins exhibiting anti-Pr, specificity, British Blood Transfusion Society, X. Annual Scientific Meeting, Transfusion Medicine, Vol. 2, Suppl. I, Abstract P 90.Google Scholar
  62. Issitt, P., 1985, Applied Blood Group Serology, 3rd ed., Montgomery Scientific Publication, Miami.Google Scholar
  63. Jenkins, W. J., Koster, H. G., Marsh, W. L., and Carter, R. L., 1965a, Infectious mononucleosis: An unsuspected source of anti-i, Br. J. Haematol. 11: 480–483.PubMedCrossRefGoogle Scholar
  64. Jenkins, W. J., Marsh, W. L., and Gold, E. R., 1965b, Reciprocal relationship of antigens “I” and “i” in health and disease. Nature 205: 813.CrossRefGoogle Scholar
  65. Johnson, A. M., 1992, Cold agglutinin disease after chicken pox, Am. J. Clin. Pathol. 98: 271–272 (Letter).Google Scholar
  66. Judd, W. J., Wilkinson, S. L., Issitt, P. D., Johnson, T. L., Keren, D. F., and Steiner, E. A., 1986, Donath-Landsteiner hemolytic anemia due to an anti-Pr-like biphasic hemolysin, Transfusion 26: 423–425.PubMedCrossRefGoogle Scholar
  67. Kabat, E. A., Liao, J., and Lemieux, R. U., 1978, Immunochemical studies of blood groups. LXVIII. The combining site of anti-I Ma (group I), Immunochemistry 15: 727–731.PubMedCrossRefGoogle Scholar
  68. Kabat, E. A., Liao, J., Burzynska, M. H., Wong, T. C., Thögersen, H., and Lemieux, R. U., 1981, Immunochemical studies on blood groups. LXIX. The conformation of the trisaccharide determinant in the combining site of anti-I Ma (group I), Mol. Immunol. 18: 873–881.PubMedCrossRefGoogle Scholar
  69. Kabat, E. A., Liao, J., Shyong, J., and Osserman, E. F., 1982, A monoclonal IgMX macroglobulin with specificity for lacto-N-tetraose in a patient with bronchogenic carcinoma, J. Immunol. 128: 540–544.PubMedGoogle Scholar
  70. Kajii, E., and Ikemoto, S., 1989, A cold agglutinin: Om, Vox Sang. 56: 104–106.PubMedCrossRefGoogle Scholar
  71. Kannagi, R., Roelcke, D., Peterson, K. A., Okada, Y., Levery, S. B., and Hakomori, S. J., 1983, Characterization of an epitope (determinant) structure in a developmentally regulated glycolipid antigen defined by a cold agglutinin Fl, recognition of a-sialosyl and a-L-fucosyl groups in a branched structure, Carbohydr. Res. 120: 143–157.PubMedCrossRefGoogle Scholar
  72. Klinman, N. R., and Karush, F., 1967, Equine anti-hapten antibody. V. The non-precipitability of bivalent antibody. Immunochemistry 4: 387–390.CrossRefGoogle Scholar
  73. Koenderman, A. H. L., Koppen, P. L., Marinus, L. A. M., and Van den Eijnden, D. H., 1986, Biosynthesis of bloodgroup I and i antigens. A sensitive and specific assay of UDP-GIcNAc:ß-galactoside 31–03-N-acetylglucosaminyltransferase activity in hematopoietic cells by HPLC, Biomed. Chromatogr. 1: 104–108.PubMedCrossRefGoogle Scholar
  74. Koenderman, A. H. L., Koppen, P. L., and Van den Eijnden, D. H., 1987, Biosynthesis of polylactosaminoglycans. Novikoff ascites tumor cells contain two UDP-G1cNAc:3-galactoside 31—)6-Nacetylglucosaminyltransferase activities, Eur. J. Biochem. 166: 199–208.PubMedCrossRefGoogle Scholar
  75. König, A. L., Kreft, H., Hengge, U., Braun, R. W., and Roelcke, D., 1988, Coexisting anti-I and anti-Fl/Gd cold agglutinins in infections by Mycoplasma pneumoniae, Vox Sang. 55: 176–180.PubMedCrossRefGoogle Scholar
