Blood Group Antigens as Markers of Complement and Complement Regulatory Molecules

  • Geoff Daniels
Part of the Blood Cell Biochemistry book series (BLBI, volume 6)


Complement is a complex system of about 20 interacting proteins which, by means of a cascade of proteolytic reactions, create fatal lesions in the membranes of microorganisms. Fragments released during complement activation attract phagocytes to the site of infection and facilitate phagocytosis. Complement receptors on phagocytes and red cells bind to the complement within immune complexes so as to expedite their removal from the circulation. Complement can be activated by the classical or alternative pathways, the former generally requiring the presence of antibody and the latter often being triggered directly by a foreign particle in the absence of antibody. For reviews on complement see Porter (1983) and Law and Reid (1988).


Blood Group Paroxysmal Nocturnal Hemoglobinuria Blood Group Antigen Sequential Epitope Complement Receptor Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahearn, J. M., and Fearon, D. T., 1989, Structure and function of the complement receptors, CRI (CD35) and CR2 (CD2I), Adv. Immunol. 46: 183–219.PubMedCrossRefGoogle Scholar
  2. Atkinson, J. P., Chan, A. C., Karp, D. R., Killion, C. C., Brown, R., Spinella, D., Shreffler, D. C., and Levine, R. P., 1988, Origin of the fourth component of complement related Chido and Rodgers blood group antigens. Complement 5: 65–76.PubMedGoogle Scholar
  3. Banks, J. A., Parker, N., and Poole, J., 1992, Evidence to show that Dombrock (Do) antigens reside on the Gy’/Hy glycoprotein, Transfus. Med. 2 (Suppl. 1): 68 (abstract).Google Scholar
  4. Bartels, C., Zelinski, T., and Lockridge, 0., 1993, Mutation at codon 322 in the human acetylcholinesterase gene (ACHE) accounts for YT blood group polymorphism, Am. J. Hum. Genet. 52: 928936.Google Scholar
  5. Belt, K. T., Carroll. M. C., and Porter, R. R., 1984, The structural basis of the multiple forms of human complement component C4, Cell 36: 907–914.Google Scholar
  6. Bobolis, K. A., Moulds, J. J., and Telen, M. J.. 1992, Isolation of the JMH antigen on a novel phosphatidylinositol-linked human membrane protein, Blood 79: 1574–1581.PubMedGoogle Scholar
  7. Caras, I. W., Davitz, M. A., Rhee, L., Weddell, G., Martin, D. W., Jr.. and Nussenzweig, V., 1987, Cloning of decay-accelerating factor suggests novel use of splicing to generate two proteins. Nature 325: 545–549.PubMedCrossRefGoogle Scholar
  8. Carroll, M. C., and Alper, C. A., 1987, Polymorphism and molecular genetics of human C4, Br. Med. Bull. 43: 50–65.PubMedGoogle Scholar
  9. Carroll, M. C., Belt, K. T., Palsdottir, A., and Porter, R. R., 1984. Structure and organization of the C4 genes, Philos. Trans. R. Soc. London Ser. B 306: 379–388.CrossRefGoogle Scholar
  10. Carroll, M. C., Palsdottir, A., Belt, K. T., and Porter, R. R., 1985, Deletion of complement C4 and steroid 21-hydroxylase genes in the HLA class III region, EMBO J. 4: 2547–2552.PubMedGoogle Scholar
  11. Coyne, K. E., Hall, S. E., Thompson, E. S., Arce, M. A., Kinoshita, T., Fujita, T., Anstee, D. J., Rosse, W., and Lublin, D. M., 1992, Mapping of epitopes, glycosylation sites, and complement regulatory domains in human decay accelerating factor, J. Immunol. 149: 2906–2913.PubMedGoogle Scholar
