Advertisement

Histo-Blood Group Antigens as Tumor-Associated Carbohydrate Antigens and Ligands for Cell Adhesion

  • Sen-itiroh Hakomori
Part of the Blood Cell Biochemistry book series (BLBI, volume 6)

Abstract

Since the blood group ABH antigen system was discovered by Landsteiner (1900, 1901), many scientists have worked on chemical characterization of these antigens. Early attempts to isolate the antigens from red blood cells (RBCs) were difficult because the antigens in the RBC membrane are insoluble in water and present in extremely small quantity as compared with the same antigens in glandular secretions and epithelia (Kabat, 1956; Prokop and Uhlenbruck, 1969). Thus, the first successful chemical analysis of ABH antigens was accomplished using soluble forms of antigens isolated from mucins. Through a series of laborious studies performed mainly by Walter T. J. Morgan and Winifred M. Watkins (London) and Elvin A. Kabat (New York) in the 1950s and 1960s, the ABH determinants were finally identified and the structural relationships among ABH and Lewis antigens clarified (Morgan and Watkins, 1969; Kabat, 1973; Watkins, 1980). It was not until the late 1960s and early 1970s that ABH and Lewis antigens present in blood cells and tissues were isolated and characterized as glycosphingolipids (GSLs) or as membrane-bound proteins linked to polylactosaminoglycans (Hakomori, 1981). Since ABH antigens as well as Lewis antigens (for chemical and genetic relationships, see Chapter 3) are much more abundant in epithelial cells and tissues than in blood cells, they are most appropriately called “histo-blood group antigens” rather than simply “blood group antigens” (Clausen and Hakomori, 1989).

Keywords

Gastric Cancer Blood Group Blood Group Antigen Tumor Cell Adhesion Molecular Genetic Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, K., McKibbin, J. M., and Hakomori, S.. 1983, The monoclonal antibody directed to difucosylated type 2 chain (Fucal→2Galß1→4[Fuca1→3]GlcNAc; Y determinant), J. Biol. Chem. 258: 11793–11797.Google Scholar
  2. Berg, E. L., Robinson, M. K., Mansson, O., Butcher, E. C., and Magnani. I. L., 1991, A carbohydrate domain common to both sialyl Le’ and sialyl Le’ is recognized by the endothelial cell leukocyte adhesion molecule ELAM-1, J. Biol. Chem. 266: 14869–14872.PubMedGoogle Scholar
  3. Breimer, M. E., 1980, Adaptation of mass spectrometry for the analysis of tumor antigens as applied to blood group glycolipids of a human gastric carcinoma, Cancer Res. 40: 897–908.PubMedGoogle Scholar
  4. Bremer, E. G., Levery, S. B., Sonnino, S., Ghidoni, R., Canevari, S.. Kannagi, R., and Hakomori, S., 1984, Characterization of a glycosphingolipid antigen defined by the monoclonal antibody MBrI expressed in normal and neoplastic epithelial cells of human mammary gland, J. Biol. Chem. 259: 14773–14777.Google Scholar
  5. Brown, A., Feizi, T., Gooi, H. C., Embleton, M. J., Picard, J. K., and Baldwin, R. W., 1983, A monoclonal antibody against human colonic adenoma recognizes difucosylated type 2 blood group chains, Biosci. Rep. 3: 163–170.PubMedGoogle Scholar
  6. Clausen, H., and Hakomori, S., 1989, ABH and related histo-blood group antigens: Immunochemical differences in carrier isotypes and their distribution, Vox Sang. 56: 1–20.PubMedGoogle Scholar
  7. Clausen, H., Hakomori, S.. Graem, N., and Dabelsteen, E., 1986, Incompatible A antigen expressed in tumors of blood group O individuals: Immunochemical, immunohistologic, and enzymatic characterization, J. Immunol. 136: 326–330.Google Scholar
  8. Clausen, H., White, T., Takio, K., Titani, K., Stroud, M. R., Holmes, E. H., Karkov, J., Thim, L., and Hakomori, S., 1990, Isolation to homogeneity and partial characterization of a histo-blood group A defined Fucal-2Gal al-*3-N-acetylgalactosaminyltransferase from human lung tissue, J. Biol. Chem. 265: 1139–1145.PubMedGoogle Scholar
  9. Cooper, A. G., Brown, M. C., Kirsh, M. E., and Rule, A. H., 1974, Relationship of carcinoembryonic antigen to blood group substances A and I: Evidence that the antigenic sites are on different molecules, J. Immunol. 113: 1246–1251.PubMedGoogle Scholar
  10. Dabelsteen, E., and Fulling, H. J., 1971, A preliminary study of blood group substances A and B in oral epithelium exhibiting atypia, Scand. J. Dent. Res. 79: 387–393.PubMedGoogle Scholar