  76. König, A. L., Keller, H. E., Braun, R. W., and Roelcke, D., 1992, Cold agglutinins of anti-Pr specificity in rubella embryopathy, Ann. Hematol. 64: 277–280.PubMedCrossRefGoogle Scholar
  77. Koscielak, J., Miller-Podraza, H., Krauze, R., and Plasek, A., 1976, Isolation and characterization of poly(glycosyl)ceramides (megaloglycolipids) with A, H. and I blood-group activities, Eur. J. Biochem. 71: 9–18.PubMedCrossRefGoogle Scholar
  78. Koscielak, J., Zdebska, E., Wilczynska, Z., Miller-Podraza, H., and Dzierzkowa-Borodej, W., 1979, Immunochemistry of Ii-active glycosphingolipids of erythrocytes, Eur. J. Biochem. 96: 331–337.PubMedCrossRefGoogle Scholar
  79. Kundu, S. K., Marcus, D. M., and Roelcke, D., 1982, Glycosphingolipid receptors for anti-Gd and anti-p cold agglutinins, Immunol. Lett. 4: 263–267.PubMedCrossRefGoogle Scholar
  80. Kundu, S. K., Samuelsson, B. E., Pascher, I., and Marcus, D. M., 1983, New gangliosides from human erythrocytes, J. Biol. Chem. 258: 13857–13866.PubMedGoogle Scholar
  81. Lemieux, R. U., Wong, T. C., Liao, J., and Kabat, E. A., 1984, The combining site of anti-I Ma (group 1), Mol. Immunol. 21: 751–759.PubMedCrossRefGoogle Scholar
  82. Levine, A. M., Thornton, P., Forman, S. J., Hale, P., van Holdorf, D., Rouault, C. L., Powars, D., Feinstein, D. J., and Lukes, R. L., 1980, Positive Coombs Test in Hodgkin’s disease: Significance and implications, Blood 55: 607–611.PubMedGoogle Scholar
  83. Lin-Chu, M., Broadberry, R. E., Okubo, Y., and Tanaka, M., 1991, The i phenotype and congenital cataracts among Chinese in Taiwan, Transfusion 31: 676–677.PubMedCrossRefGoogle Scholar
  84. Lind, K., 1971, Incidence of Mycoplasma pneumoniae infection in Denmark from 1958 to 1969, Acta Pathol. Microbiol. Scand. B 79: 239–247.Google Scholar
  85. Lind, K., Spencer. E. S., and Andersen, H. K., 1974, Cold agglutinin production and cytomegalovirus infection, Scand. J. Infect. Dis. 6: 109–112.Google Scholar
  86. Loghem, J. J. van, Dorfmeier, H., and Hart, M. van der, 1957, Two A antigens with abnormal serologic properties, Vox Sang. 2: 16–24.CrossRefGoogle Scholar
  87. Loomes, L. M., Uemura, K., Childs, R. A., Paulson, J. C., Rogers, G. N., Scudder, P. R., Michalski, J.-C., Hounsell, E. F., Taylor-Robinson, D., and Feizi, T., 1984, Erythrocyte receptors for Mycoplasma pneumoniae are sialylated oligosaccharides of Ii antigen type, Nature 307: 560–563.PubMedCrossRefGoogle Scholar
  88. Loomes, L. M., Uemura, K., and Feizi, T., 1985, Interaction of Mycoplasma pneumoniae with erythrocyte glycolipids of I and i antigen types, Infect. Immun. 47: 15–20.PubMedGoogle Scholar
  89. Macdonald, E. B., Douglas, R., and Harden, P. A., 1983, A Caucasian family with the i phenotype and congenital cataracts, Vox Sang. 44: 322–325.PubMedCrossRefGoogle Scholar
  90. McGinniss, M. H., Schmidt, P. J., and Carbone, P. P., 1964, Close association of I blood group and disease. Nature 202: 606.PubMedCrossRefGoogle Scholar
  91. McGinniss, M. H., Wasniowska, K., Zopf, D. A., Straus, S. E., and Reichert, C. M., 1985, An erythrocyte Pr autoantibody with sialoglycoprotein specificity in a patient with purine nucleoside phosphorylase deficiency, Transfusion 25: 131–136.PubMedCrossRefGoogle Scholar