  12. Daniels, G., 1989, Cromer-related antigens—Blood group determinants on decay-accelerating factor, Vox Sang. 56: 205–211.PubMedCrossRefGoogle Scholar
  13. Daniels, G., and Levene, C., 1990, Immunoblotting of Dr(a–) cells with antibodies to Cromer-related antigens, Vox Sang. 59: 127–128.PubMedCrossRefGoogle Scholar
  14. Daniels, G. L., Tohyama, H., and Uchikawa, M., 1982, A possible null phenotype in the Cromer blood group complex, Transfusion 22: 362–363.PubMedCrossRefGoogle Scholar
  15. Daniels, G. L., Green, C. A., Darr, F. W., Anderson, H., and Sistonen, P., 1987, A `new’ Cromerrelated high frequency antigen probably antithetical to WES, Vox Sang. 53: 235–238.PubMedCrossRefGoogle Scholar
  16. Daniels, G. L., Okubo, Y., Yamaguchi, H., Seno, T., and Ikuta, M., 1989, UMC, another Cromerrelated blood group antigen, Transfusion 29: 794–797.PubMedCrossRefGoogle Scholar
  17. Giles, C. M., 1984, A new genetic variant for Chido, Vox Sang. 46: 149–156.PubMedCrossRefGoogle Scholar
  18. Giles, C. M., 1987, Three Chido determinants detected on the B5Rg-allotype of human C4: Their expression in Ch-typed donors and families, Hum. Immunol. 18: 111–122.PubMedCrossRefGoogle Scholar
  19. Giles, C. M., 1988, Antigenic determinants of human C4. Rodgers and Chido, Exp. Clin. Immunogenet. 5: 99–114.PubMedGoogle Scholar
  20. Giles, C. M., and Jones, J. W., 1987, A new antigenic determinant for C4 of relatively low frequency, Immunogenetics 26: 392–394.PubMedCrossRefGoogle Scholar
  21. Giles, C. M., Huth, M. C., Wilson, T. E., Lewis, H. B. M., and Grove, G. E. B., 1965, Three examples of a new antibody, anti-Cs“, which reacts with 98% of red cell samples, Vox Sang. 10: 405–415.PubMedCrossRefGoogle Scholar
  22. Giles, C. M., Gedde-Dahl, T., Jr., Robson, E. B., Thorsby, E., Olaisen, B., Amason, A., KissmeyerNielsen, F., and Schreuder, I., 1976. Rg’ (Rodgers) and the HLA region: Linkage and associations, Tissue Antigens 8: 143–149.PubMedGoogle Scholar
  23. Giles, C. M., Hoffman, M., Moulds, M., Harris, M., and Dalmass, A.. 1987. Allo-anti-Chido in a Ch-positive patient, Vox Sang. 52: 129–133.PubMedCrossRefGoogle Scholar
  24. Giles, C. M., UrinD Lambert, B.. Goetz, J., Hauptmann, G., Fielder, A. H. L., Oilier, W., Rittner, C., and Robson, T., 1988, Antigenic determinants expressed by human C4 allotypes; a study of 325 families provides evidence for the structural antigenic model, Immunogenetics 27: 442–448.Google Scholar
  25. Harris, J. P., Tegoli. J., Swanson, J., Fisher, N., Gavin, J., and Noades, J., 1967, A nebulous antibody responsible for cross-matching difficulties (Chido), Vox Sang. 12: 140–142.PubMedGoogle Scholar
  26. Helgeson, M., Swanson, J., and Polesky, H. F., 1970, Knops—Helgeson (Kn“), a high-frequency erythrocyte antigen, Transfusion 10: 137–138.PubMedCrossRefGoogle Scholar
  27. Hellman, U., Eggertsen, G., Lundwall. A, Engstrom, A, and Sjöquist, J., 1984, Primary sequence differences between Chido and Rodgers variants of tryptic Cod of the human complement system, FEBS Lett. 170: 254–258.Google Scholar