  11. Dabelsteen, E., and Pindborg, J. J., 1973, Loss of epithelial blood group substance A in oral carcinomas, Acta Pathol. Microbiol. Scand. 81: 435–444.Google Scholar
  12. Dabelsteen, E., Roed-Petersen, B., and Pindborg, J. J., 1975, Loss of epithelial blood group antigens A and B in oral premalignant lesions, Acta Pathol. Microbiol. Scand. 83: 292–300.Google Scholar
  13. Dahr, W., Uhlenbruck, G., and Bird, G. W. G., 1974, Cryptic A-like receptor sites in human erythrocyte glycoproteins: Proposed nature of Tn-antigen, Vox Sang. 27: 29–42.PubMedGoogle Scholar
  14. Dausset, J., Moullec, J., and Bernard, J., 1959, Acquired hemolytic anemia with polyagglutinability of red blood cells due to a new factor present in normal human serum (antiTn), Blood 14: 1079 1093.Google Scholar
  15. Davidsohn, I. and Ni, L. Y., 1969, Loss of isoantigens A, B, and H in carcinoma of the lung, Am. J. Pathol. 57: 307–334.PubMedGoogle Scholar
  16. Davidsohn, I., Kovarik, S., and Lee, C. L., 1966, A, B, and O substances in gastrointestinal carcinoma, Arch. Pathol. 81: 381–390.PubMedGoogle Scholar
  17. Davidsohn, I., Kovarik, S., and Ni, Y., 1969, Isoantigens A, B, and H in benign and malignant lesions of the cervix, Arch. Pathol. 87: 306–314.PubMedGoogle Scholar
  18. Denk, H., Tappeiner, G., Davidovits, A., Eckerstorfer, R., and Holzner, J. H., 1974, Carcinoembryonic antigen and blood group substances in carcinomas of stomach and colon. J. Natl. Cancer Inst. 53: 933–942.PubMedGoogle Scholar
  19. Eggens, I., Fenderson, B. A., Toyokuni, T., Dean, B., Stroud, M. R., and Hakomori, S., 1989, Specific interaction between Le` and Le’ determinants: A possible basis for cell recognition in preimplantation embryos and in embryonal carcinoma cells, J. Biol. Chem. 264: 9476–9484.PubMedGoogle Scholar
  20. Feizi, T., Turberville, C., and Westwood, J. H., 1975, Blood-group precursors and cancer-related antigens, Lancet 2: 391–393.PubMedGoogle Scholar
  21. Fenderson, B. A., Kojima, N., Stroud, M. R., Zhu, Z., and Hakomori, S., 1991, Specific interaction between Le“ and H as a possible basis for trophectoderm—endometrium recognition during implantation [Abstract 8.5], Glycoconjugate J. 8: 179.Google Scholar
  22. Finan, P. J., Wight, D. G. D., Lennox, E. S., Sacks, S. H., and Bleehen, N. M., 1983, Human blood group isoantigen expression on normal and malignant gastric epithelium studied with anti-A and anti-B monoclonal antibodies, J. Natl. Cancer Inst. 70: 649–685.Google Scholar
  23. Fukushi, Y., Hakomori, S., Nudelman, E. D., and Cochran, N., I984a, Novel fucolipids accumulating in human adenocarcinoma: II. Selective isolation of hybridoma antibodies that differentially recognize mono-, di-, and trifucosylated type 2 chain, J. Biol. Chem. 259: 4681–4685.Google Scholar
  24. Fukushi, Y., Nudelman, E. D., Levery, S. B., Rauvala, H., and Hakomori, S., 1984b, Novel fucolipids accumulating in human cancer: III. A hybridoma antibody (FH6) defining a human cancer-associated difucoganglioside (VI3NeuAcV’III3Fuc,nLcb), J. Biol. Chem. 259: 10511–10517.PubMedGoogle Scholar
  25. Fukushima, K., Hirota, M., Terasaki, P. I., Wakisaka, A., Togashi, H., Chia, D., Suyama, N., Fukushi, Y., Nudelman, E. D., and Hakomori, S., 1984, Characterization of sialosylated Lewis’ as a new tumor-associated antigen, Cancer Res. 44: 5279–5285.PubMedGoogle Scholar
  26. Häkkinen, I., 1970, A-like blood group antigen in gastric cancer cells of patients in blood groups O and B, J. Natl. Cancer Inst. 44: 1183–1193.PubMedGoogle Scholar
  27. Hakomori, S., 1981, Blood group ABH and Ii antigens of human erythrocytes: Chemistry, polymorphism, and their developmental change, Semin. Hematol. 18: 39–62.Google Scholar
  28. Hakomori, S., 1984, Tumor associated carbohydrate antigens, Annu. Rev. Immunol. 2: 103–126.Google Scholar
  29. Hakomori, S., 1989, Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens, Adv. Cancer Res. 52: 257–331.Google Scholar
  30. Hakomori, S., 1990, Bifunctional role of glycosphingolipids: Modulators for transmembrane signaling and mediators for cellular interactions, J. Biol. Chem. 265: 18713–18716.Google Scholar