  92. Marcus, D. M., Kabat, E. A., and Rosenfield, R. E., 1963. The action of enzymes from Clostridium tertium on the I- antigenic determinants of human erythrocytes, J. Exp. Med. 118: 175–179.PubMedCrossRefGoogle Scholar
  93. Marsh, W. L., and DePalma, H., 1982, Association between the Ii blood group and congenital cataract, Transfusion 22: 337–338.PubMedCrossRefGoogle Scholar
  94. Marsh, W. L., and Jenkins, W. J., 1960, Anti-i: A new cold antibody. Nature 188: 753.PubMedCrossRefGoogle Scholar
  95. Marsh, W. L., and Jenkins, W. J., 1968, Anti-Sp,: The recognition of a new cold auto-antibody, Vox Sang. 15: 177–186.PubMedCrossRefGoogle Scholar
  96. Marsh, W. L., Nichols, M. E., and Reid, M. E., 1971, The definition of two I antigen components, Vox Sang. 20: 209–217.PubMedCrossRefGoogle Scholar
  97. Mollison, P. C., Engelfriet, C. P., and Contreras, M., 1987, Blood Transfusion in Clinical Medicine, 8th ed., Blackwell, Oxford.Google Scholar
  98. Moore, S. J., and Green, C., 1987, The identification of Rhesus polypeptide-blood group ABH-active glycoprotein complex in the human red cell membrane, Biochem. J. 244: 735–741.PubMedGoogle Scholar
  99. Mueckler, M., Caruso, C., Baldwin, S. A., Panico, M., Blench, J., Morris, H. R., Allard, W. J., Lienhard, G. E., and Lodish, H. F., 1985, Sequence and structure of human glucose transporter, Science 229: 941–945.PubMedCrossRefGoogle Scholar
  100. Niemann, H., Watanabe, K., and Hakomori, S., 1978, Blood group i and I activities of “lacto-N-norhexaosylceramide” and its analogues: The structural requirements for i-specificities, Biochem. Biophys. Res. Commun. 81: 1286–1293.PubMedCrossRefGoogle Scholar
  101. Northoff, H., Martin, A., and Roelcke, D., 1987, An IgGK-monotypic anti-Pr,, associated with fresh varicella infection, Eur. J. Haematol. 38: 85–88.PubMedCrossRefGoogle Scholar
  102. Ogata, H., Okubo, Y., and Akabane, T., 1979, Phenotype i associated with congenital cataract in Japanese, Transfusion 19: 166–168.PubMedCrossRefGoogle Scholar
  103. Okada, Y., Kannagi, R., Levery, S. B., and Hakomori, S., 1984, Glycolipid antigens with blood group I and i specificities from human adult and umbilical cord erythrocytes, J. Immunol. 133: 835–842.PubMedGoogle Scholar
  104. O’Neill, P., Shulman, I. A., Simpson, R. B., Halima, D., and Garratty, G., 1986. Two examples of low ionic strength-dependent autoagglutinins with anti-Pr, specificity, Vox Sang. 50: 107–111.PubMedCrossRefGoogle Scholar
  105. Pennington, J., and Feizi, T., 1982, Horse anti-type 14 pneumococcus sera behave as cold agglutinins recognizing developmentally regulated antigens apart from the Ii antigens on human erythrocytes, Vox Sang. 43: 253–258.PubMedCrossRefGoogle Scholar
  106. Picard, J. K., Loveday, D., and Feizi, T., 1985, Evidence for sialylated type 1 blood group chains on human erythrocyte membranes revealed by agglutination of neuraminidase-treated erythrocytes with Waldenström’s macroglobulin IgMv“’ and hybridoma antibody FC 10, Vox Sang. 48: 26–33.PubMedCrossRefGoogle Scholar
  107. Pierce, M., and Arango, J., 1986, Rous sarcoma virus-transformed baby hamster kidney cells express higher levels of asparagine-linked tri-and tetraantennary glycopeptides containing [G1cNAc-13(1,6)Mana(1,6)Man] and poly-N-acetyllactosamine sequences than baby hamster kidney cells, J. Biol. Chem. 261: 10772–10777.PubMedGoogle Scholar