  28. Hourcade, D., Miesner, D. R., Atkinson, J. P., and Holers, V. M., 1988, Identification of an alternative polyadenylation site in the human C3b/C4b receptor (complement receptor type 1) transcriptional unit and prediction of a secreted form of complement receptor type 1, J. Exp. Med. 168: 1255 1270.Google Scholar
  29. Hourcade, D., Holers, V. M., and Atkinson, J. P., 1989, The regulators of complement activation (RCA) gene cluster, Adv. Immunol. 45: 381–416.PubMedCrossRefGoogle Scholar
  30. Klickstein, L. B., Wong, W. W., Smith, J. A., Wies, J. H., Wilson, J. G., and Fearon, D. T., 1987, Human C3b/C4b receptor (CRI). Demonstration of long homologous repeating domains that are composed of the short consensus repeats characteristic of C3/C4 binding proteins, J. Exp. Med. 165: 1095–1112.PubMedCrossRefGoogle Scholar
  31. Klickstein, L. B., Bartow, T. J., Miletic, V., Rabson, L. D., Smith, J. A., and Fearon, D. T., 1988, Identification of distinct C3b and C4b recognition sites in the human C3b/C4b receptor (CR1, CD35) by deletion mutagenesis, J. Exp. Med. 168: 1699–1717.PubMedCrossRefGoogle Scholar
  32. Lacey, P., Laird-Fryer, B., Block, U., Lair, J., Guilbeau, L., and Moulds, J. J., 1980, A new high incidence blood group factor, SP; and its hypothetical allele, Transfusion 20: 632 (abstract).Google Scholar
  33. Lacey, P. A., Block, U. T., Laird-Fryer, B. J., Moulds, J. J.. Bryant, L. R., Giandelone, J. A., and Linnemeyer, D. R., 1985, Anti-Tc’, an antibody that defines a red cell antigen antithetical to Tc“, Transfusion 25: 373–376.Google Scholar
  34. Laird-Fryer, B., Dukes, C. V., Lawson, J., Moulds, J. J., Walker, E. M., Jr., and Glassman, A. B., 1983, Tc’ a high frequency blood group antigen, Transfusion 23: 124–127.PubMedCrossRefGoogle Scholar
  35. Law, S. K. A., and Reid, K. B. M., 1988, Complement, IRL Press, Oxford.Google Scholar
  36. Levene, C., Hazel, N., Lavie, G., Greenberg, S., Laird-Fryer, B., and Daniels, G. L., 1984, A “new” phenotype confirming a relationship between C? and Tc“, Transfusion 24: 13–15.PubMedCrossRefGoogle Scholar
  37. Levene, C., Hard, N., Kende, G., Papo, S., Bradford, M. F., and Daniels, G. L., 1987, A second Dr(a—) proposita with anti-D? and a family with Dr(a—) in 2 generations, Transfusion 27: 64–65.PubMedCrossRefGoogle Scholar
  38. Lewis, M., Anstee, D. J., Bird, G. W. G., Brodheim, E., Cartron, J.-P., Contreras, M., Crookston, M. C., Dahr, W., Daniels, G. L., Engelfriet, C. P., Giles, C. M., Issitt, P. D., Jorgensen, J., Kornstad, L., Lubenko, A., Marsh, W. L., McCreary, J., Moore, B. P. L., Morel, P., Moulds, J. J., Nevanlinna, H., Nordhagen, R., Okubo, Y., Rosenfield, R. E., Rouger, P., Rubinstein, P., Salmon, C., Seidl, S., Sistonen, P., Tippett, P., Walker, R. H., Woodfield, G., and Young, Y., 1990, Blood group terminology 1990, Vox Sang. 58: 152–169.CrossRefGoogle Scholar
  39. Lin, R. C., Herman, J., Henry, L., and Daniels, G. L., 1988, A family showing inheritance of the Inab phenotype, Transfusion 28: 427–429.PubMedCrossRefGoogle Scholar
  40. Longster, G., and Giles, C. M.. 1976, A new antibody specificity, anti-Rg’, reacting with a red cell and serum antigen, Vox Sang. 30: 175–180.PubMedCrossRefGoogle Scholar
  41. Lublin, D. M., and Atkinson, J. P., 1989, Decay-accelerating factor: Biochemistry, molecular biology, and function, Annu. Rev. Immunol. 7: 35–58.PubMedCrossRefGoogle Scholar