  31. Hakomori, S., 1991a, Possible new directions in cancer therapy based on aberrant expression of glycosphingolipids: Anti-adhesion and ortho-signaling therapy, Cancer Cells 3: 461–470.PubMedGoogle Scholar
  32. Hakomori, S., 1991b, Carbohydrate—carbohydrate interaction as an initial step in cell recognition, Pure Appl. Chem. 63: 473–482.Google Scholar
  33. Hakomori, S., and Andrews, H., 1970, Sphingoglycolipids with Leb-activity, and the co-presence of Le“- and Leb-glycolipids in human tumor tissue, Biochim. Biophys. Acta 202: 225–228.PubMedGoogle Scholar
  34. Hakomori, S., and Jeanloz, R. W., 1964, Isolation of glycolipid containing fucose, galactose, glucose, and glucosamine from human cancerous tissue, J. Biol. Chem. 239: 3606–3607.Google Scholar
  35. Hakomori, S., Koscielak, J., Bloch, K. J., and Jeanloz, R. W., 1967, Immunologic relationship between blood group substances and a fucose-containing glycolipid of human adenocarcinoma, J. Immunol. 98: 31–38.PubMedGoogle Scholar
  36. Hakomori, S., Wang, S. M., and Young, W. W., Jr., 1977, Isoantigenic expression of Forssman glycolipid in human gastric and colonic mucosa: Its possible identity with “A-like antigen” in human cancer, Proc. Natl. Acad. Sci. USA 74: 3023–3027.PubMedGoogle Scholar
  37. Hakomori, S., Nudelman, E. D., Levery, S. B., and Kannagi, R., 1984, Novel fucolipids accumulating in human adenocarcinoma: I. Glycolipids with di-or trifucosylated type 2 chain, J. Biol. Chem. 259: 4672–4680.PubMedGoogle Scholar
  38. Handa, K., Nudelman, E. D., Stroud, M. R., Shiozawa, T., and Hakomori, S., 1991, Selectin GMP140 (CD62; PADGEM) binds to sialosyl-Le’ and sialosyl-Le’, and sulfated glycans modulate this binding, Biochem. Biophys. Res. Commun. 181: 1223–1230.PubMedGoogle Scholar
  39. Hattori, H., Uemura, K., and Taketomi, T., 1981, Glycolipids of gastric cancer: The presence of blood group A-active glycolipids in cancer tissues from blood group O patients, Biochim. Biophys. Acta 666: 361–369.PubMedGoogle Scholar
  40. Hattori, H., Uemura, K., Ogata, H., Katsuyama, T., Taketomi, T., and Kanfer, J. N., 1987, Characterization of glycolipids from the gastric cancer of a patient of p,O,Le(a—,b+) blood type: Presence of incompatible blood group antigens in tumor tissues, Cancer Res. 47: 1968–1972.PubMedGoogle Scholar
  41. Hirano, K., Kawa, S., Oguchi, H.. Kobayashi, T., Yonekura, H., Ogata, H., and Homma, T., 1987, Loss of Lewis antigen expression on erythrocytes in some cancer patients with high serum CA199 levels. J. Natl. Cancer Inst. 79: 1261–1268.Google Scholar
  42. Hirohashi, S., Clausen, H., Yamada, T., Shimosato, Y., and Hakomori, S., 1985, Blood group A cross-reacting epitope defined by monoclonal antibodies NCC-LU-35 and -81 expressed in cancer of blood group O or B individuals: Its identification as Tn antigen, Proc. Natl. Acad. Sci. USA 82: 70397043.Google Scholar
  43. Hirszfeld, L., Halber, W.. and Laskowski, J., 1929, Untersuchungen uber die serologischen Eigenschaften der Gewebe, Z. Immunitatsforsch. Exp. Ther. 64: 61–113.Google Scholar
  44. Hoff, S. D., Irimura, T., Matsushita, Y., Ota, D. M., Cleary, K. R.. and Hakomori, S., 1990, Metastatic potential of colon carcinoma: Expression of ABO/Lewis-related antigens, Arch. Surg. 125: 206209.Google Scholar
  45. Holthofer, H., Virtanen, I., Kariniemi, A.-L., Hormia, M., Linder, E., and Miettinen, A., 1982, Ulex europaeus I lectin as a marker for vascular endothelium in human tissues, Lab. Invest. 47: 60–67.Google Scholar
  46. Imura. H.. Endo. J., Ohkura, H., Ishii, M., Ariyoshi, Y., Abe, O., Masamune, O., Nishimoto, Y., Fukushi, Y., Orisaka, S., Hakomori, S., and Kannagi, R., 1987, Initial basic and clinical evaluation of a solid-phase immunoradiometric assay for sialyl SSEA-1 antigen: I. Evaluation of assay conditions and normal values, Jpn. J. Cancer Res. (Gann) 14: 1315–1321.Google Scholar
  47. Iseki, S.. Furukawa, K., and Ishihara, K., 1962, Immunochemical studies on gastric cancer polysaccharide, Proc. Jpn. Acad. Sci. 38: 556–566.Google Scholar
  48. Ito, H., Tashiro, K., Stroud, M. R., Orntoft, T. F., Meldgaard, P., Singhal, A. K., and Hakomori, S.. 1992, Specificity and immunobiological properties of monoclonal antibody IMH2, established after immunization with Le°/Le“ glycosphingolipid, a novel extended type 1 chain antigen. Cancer Res. 52: 3739–3745.PubMedGoogle Scholar