  108. Piller, F., and Cartron, J.-P., 1983. UDP-GleNAc:Galßl-4Glc(NAc)ß1–3Nacetylglucosaminyltransferase. Identification and characterization in human serum, J. Biol. Chem. 258: 12293–12299.PubMedGoogle Scholar
  109. Piller, F., Cartron, J.-P., Maranduba, A., Veyrières, A., Leroy, Y., and Fournet, B., 1984, Biosynthesis of blood group I antigens. Identification of a UDP-G1cNAc:GIcNAc31–3Gal(-R)131–6(G1cNAc to Gal) N-acetylglucosaminyltransferase in hog gastric mucosa, J. Biol. Chem. 259: 13385–13390.PubMedGoogle Scholar
  110. Pruzanski, W., Jakobs, H., Saito, S., Donnelly, E. M., and Lui, L. C., 1987, Cryptic cold agglutinin activity of monoclonal macroglobulins, Am. J. Hematol. 26: 167–174.PubMedCrossRefGoogle Scholar
  111. Quarles, R., 1990, Human monoclonal antibodies associated with neuropathy, Methods En_ymol. 179: 291–299.CrossRefGoogle Scholar
  112. Roelcke, D., 1968, Eine neue Spezifität hochtitriger Kälteautoantikörper, Klin. Wochenschr. 46: 1174–1175.PubMedCrossRefGoogle Scholar
  113. Roelcke, D., 1969, A new serological specificity in cold antibodies of high titer: Anti-HD, Vox Sang. 16: 76–79.PubMedCrossRefGoogle Scholar
  114. Roelcke, D., 1973, Serological studies on the Pr,/Pr2 antigens using dog erythrocytes. Differentiation of Pr: from Pr, and detection of a Pr, heterogeneity: Prh/Prig, Vox Sang. 24: 354–361.PubMedCrossRefGoogle Scholar
  115. Roelcke, D., 1981a, A further cold agglutinin. FI, recognizing a N-acetylneuraminic acid-determined antigen, Vox Sang. 41: 98–101.PubMedCrossRefGoogle Scholar
  116. Roelcke, D., 1981b, The Lud cold agglutinin: A further antibody recognizing N-acetylneuraminic acid-determined antigens not fully expressed at birth. Vox Sang. 41: 316–318.PubMedCrossRefGoogle Scholar
  117. Roelcke, D., 1985, Li cold agglutinin: A further antibody recognizing sialic acid-dependent antigens fully expressed on newborn erythrocytes, Vox Sang. 48: 181–183.PubMedCrossRefGoogle Scholar
  118. Roelcke, D., 1989, Cold agglutination, Transfus. Med. Rev. 3: 140–166.PubMedCrossRefGoogle Scholar
  119. Roelcke, D., and Brossmer, R., 1984. Different fine specificites of human monoclonal anti-Gd cold agglutinins, Prot. Biol. Fluids 31: 1075–1078.Google Scholar
  120. Roelcke, D., and Kreft, H., 1984, Characterization of various anti-Pr cold agglutinins, Transfusion 24: 210–213.PubMedCrossRefGoogle Scholar
  121. Roelcke, D., and Uhlenbruck, G., 1970, Letter to the Editor, Vox Sang. 18: 478–479.PubMedCrossRefGoogle Scholar
  122. Roelcke, D., and Weber, M. T., 1984, Simultaneous occurrence of anti-F1 and anti-I cold agglutinins in a patient’s serum, Vox Sang. 47: 122–124.PubMedCrossRefGoogle Scholar
  123. Roelcke, D., Ebert, W., and Anstee, D. J., 1974, Demonstration of low-titer anti-Pr cold agglutinins, Vox Sang. 27: 429–441.PubMedCrossRefGoogle Scholar
  124. Roelcke, D., Ebert, W., and Geisen, H. P., 1976, Anti-Pr,: Serological and immunochemical identification of a new anti-Pr subspecificity, Vox Sang. 30: 122–133.PubMedCrossRefGoogle Scholar
  125. Roelcke, D., Riesen, W., Geisen, H.P., and Ebert, W., 1977, Serological identification of the new cold agglutinin specificity anti-Gd, Vox Sang. 33: 304–306.PubMedCrossRefGoogle Scholar