  42. Lublin, D. M., Thompson, E. S., Green, A. M., Levene, C., and Telen, M. J., 1991, Dr(a—) polymorphism of decay accelerating factor. Biochemical, functional, and molecular characterization and production of allele-specific transfectants, J. Clin. Invest. 87: 1945–1952.PubMedCrossRefGoogle Scholar
  43. Lublin, D. M., Mallinson, G., Reid, M. E., Poole, J., Thompson, E. S., Ferdman, B. R., Telen, M. J., Anstee, D. J., and Tanner, M. J. A., 1992, Molecular basis of reduced or absent expression of decay accelerating factor in Dr(a—) and Inab phenotypes of Cromer blood group, Transfusion 32 (Suppl.): 47S (abstract).Google Scholar
  44. Malian, M. T., Grimm, W., Hindley, L., Knighton, G., Moulds, M. K., and Moulds, J. J., 1980, TheGoogle Scholar
  45. Hall serum: Detecting Knb, the antithetical allele to Kn., Transfusion 20: 630–631.Google Scholar
  46. Mallinson, G., and Tanner, M. J. A.. 1991, Studies on the molecular mechanism for DAF deficiency in two Inab phenotype individuals, Transfus. Med. 1(Suppl. 2 ): 43 (abstract).Google Scholar
  47. Mauff, G., Alper, C. A., Dawkins, R., Doxiadis, G., Giles, C. M., Hauptmann, G., Rittner, C., and Schneider, P. M., 1990, C4 nomenclature statement (1990), Complement Inflamm. 7: 261–268.PubMedGoogle Scholar
  48. Medof, M. E., Lublin, D. M., Holers, V. M.. Ayers, D. J., Getty, R. R., Leykam, J. F., Atkinson, J. P., and Tykocinski, M. L., 1987, Cloning and characterization of cDNAs encoding the complete sequence of decay-accelerating factor of human complement, Proc. Natl. Acad. Sci. USA 84: 20072011Google Scholar
  49. Merry, A. H., Rawlinson, V. I., Uchikawa, M., Daha, M. R., and Sim, R. B., 1989, Studies on the sensitivity to complement-mediated lysis of erythrocytes (Inab phenotype) with a deficiency of DAF (decay accelerating factor), Br. J. Haematol. 73: 248–253.PubMedCrossRefGoogle Scholar
  50. Middleton, J., Crookston, M. C., Falk, J. A., Robson, E. B., Cook, P. J. L., Batchelor, J. R., Bodmer, J., Ferrara, G. B., Festenstein, H., Harris, R., Kissmeyer-Nielsen, F., Lawler, S. D., Sachs, J. A., and Wolf, E., 1974, Linkage of Chido and HL-A, Tissue Antigens 4: 366–373.PubMedCrossRefGoogle Scholar
  51. Molthan, L., 1983a, Expansion of the York, Cost, McCoy, Knops blood group system: The new McCoy antigens McC` and McCd, Med. Lab. Sci. 40: 113–121.PubMedGoogle Scholar
  52. Molthan, L., 1983b, The serology of the York—Cost—McCoy—Knops red blood cell system, Am. J. Med. Technol. 49: 49–55.PubMedGoogle Scholar
  53. Molthan, L., and Giles, C. M., 1975, A new antigen, Yk’ (York), and its relationship to Cs’ (Cost), Vox Sang. 29: 145–153.PubMedCrossRefGoogle Scholar
  54. Molthan, L., and Moulds. J., 1978, A new antigen, McC’ (McCoy), and its relationship to Kn’ (Knops), Transfusion 18: 566–568.PubMedCrossRefGoogle Scholar
  55. Molthan, L., and Paradis, D. J., 1987, Anti-Csb: The finding of the antibody antithetical to anti-Cs’, Med. Lab. Sci. 44: 94–96.PubMedGoogle Scholar
  56. Moulds, J. M., Nickells, M. W., Moulds, J. J., Brown, M. C., and Atkinson, J. P., 1991, The C3b/ C4b receptor is recognized by the Knops, McCoy, Swain—Langley, and York blood group antisera, J. Exp. Med. 173: 1159–1163.PubMedCrossRefGoogle Scholar