  49. Itzkowitz. S. H., Bloom, E. J., Kokal, W. A., Modin, G., Hakomori, S., and Kim, Y. S., 1990, Sialosyl-Tn: A novel mucin antigen associated with prognosis in colorectal cancer patients, Cancer 66: 1960–1966.Google Scholar
  50. Johnson, V. G., Schlom, J., Paterson, A. J., Bennett, J., Magnani, J. H., and Colcher, D.. 1986, Analysis of human tumor-associated glycoproteins (TAG-72) identified by monoclonal antibody B72.3, Cancer Res. 46: 850–857.PubMedGoogle Scholar
  51. Kabat, E. A., 1956, Blood Group Substances: Their Chemistry and Immunochemistry•, Academic Press, New York.Google Scholar
  52. Kabat, E. A., 1973, Immunochemical studies on the carbohydrate moiety of water soluble blood group A, B. H. Le“, and Leh substances and their precursor I antigens, in: Carbohydrates in Solution ( H. Isbell, ed.), pp. 334–361, American Chemical Society, Washington, DC.Google Scholar
  53. Kaizu, T., Levery, S. B., Nudelman, E. D., Stenkamp, R. E., and Hakomori, S., 1986, Novel fucolipids of human adenocarcinoma: Monoclonal antibody specific for trifucosyl Le’ (III3FucV3FucVI7-FucnLc6), and a possible three-dimensional epitope structure, J. Biol. Chem. 261: 11254–11258.Google Scholar
  54. Kannagi, R., Levine, P., Watanabe, K., and Hakomori, S., 1982, Recent studies of glycolipid and glycoprotein profiles and characterization of the major glycolipid antigen in gastric cancer of a patient of blood group genotype pp (Tj“-) first studied in 1951, Cancer Res. 42: 5249–5254.PubMedGoogle Scholar
  55. Kannagi, R., Levery, S. B., and Hakomori, S., 1985, Le“-active heptaglycosylceramide, a hybrid of type 1 and type 2 chain, and the pattern of glycolipids with Le”, Le’, X (Le) and Y (Le“) determinants in human blood cell membranes (ghosts): Evidence that type 2 chain can elongate repetitively but type 1 chain cannot, J. Biol. Chem. 260: 6410–6415.PubMedGoogle Scholar
  56. Kannagi, R., Fukushi, Y.. Tachikawa, T., Noda, A., Shin, S., Shigeta, K., Hiraiwa, N., Fukuda, Y., Inamoto, T., Hakomori, S., and Imura, H., 1986, Quantitative and qualitative characterization of human cancer-associated serum glycoprotein antigens expressing fucosyl of sialyl-fucosyl type 2 chain polylactosamine, Cancer Res. 46: 2619–2626.Google Scholar
  57. Kannagi, R., Kitahara, A., Itai, S., Zenita, K., Shigeta, K., Tachikawa, T., Noda, A., Hirano, H., Abe, M., Shin, S., Fukushi, Y., Hakomori, S., and Imura, H., 1988, Quantitative and qualitative characterization of human cancer-associated serum glycoprotein antigens expressing epitopes consisting of sialyl-or sialyl-fucosyl type 1 chain, Cancer Res: 48: 3856–3863.PubMedGoogle Scholar
  58. Kapadia, A., Feizi, T., Jewell, D., Keeling, J., and Slavin, G., 1981, Immunocytochemical studies of blood group A, H, I, and i antigens in gastric mucosae of infants with normal gastric histology and of patients with gastric carcinoma and chronic benign peptide ulceration, J. Clin. Pathol. 34: 320337.Google Scholar
  59. Kawa, S., Oguchi, H., Kobayashi, T., Tokoo, M., Furuta, S., Kanai. M., and Homma, T., 1991, Elevated serum levels of Dupan-2 in pancreatic cancer patients negative for Lewis blood group phenotype, Br. J. Cancer 64: 899–902.Google Scholar
  60. Kawasaki, H., 1958, Molisch-positive mucopolysaccharides of gastric cancers as compared with the corresponding components of gastric mucosae. Second report: On mucopolysaccharides I, Tohoku J. Exp. Med. 68: 119–132.Google Scholar
  61. Kay, H. E. H., and Wallace, B. H., 1961, A and B antigens of tumors arising from urinary epithelium, J. Natl. Cancer Inst. 26: 1349–1366.PubMedGoogle Scholar
  62. Kiriyama, K., Watanabe, T., Sakamoto, J., Ito, K., Akiyama, K., Yamauchi, M., and Takagi, H., 1991, Clinical significance of expression of tumor-associated carbohydrate antigens with type 1 (Le’, Le°, CA19–9), J. Jpn. Surg. Soc. 92: 320–330.Google Scholar
  63. Kjeldsen, T. B., Clausen, H., Hirohashi, S., Ogawa, T., Iijima, H., and Hakomori, S., 1988, Preparation and characterization of monoclonal antibodies directed to the tumor-associated 0-linked sialosyl-2—*6 a-N-acetylgalactosaminyl (sialosyl-Tn) epitope, Cancer Res. 48: 2214–2220.PubMedGoogle Scholar