  126. Roelcke, D., Brossmer, R., and Riesen, W., 1978, Inhibition of human anti-Gd cold agglutinins by sialyllactose, Scand. J. Immunol. 8: 179–185.PubMedCrossRefGoogle Scholar
  127. Roelcke, D., Meiser, R. J., and Brücher, H., 1979, Human cold agglutinins against “cryptic” erythrocyte antigens, Blut 39: 217–224.PubMedCrossRefGoogle Scholar
  128. Roelcke, D., Pruzanski, W., Ebert, W., Römer, W., Fischer, E., Lenhard, V., and Rauterberg, E., 1980, A new human monoclonal cold agglutinin Sa recognizing terminal N-acetyl-neuraminyl groups on the cell surface. Blood 55: 677–681.PubMedGoogle Scholar
  129. Roelcke, D., Brossmer, R., and Ebert, W., 1981, Anti-Pr. -Gd and related cold agglutinins. Human monoclonal antibodies against neuraminyl groups, Prot. Biol. Fluids 29: 619–622.Google Scholar
  130. Roelcke, D., Kreft, H., and Pfister, A. M., 1984. Cold agglutinin Vo. An IgMX monoclonal human antibody recognizing a sialic acid determined antigen fully expressed on newborn erythrocytes, Vox Sang. 47: 236–241.PubMedCrossRefGoogle Scholar
  131. Roelcke, D., Dahl, W., and Kalden, J. R., 1986. A human monoclonal IgMK cold agglutinin recognizing oligosaccharides with immunodominant sialyl groups preferentially at the blood group M-specific peptide backbone of glycophorins: anti-PrTM. Vox Sang. 51: 207–211.PubMedCrossRefGoogle Scholar
  132. Roelcke, D., Hengge, U., and Kirschfink, M., 1990, Neolacto (type-2 chain)-sialoautoantigens recognized by human cold agglutinins. Vox Sang. 59: 235–239.PubMedCrossRefGoogle Scholar
  133. Roelcke, D., Kreft, H., Northoff, H., and Gallasch, E., 1991, Sia-bl and I antigens recognized by Mycoplasma pneumoniae-induced human cold agglutinins, Transfusion 31: 627–630.PubMedCrossRefGoogle Scholar
  134. Romans, D. G., Tilley, C. A., and Dorrington, K. J., 1980, Monogamous bivalency of IgG antibodies. I. Deficiency of branched ABHI-active oligosaccharide chains on red cells of infants causes the weak anti-globulin reactions in hemolytic disease of the newborn due to ABO incompatibility, J. Immunol. 124: 2807–2811.PubMedGoogle Scholar
  135. Rosenfield, R. E., Schmidt, P. J., Calvo, R. C., and McGinniss, M. H., 1965, Anti-i, a frequent cold agglutinin in infectious mononucleosis, Vox Sang. 10: 631–634.PubMedCrossRefGoogle Scholar
  136. Salama, A., Pralle, H., and Mueller-Eckhardt, C., 1985, A new red blood cell cold autoantibody (anti-Me), Vox Sang. 49: 277–284.PubMedCrossRefGoogle Scholar
  137. Scudder, P., Hanfland, P., Uemura, K., and Feizi, T., 1984, Endo-ß-galactosidase of Bacteroides fragilis and Escherichia freundii hydrolyze linear but not branched oligosaccharide domains of glycolipids of the neolacto series, J. Biol. Chem. 259: 6586–6592.PubMedGoogle Scholar
  138. Sinor, L. T., Farlow, S. J., Hudson, G. S., and Stone, D. L., 1989, Laboratory applications of monoclonal antibodies, in Monoclonal Antibodies ( J. M. Moulds and S. P. Masouredis, eds.), pp. 49–82, American Association of Blood Banks, Arlington, VA.Google Scholar
  139. Staub, C. A., 1985, Cold reacting antibodies recognizing antigens dependent on N-acetylneuraminic acid. Transfusion 25: 414–416.PubMedCrossRefGoogle Scholar
  140. Steck, T. C., 1974. The organisation of proteins in the human red blood cell membrane, J. Cell Biol. 62: 1–19.PubMedCrossRefGoogle Scholar