  57. Moulds, J. M., Moulds, J. J., Brown, M., and Atkinson, J. P., 1992, Antiglobulin testing for CR1related (Knops/McCoy/Swain—Langley/York) blood group antigens: Negative and weak reactions are caused by variable expression of CR1, Vox Sang. 62: 230–235.PubMedCrossRefGoogle Scholar
  58. Nordhagen, R., Olaisen, B., Teisberg, P., and Gedde-Dahl, T., Jr., 1980, Association between the electrophoretically-determined C4M haplotype product and partial inhibition of anti-Ch’, J. Immunogenet. 7: 301–306.PubMedCrossRefGoogle Scholar
  59. O’Neill, G. J., Yang, S. Y., and Dupont, B, 1978a, Two HLA-linked loci controlling the fourth component of complement, Proc. Nall. Acad. Sci. USA 75: 5165–5169.CrossRefGoogle Scholar
  60. O’Neill, G. J., Yang, S. Y., Tegoli, J., Berger, R., and Dupont, B., 1978b, Chido and Rodgers blood groups are distinct antigenic components of human complement C4, Nature 273: 668–670.PubMedCrossRefGoogle Scholar
  61. Parsons, S. F., Spring, F. A., Merry, A. H., Uchikawa, M., Mallinson, G., Anstee, D. J., Rawlinson, V., and Daha, M., 1988, Evidence that Cromer-related blood group antigens are carried on decay-accelerating factor (DAF) suggests that the Inab phenotype is a novel form of DAF deficiency, 20th Congress International Society Blood Transfusion p. 116 (abstract).Google Scholar
  62. Petty, A. C., Daniels, G. L., Anstee, D. J., and Tippett, P. A., 1993, Use of the MAIEA technique to confirm the relationship between the Cromer antigens and decay accelerating factor, and to assign provisionally antigens to the short-consensus repeats, Vox Sang. 65: 309–315.PubMedCrossRefGoogle Scholar
  63. Porter, R. R., 1983, Complement polymorphism, the major histocompatibility complex and associated diseases: A speculation, Mol. Biol. Med. 1: 161–168.PubMedGoogle Scholar
  64. Post, T. W., Arce, M. A., Liszewski, M. K., Thompson, E. S., Atkinson, J. P., and Lublin, D. M., 1990, Structure of the gene for human complement protein decay accelerating factor, J. Immunol. 144: 740–744.PubMedGoogle Scholar
  65. Rao, N., Ferguson, D. J., Lee, S.-F., and Telen, M. J., 1991, Identification of human erythrocyte blood group antigens on the C3b/C4b receptor, J. Immunol. 146: 3502–3507.PubMedGoogle Scholar
  66. Raum, D., Awdeh, Z., Anderson, J., Strong, L.. Granados, J., Teran, L., Giblett, E., Yunis, E. J., and Alper, C. A., 1984, Human C4 haplotypes with duplicated C4A or C4B, Am. J. Hum. Genet. 36: 72–79.PubMedGoogle Scholar
  67. Reid, M. E., Mallinson, G., Sim, R. B., Poole, J., Pausch, V., Merry, A. H., Liew, Y. W., and Tanner, M. J. A., 1991, Biochemical studies on red blood cells from a patient with the Inab phenotype (decay-accelerating factor deficiency), Blood 78: 3291–3297.PubMedGoogle Scholar
  68. Rolih, S. D., 1989, High-titer, low-avidity (HTLA) antibodies and antigens: A review, Transfus. Med. Rev. 3: 128–139.PubMedCrossRefGoogle Scholar
  69. Rosenfeld, S. I., Ruddy, S.. and Austen, K. F., 1969, Structural polymorphism of the fourth component of human complement, J. Clin. Invest. 48: 2283–2292.PubMedCrossRefGoogle Scholar
  70. Rosse, W. F., 1991, Abnormal sensitivity to complement due to abnormalities of the cell membrane, in Clinical and Basic Science Aspects of Immunohematology ( S. T. Nance, ed.), pp. 13–32, American Association of Blood Banks, Arlington, VA.Google Scholar