  64. Kjeldsen, T. B., Hakomori, S., Springer, G. F., Desai, P., Harris, T., and Clausen, H., 1989, Coexpression of sialosyl-Tn (NeuAca2—*6GalNAca1-O-Ser/Thr) and Tn (GalNAcal-O- Ser/Thr) blood group antigens on Tn erythrocytes, Vox Sang. 57: 81–87.PubMedGoogle Scholar
  65. Kobayashi, H., Terao, T., and Kawashima, Y., 1992, Serum sialyl Tn as an independent predictor of poor prognosis in patients with epithelial ovarian cancer, J. Clin. Oncol. 10: 95–101.PubMedGoogle Scholar
  66. Kojima, N., and Hakomori, S., 1989, Specific interaction between gangliotriaosylceramide (Gg3) and sialosyllactosylceramide (GM3) as a basis for specific cellular recognition between lymphoma and melanoma cells, J. Biol. Chem. 264: 20159–20162.PubMedGoogle Scholar
  67. Kojima, N., Shiota, M., Sadahira, Y., Handa, K., and Hakomori, S., 1992, Cell adhesion in a dynamic flow system as compared to static system: Glycosphingolipid—glycosphingolipid interaction in the dynamic system predominates over lectin-or integrin-based mechanisms in adhesion of B16 melanoma cells to non-activated endothelial cells, J. Biol. Chem. 267: 17264–17270.PubMedGoogle Scholar
  68. Koprowski, H., Herlyn, M., Steplewski, Z., and Sears, H. F., 1981, Specific antigen in serum of patients with colon carcinoma, Science 212: 53–55.PubMedGoogle Scholar
  69. Kurosaka, A., Kitagawa, H., Fukui, S., Numata, Y., Nakada, H., Funakoshi, I., Kawasaki, T., Ogawa, T., Iijima, H., and Yamashina, I., 1988, A monoclonal antibody that recognizes a cluster of a disaccharide, NeuAca2–6Ga1NAc, in mucin-type glycoproteins, J. Biol. Chem. 263: 8724–8726.PubMedGoogle Scholar
  70. Landsteiner, K., 1900, Zur Kenntnis der antifermentativen, lytischen and agglutinierenden Wirkungen des Blutserum and der Lymphe, Zentralbl. Bakt. 27: 357–363.Google Scholar
  71. Landsteiner, K., 1901, Uber Agglutinationserscheinungen normalen menschlichen Blutes, Wien. Klin. Wochenschr. 14: 1132–1134.Google Scholar
  72. Larkin, M., Ahern, T. J., Stoll, M. S., Shaffer, M., Sako, D., O’Brien, J., Yuen, C.-T., Lawson, A. M., Childs, R. A., Barone, K. M.. Langer-Safer, P. R., Hasegawa, A., Kiso, M., Larsen, G. R., and Feizi, T., 1992, Spectrum of sialylated and non-sialylated fuco-oligosaccharides bound by the endothelial—leukocyte adhesion molecule, E-selectin: Dependence of the carbohydrate binding activity on E-selectin density, J. Biol. Chem. 267: 13661–13668.PubMedGoogle Scholar
  73. Lee, J. S., Ro, J. Y., Sabin, A. A., Hong, W. K., Brown, B. W., Mountain, C. F., and Hittelman, W. N., 1991, Expression of blood-group antigen A: A favorable prognostic factor in non-smallcell lung cancer, N. Engl. J. Med. 324: 1084–1090.PubMedGoogle Scholar
  74. Levine, P., 1978, Blood group and tissue genetic markers in familial adenocarcinoma: Potential specific immunotherapy, Semin. Oncol. 5: 28–34.Google Scholar
  75. Levine, P., Bobbit, O. B., Waller, R. K., and Kuhmichel, A., 1951, Isoimmunization by a new blood factor in tumor cells, Proc. Soc. Exp. Biol. Med. 77: 403–405.PubMedGoogle Scholar
  76. Lloyd, K. O., Larson, G., Stromberg, N., Thurin, J., and Karlsson, K.-A., 1983, Mouse monoclonal antibody F-3 recognizes the difucosyl type 2 blood group structure, Immunogenetics 17: 537–541.PubMedGoogle Scholar
  77. Lowe, J. B., Stoolman, L. M., Nair, R. P., Larsen, R. D., Berhend, T. L., and Marks, R. M., 1990, ELAM-1-dependent cell adhesion to vascular endothelium determined by a transfected human fucosyltransferase cDNA, Cell 63: 475–484.PubMedGoogle Scholar
  78. Magnani, J. L., Smith, D. F., and Ginsburg, V., 1980, Detection of gangliosides that bind cholera toxin: Direct binding of `251-labeled toxin to thin-layer chromatograms, Anal. Biochem. 109: 399402.Google Scholar
  79. Magnani, J. L.. Nilsson, B., Brockhaus, M., Zopf, D., Steplewski, Z., Koprowski, H., and Ginsburg, V., 1982, A monoclonal antibody-defined antigen associated with gastrointestinal cancer is a ganglioside containing sialylated containing sialylated lacto-N-fucopentaose II, J. Biol. Chem. 257: 14365–14369.Google Scholar
  80. Marcus, D. M., and Cass, L., 1969, Glycosphingolipids with Lewis blood group activity: Uptake by human erythrocytes, Science 164: 553–555.PubMedGoogle Scholar
  81. Mârtensson, S., Due, C.. Pâhlsson, P., Nilsson, B., Eriksson, H., Zopf, D., Olsson, L., and Lundblad, A., 1988, A carbohydrate epitope associated with human squamous lung cancer, Cancer Res. 48: 2125–2131.PubMedGoogle Scholar