  141. Suttajit, M., and Winzler, R. J., 1971, Effect of modification of N-acetylneuraminic acid on the binding of glycoproteins to influenza virus and on susceptibility to cleavage by neuraminidase, J. Biol. Chem. 246: 3398–3404.PubMedGoogle Scholar
  142. Tanner, M. J. A., Martin, P. G., and High, S., 1988, The complete amino acid sequence of the human erythrocyte membrane anion-transport protein deduced from the cDNA sequence, Biochem. J. 256: 703–712.PubMedGoogle Scholar
  143. Thomas, D. B., 1974, The i antigen complex: A new specificity unique to dividing human cells, Eur. J. Immunol. 4: 819–824.CrossRefGoogle Scholar
  144. Tsai, C. M., Zopf, D. A., Yu, R. K., Wistar, R. Jr., and Ginsburg, V., 1977, A Waldenström macroglobulin that is both a cold agglutinin and a cryoglobulin because it binds N-acetylneuraminosyl residues, Proc. Natl. Acad. Sci. USA 74: 4591–4594.PubMedCrossRefGoogle Scholar
  145. Uemura, K., Roelcke, D., Nagai, Y., and Feizi, T., 1984. The reactivities of human erythrocyte auto-antibodies anti-Pr,, anti-Gd, -FI and -Sa with gangliosides in a chromatogram binding assay, Biochem. J. 219: 865–874.PubMedGoogle Scholar
  146. Van den Eijnden, D. H., and Schiphorst, W. E. C. M., 1983, Purification and enzymatic characterization of a UDP-GIcNAc:N-acetyllactosaminide beta-(1–3)-N-acetylglucosaminyltransferase from Novikoff tumor cell ascites fluid, in Proceedings of the 7th International Symposium on Glycoconjugates (M. A. Chester, et al.,eds.), pp. 766–767, Lund Ronneby, Sweden.Google Scholar
  147. Van den Eijnden, D. H., Winterwerp, H., Smeeman, P., and Schiphorst, W. E. C. M., 1983, Novikoff ascites tumor cells contain N-acetyllactosaminide 3l-3 and 13l-ß 6 N-acetylglucosaminyltransferase activity, J. Biol. Chem. 258: 3435–3437.PubMedGoogle Scholar
  148. Van den Eijnden, D. H., Koenderman, A. H. L., and Schiphorst, W. E. C. M., 1988. Biosynthesis of blood group i-active polylactosaminoglycans. Partial purification and properties of an UDP-GIcNAc:Nacetyllactosaminide 131 -.3-N-acetylglucosaminyltransferase from Novikoff tumor cell ascites fluid, J. Biol. Chem. 263: 12461–12471.PubMedGoogle Scholar
  149. Vedtofte, P., Dabelsteen, E., Hakomori, S., and Young, W. W. Jr., 1984, Regional variations of cell surface carbohydrates in human oral stratified epithelium. Differentiation 27: 221–228.PubMedCrossRefGoogle Scholar
  150. Watanabe, K., Laine, R. A., and Hakomori, S., 1975, On neutral fucoglycolipids having long, branched carbohydrate chains: H-active and I-active glycosphingolipids of human erythrocyte membranes. Biochemistry 14: 2725–2733.PubMedCrossRefGoogle Scholar
  151. Watanabe, K., Powell, M. E., and Hakomori, S., 1978, Isolation and characterization of a novel fucoganglioside of human erythrocyte membranes, J. Biol. Chem. 253: 8962–8967.PubMedGoogle Scholar
  152. Watanabe, K., Hakomori, S., Childs, R. A., and Feizi, T., 1979a, Characterization of a blood group I-active ganglioside. Structural requirements for I and i specificities. J. Biol. Chem. 254: 3221–3228.PubMedGoogle Scholar
  153. Watanabe, K., Powell, M. E., and Hakomori, S., 1979b, Isolation and characterization of gangliosides with a new sialosyl linkage and core structures. II. Gangliosides of human erythrocyte membranes, J. Biol. Chem. 254: 8223–8229.PubMedGoogle Scholar
  154. Weber, R. J., and Clem, L. W., 1981, The molecular mechanism of cryoprecipitation and cold agglutination of an IgMX Waldenström macroglobulin with anti-Gd specificity: Sedimentation analysis and localization of interacting sites, J. Immunol. 127: 300–305.PubMedGoogle Scholar
  155. Wiener, A. S., Unger, L. J., Cohen, L., and Feldman, J., 1956, Type-specific cold auto-antibodies as a cause of acquired hemolytic anemia and hemolytic transfusion reactions: Biologic test with bovine red cells. Ann. Intern. Med. 44: 221–240.PubMedCrossRefGoogle Scholar
  156. Wingert, W. E., and Cheng, P. -W., 1984, Mucin biosynthesis: Characterization of rabbit small intestinal UDP-N-acetylglucosamine: galactose 13–3-N-acetylgalactosaminide (N-acetylglucosamine-Nacetylgalactosamine) 13–6-N-acetylglucosaminyltransferase, Biochemistry 23: 690–697.PubMedCrossRefGoogle Scholar
  157. Yamaguchi, H., Okubo, Y., Tomits, T., Yamano, H., and Tanaka, M., 1970, A rare i (I-negative) blood found in Japanese families, Proc. Jpn. Acad. 46: 889–892.Google Scholar
  158. Yamaguchi, H., Okubo, Y., and Tanaka, H., 1972, A note on possible close linkage between the Ii blood locus and a congenital cataract locus, Proc. Jpn. Acad. 48: 625–628.Google Scholar
  159. Yamashita, K., Tachibana, Y., Ohkura, T., and Kobata, A., 1985, Enzymatic basis for the structural changes of asparagine-linked sugar chains of membrane glycoproteins of baby hamster kidney cells induced by polyoma transformation, J. Biol. Chem. 260: 3963–3969.PubMedGoogle Scholar
  160. Yates, A. D., and Watkins, W. M., 1983, Enzymes involved in the biosynthesis of glycoconjugates. A UDP-2-acetamido-2-deoxy-D-glucose: (3-o-galactopyranosyl-(1→4)-saccharide (l→3)-2-acetamido-2-deoxy-13-o-glucopyranosyltransferase in human serum, Carbohydr. Res. 120: 251–268.CrossRefPubMedGoogle Scholar
  161. Yazawa, S., Abbas, S. A., Madiyalakan, R., Barlow, J. J., and Matta, K. L., 1986, N-acetyl-ß-nglucosaminyltransferases related to the synthesis of mucin-type glycoproteins in human ovarian tissue, Carbohydr. Res. 149: 241–252.PubMedCrossRefGoogle Scholar
  162. Yousefi, S., Higgins, E., Daoling, Z., Pollex-Krüger, A., Hindsgaul, O., and Dennis, J. W., 1991, Increased UDP-G1cNAc:Gal131–3Ga1NAc-R (GIcNAc to GaINAc) 13–1,6-N-acetylglucosaminyltransferase activity in metastatic murine tumor cell lines. Control of polylactosamine synthesis, J. Biol. Chem. 266: 1772–1782.PubMedGoogle Scholar
  163. Zdaebska, E., and Koscielak, J., 1978, Studies on the structure and I-blood-group activity of poly(glycosyl)ceramides, Ear. J. Biochem. 91: 517–525.CrossRefGoogle Scholar
  164. Zielenski, J., and Koscielak, J., 1983a, The occurrence of two novel N-acetylglucosaminyltransferase activities in human serum, FEBS Lett. 158: 164–168.PubMedCrossRefGoogle Scholar
  165. Zielenski, J., and Koscielak, J., 1983b, Sera of i subjects have the capacity to synthesize the branched G1cNAc13(1-’6) [GicNAc(131-*3)]Galchrw(133) structure, FEBS Lett. 163: 114–119.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Dieter Roelcke
    • 1
  1. 1.Institute for ImmunologyUniversity of HeidelbergHeidelbergGermany

Personalised recommendations