  82. Masamune, H., Yosizawa, Z., Oh-Uti, K., Matsuda, J., and Masukawa, A., 1952, Biochemical studies on carbohydrates: On sugar components of hexosamine-containing carbohydrates from gastric cancer, normal human gastric mucosa, and human liver, and of glacial acetic acid-soluble proteins from those tissues, as well as liver metastasis from gastric cancer, Tohoku J. Exp. Med. 56: 37–42.PubMedGoogle Scholar
  83. Masamune. H., Yosizawa. Z., and Masukawa, A., 1953, Comparison of carbohydrate group of gastric cancer with the corresponding carbohydrate of gastric mucosa, Tohoku J. Exp. Med. 58: 381–398.Google Scholar
  84. Masamune, H., Kawasaki, H., Abe, S., Oyama, K., and Yamaguchi. Y., 1958, Molisch-positive mucopolysaccharides of gastric cancers as compared with the corresponding components of gastric mucosae. First report: Fractionation procedure of gastric cancer and gastric mucosa, Tohoku J. Exp. Med. 68: 81–91.PubMedGoogle Scholar
  85. Mènard, S., Tagliabue, E., Canevari, S., Fossati, G., and Colnaghi, M. I., 1983, Generation of monoclonal antibodies reacting with normal and cancer cells of human breast, Cancer Res. 43: 1295 1300.Google Scholar
  86. Metoki, R., Kakudo, K., Tsuji, Y., Teng, N., Clausen, H., and Hakomori, S., 1989, Deletion of histoblood group A and B antigens and expression of incompatible A antigen in ovarian cancer, J. Nail. Cancer Inst. 81: 1151–1157.Google Scholar
  87. Miyake, M., and Hakomori. S., 1991, A specific cell surface glycoconjugate controlling cell motility: Evidence by functional monoclonal antibodies that inhibit cell motility and tumor cell metastasis. Biochemistry 30: 3328–3334.PubMedGoogle Scholar
  88. Miyake, M., Kohno, N., Nudelman, E. D., and Hakomori. S., 1989, Human IgG3 monoclonal antibody directed to an unbranched repeating type 2 chain (Gal31→4G1cNAcß1→ 3Galßl→4GlcNAcßl—.3Galß1-R) which is highly expressed in colonic and hepatocellular carcinoma, Cancer Res. 49: 5689–5695.PubMedGoogle Scholar
  89. Miyake, M., Taki, T., Hitomi, S., and Hakomori, S., 1992, Correlation of expression of H/Le7Leb antigens with survival in patients with carcinoma of the lung, N. Engl. J. Med. 327: 14–18.PubMedGoogle Scholar
  90. Moreau, R., Dausset, J., Bernard, J., and Moullec, J., 1957, Anemie hemolytique acquise avec polyagglutinabilite des hematies par un nouveau factor present dans le serum humain normal (anti-Tn), Bull. Soc. Med. Hop. Paris 73: 569–587.PubMedGoogle Scholar
  91. Morgan, W. T. J., and Watkins, W. M., 1969, Genetic and biochemical aspects of human blood group A-, B-, H-, L&- and Leb-specificity, Br. Med. Bull. 25: 30–34.PubMedGoogle Scholar
  92. Muroi, K., Suda, T., Nojiri, H., Erna, H., Amemiya, Y., Miura, Y., Nakauchi, H., Singhal, A. K., and Hakomori. S., 1992, Reactivity profiles of leukemic myeloblasts with monoclonal antibodies directed to sialosyl-Le and other lacto-series type 2 chain antigens: Absence of reactivity with normal hematopoietic progenitor cells, Blood 79: 713–719.PubMedGoogle Scholar
  93. Nairn, R. C., Fothergill, J., and McEntegart. H., 1962, Loss of gastrointestinal specific antigen in neoplasia, Br. Med. J. 1: 1791–1793.PubMedGoogle Scholar
  94. Niemann, H., Watanabe, K., Hakomori, S., Childs, R. A., and Feizi, T., 1978, Blood group i and I activities of °Iacto-N-norhexaosylceramide“ and its analogues: The structural requirements for i-specificities, Biochem. Biophys. Res. Commun. 81: 1286–1293.PubMedGoogle Scholar
  95. Nudelman, E. D., Kannagi, R., Hakomori, S., Parsons, M., Lipinski, M., Wiels, J., Fellous, M., and Tursz, T., 1983, A glycolipid antigen associated with Burkitt lymphoma defined by a monoclonal antibody, Science 220: 509–511.PubMedGoogle Scholar
  96. Nudelman, E. D., Levery, S. B.. Kaizu, T.. and Hakomori, S., 1986, Novel fucolipids of human adenocarcinoma: Characterization of the major Ley antigen of human adenocarcinoma as trifucosylnonaosyl Ley glycolipid (III’FucV3FucVI2FucnLc6), J. Biol. Chem. 261: 11247–11253.PubMedGoogle Scholar
  97. Nudelman, E. D., Levery, S. B., Stroud, M. R., Salyan, M. E. K., Abe, K., and Hakomori, S., 1988, A novel tumor-associated, developmentally regulated glycolipid antigen defined by monoclonal antibody ACFH-I8, J. Biol. Chem. 263: 13942–13951.PubMedGoogle Scholar
  98. Nudelman, E. D., Mandel, U., Levery, S. B., Kaizu, T., and Hakomori, S., 1989, A series of disialogangliosides with binary 2→3 sialosyllactosamine structure, defined by monoclonal antibody NUH2, are oncodevelopmentally regulated antigens, J. Biol. Chem. 264: 18719–18725.PubMedGoogle Scholar
  99. Nuti, M., Teramoto, Y. A., Mariani-Constantini, R., Hand, P. H., Colcher, D., and Schlom, J., 1982, A monoclonal antibody (B72.3) defines patterns of a novel tumor-associated antigen in human mammary carcinoma cell populations, J. Inst. Cancer 29: 539–545.Google Scholar
  100. Oguchi, H., Toyokuni, T., Dean, B., Ito, H., Otsuji, E., Jones, V. L., Sadozai, K. K., and Hakomori, S., 1990. Effect of lactose derivatives on metastatic potential of B 16 melanoma cells, Cancer Commun. 2: 311–316.PubMedGoogle Scholar
  101. Oh-Uti, K., 1949, Polysaccharides and a glycidamin in gastric cancer tissue, Tohoku J. Exp. Med. 51: 297–304.Google Scholar
  102. Orntoft, T. F., Holmes, E. H., Johnson, P., Hakomori, S., and Clausen, H., 1991. Differential tissue expression of the Lewis blood group antigens: Enzymatic, immunohistologic. and immunochemical evidence for Lewis a and b antigen expression in Le(a—b—) individuals, Blood 77: 1389–1396.PubMedGoogle Scholar
  103. Paulson, J. C., 1992, Selectin/carbohydrate-mediated adhesion of leukocytes, in Adhesion: Its Role in Inflammatory Disease (J. M. Harlan and D. Y. Liu, eds.). pp. 19–42, Freeman, San Francisco.Google Scholar
  104. Phillips, M. L., Nudelman, E. D., Gaeta, F. C. A., Perez, M., Singhal, A. K., Hakomori, S., and Paulson, J. C., 1990, ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-Le, Science 250: 1130–1132.PubMedGoogle Scholar
  105. Polley, M. J., Phillips, M. L., Wayner, E. A., Nudelman, E. D., Singhal, A. K., Hakomori, S., and Paulson, J. C., 1991, CD62 and endothelial cell—leukocyte adhesion molecule 1 (ELAM-1) recognize the same carbohydrate ligand, sialyl-Lewis x, Proc. Natl. Acad. Sci. USA 88: 6224–6228.PubMedGoogle Scholar
  106. Prokop, O., and Uhlenbruck, G., 1969, Human Blood and Serum Groups, MacLaren & Sons, London.Google Scholar
  107. Sakamoto, J., Yin, B. W. T., and Lloyd, K. 0., 1984, Analysis of the expression of H, Lewis, X, Y, and precursor blood group determinants in saliva and red cells using a panel of mouse monoclonal antibodies, Mol. Immunol. 21: 1093–1098.PubMedGoogle Scholar
  108. Simmons, D. A., and Perlmann, P., 1973, Carcinoembryonic antigen and blood group substances, Cancer Res. 33: 313–322.PubMedGoogle Scholar
  109. Springer, G. F., and Desai, P. R., 1974, Interaction of blood-group MN-like cancer antigen and human cytotoxin, Naturwissenschaften 61: 38–39.PubMedGoogle Scholar
  110. Springer, G. F., and Desai, P. R., 1975, Human blood-group MN and precursor specificities: Structural and biological aspects, Carbohydr. Res. 40: 183–192.PubMedGoogle Scholar
  111. Springer, G. F.. Desai, P. R., and Banatwala, I., 1974, Blood group MN specific substances and precursors in normal and malignant human breast tissues, Naturwissenschaften 61: 457–458.PubMedGoogle Scholar
  112. Springer, G. F., Desai, P. R., and Banatwala, I., 1975, Blood group MN antigens and precursors in normal and malignant human breast glandular tissue, J. Natl. Cancer Inst. 54: 335–339.PubMedGoogle Scholar
  113. Steliner, K., Hakomori, S., and Warner, G. A., 1973, Enzymic conversion of “H,-glycolipid” to A or B-glycolipid and deficiency of these enzyme activities in adenocarcinoma, Biochem. Biophys. Res. Commun. 55: 439–445.Google Scholar
  114. Stroud, M. R., Levery, S. B., Nudelman, E. D., Salyan, M. E. K., Towel], J. A., Roberts, C. E., Watanabe, M., and Hakomori, S.. 1991, Extended type 1 chain glycosphingolipids: Dimeric Le’ (III4V4Fuc2Lc6) as human tumor-associated antigen, J. Biol. Chem. 266: 8439–8446.PubMedGoogle Scholar
  115. Stroud, M. R., Levery, S. B., Salyan, M. E. K., Roberts, C. E., and Hakomori, S., 1992, Extended type-1 chain glycosphingolipid antigens: Isolation and characterization of trifucosyl-Leb antigen (III4V4VI2Fuc3Lc6), Eur. J. Biochem. 203: 577–586.PubMedGoogle Scholar
  116. Takada, A., Ohmori, K., Takahashi, N., Tsuyuoka, K.. Yago, A., Zenita, K.. Hasegawa, A., and Kannagi, R., 1991, Adhesion of human cancer cells to vascular endothelium mediated by a carbohydrate antigen, sialyl Lewis A, Biochem. Biophys. Res. Commun. 179: 713–719.Google Scholar
  117. Takahashi, H. K., Metoki, R., and Hakomori, S., 1988, Immunoglobulin G3 monoclonal antibody directed to Tn antigen (tumor-associated a-N-acetylgalactosaminyl epitope) that does not cross-react with blood group A antigen, Cancer Res. 48: 4361–4367.PubMedGoogle Scholar
  118. Thomas, D. B., and Winzler, R. J., 1969, Structural studies on human erythrocyte glycoproteins: Alkali-labile oligosaccharides, J. Biol. Chem. 244: 5943–5946.PubMedGoogle Scholar
  119. Thor, A., Ohuchi, W., Szpak, C. A., Johnston, W. W., and Schlom, J., 1986, Distribution of oncofetal antigen tumor-associated glycoprotein-72 defined by monoclonal antibody B72.3, Cancer Res. 46: 3118–3124.PubMedGoogle Scholar
  120. Walz, G., Aruffo, A.. Kolanus, W., Bevilacqua, M. P., and Seed, B., 1990, Recognition by ELAM1 of the sialyl-Le“ determinant on myeloid and tumor cells, Science 250: 1132–1135.PubMedGoogle Scholar
  121. Watanabe, K., Hakomori, S., Childs, R. A., and Feizi, T., 1979, Characterization of blood group I-active ganglioside: Structural requirements for I- and i-specificities, J. Biol. Chem. 254: 3221–3228.PubMedGoogle Scholar
  122. Watanabe, M., Ohishi, T., Kuzuoka, M., Nudelman, E. D., Stroud, M. R., Kubota, T., Kodaira, S., Abe, O., Hirohashi, S., Shimosato. Y., and Hakomori, S., 1991, In vitro and in vivo antitumor effects of murine monoclonal antibody NCC-ST-421 reacting with dimeric Le (Le/Le’) epitope, Cancer Res. 51: 2199–2204.Google Scholar
  123. Watkins, W. M., 1980, Biochemistry and genetics of the ABO, Lewis, and P blood group systems, in Advances in Human Genetics, Vol. 10 ( H. Harris and K. Hirschhorn, eds.), pp. 1–136, Plenum Press, New York.Google Scholar
  124. Wiels, J., Fellous, M., and Tursz. T., 1981, Monoclonal antibody against a Burkitt lymphoma-associated antigen, Proc. Natl. Acad. Sci. USA 78: 6485–6488.PubMedGoogle Scholar
  125. Wiels, J., Lenoir, G. M., Fellous, M., Lipinski, M., Salomon, J. C., Tetaud, C., and Tursz, T., 1982, A monoclonal antibody with anti-Burkitt lymphoma specificity: I. Analysis of human haematopoietic and lymphoid cell lines, Int. J. Cancer 29: 653–658.PubMedGoogle Scholar
  126. Witebsky, E., 1929, Disponibilitat and Spezifitat alkoholloslicher Strukturen von Organen and bosartigen Geschwulsten, Z. Immunitatsforsch. Exp. Ther. 62: 35–73.Google Scholar
  127. Yamamoto, F., Clausen, H., White, T., Marken, J., and Hakomori, S., 1990a, Molecular genetic basis of the histo-blood group ABO system, Nature 345: 229–233.PubMedGoogle Scholar
  128. Yamamoto, F.. Marken, J., Tsuji, T., White, T., Clausen, H., and Hakomori, S.. 1990b Cloning and characterization of DNA complementary to human UDP-GaINAc:Fucal→2Gal al→3Ga1NAc transferase (histo-blood group A transferase) mRNA, J. Biol. Chem. 265: 1146–1151.PubMedGoogle Scholar
  129. Yang, H.-J., and Hakomori. S., 1971, A sphingolipid having a novel type of ceramide and lacto-Nfucopentaose III, J. Biol. Chem. 246: 1192–1200.PubMedGoogle Scholar
  130. Yoda, Y., Ishibashi, T., and Makita, A., 1980, Isolation, characterization, and biosynthesis of Forssman antigen in human lung and lung carcinoma, J. Biochem. 88: 1887–1890.PubMedGoogle Scholar
  131. Yokota, M., Warner, G., and Hakomori, S., 1981, Blood group A-like glycolipid and a novel Forssman antigen in the hepatocarcinoma of a blood group O individual, Cancer Res. 41: 4185–4190.PubMedGoogle Scholar
  132. Young, W. W., Jr., Johnson. H. S.. Tamura, Y., Karlsson, K.-A., Larson, G., Parker, J. M. R., Khare, D. P., Spohr, U., Baker, D. A., Hindsgaul, O., and Lemieux, R. U., 1983, Characterization of monoclonal antibodies specific for the Lewis A human blood group determinant, J. Biol. Chem. 258: 4890–4894.PubMedGoogle Scholar
  133. Yuan, M., Itzkowitz, S. H., Palekar, A., Shamsuddin, A. M., Phelps, P. C., Trump, B. F., and Kim, Y. S., 1985, Distribution of blood group antigens A, B, H, Lewis’ and Lewisb in human normal, fetal and malignant colonic tissue, Cancer Res. 45: 4499–4511.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Sen-itiroh Hakomori
    • 1
  1. 1.The Biomembrane Institute and Department of PathobiologyUniversity of WashingtonSeattleUSA

Personalised recommendations