  71. Sistonen, P., Nevanlinna, H. R., Virtaranta-Knowles, K., Tuminen, I., Pirkola, A., Green, C. A., and Tippett, P., 1987, WES, a `new’ infrequent blood group antigen in Finns, Vox Sang. 52: 111–114.PubMedCrossRefGoogle Scholar
  72. Spring, F. A., and Reid, M. E., 1991, Evidence that the human blood group antigens Gy’ and Hy are carried on a novel glycosylphosphatidylinositol-linked erythrocyte membrane glycoprotein, Vox Sang. 60: 53–59.PubMedCrossRefGoogle Scholar
  73. Spring, F. A., Judson, P. A., Daniels, G. L., Parsons, S. F., Mallinson. G., and Anstee, D. J., 1987, A human cell-surface glycoprotein that carries Cromer-related blood group antigens on erythrocytes and is also expressed on leucocytes and platelets, Immunology 62: 307–313.Google Scholar
  74. Spring, F. A., Gardner, B., and Anstee, D. J., 1992, Evidence that the antigens of the Yt blood group system are located on human erythrocyte acetylcholinesterase, Blood 80: 2136–2141.PubMedGoogle Scholar
  75. Stroup, M., and McCreary, J., 1975, Cr“, another high frequency blood group factor, Transfusion 15: 522 (abstract).Google Scholar
  76. Takeda, J., Miyata, T., Kawagoe, K., lids, Y., Endo, Y.. Fujita, T., Takahashi, M., Kitani, T. and Kinoshita, T. 1993. Deficiency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell 73: 703–711.Google Scholar
  77. Tate, C. G., Uchikawa, M., Tanner, M. J. A., Judson, P. A., Parsons, S. F., Mallinson, G., and Anstee, D. J., 1989, Studies on the defect which causes absence of decay accelerating factor (DAF) from the peripheral blood cells of an individual with the Inab phenotype, Biochem. J. 261: 489–493.PubMedGoogle Scholar
  78. Teisberg, P., Akesson, I., Olaisen, B., Gedde-Dahl, T., Jr., and Thorsby, E., 1976, Genetic polymorphism of C4 in man and localisation of a structural C4 locus to the HLA gene complex of chromosome 6, Nature 264: 253–254.PubMedCrossRefGoogle Scholar
  79. Teisberg, P., Jonassen, R., Mevâg, B., Gedde-Dahl, T., Jr., and Olaisen, B., 1988, Restriction fragment length polymorphisms of the complement component C4 loci on chromosome 6: Studies with emphasis on the determination of gene number, Ann. Hum. Genet. 52: 77–84.PubMedCrossRefGoogle Scholar
  80. Telen, M. J., and Green, A. M., 1989, The Inab phenotype: Characterization of the membrane protein and complement regulatory defect, Blood 74: 437–441.PubMedGoogle Scholar
  81. Telen, M. J., and Rosse, W. F., 1991, Phosphatidylinositol-glycan linked proteins of the erythrocyte membrane, in Molecular Immunohaematology (A. von dem Borne, ed.), Baillière’s Clin. Haematol. 4: 849–868.Google Scholar
  82. Telen, M. J., Hall, S. E., Green, A. M., Moulds, J. J., and Rosse, W. F., 1988, Identification of human erythrocyte blood group antigens on decay accelerating factor (DAF) and an erythrocyte phenotype negative for DAF, J. Exp. Med. 167: 93–98.CrossRefGoogle Scholar
  83. Telen, M. J., Rosse, W. F.. Parker. C. J., Moulds, M. K., and Moulds, J. J., 1990, Evidence that several high-frequency blood group antigens reside on phosphatidylinositol-linked erythrocyte membrane proteins, Blood 75: 1404–1407.PubMedGoogle Scholar
  84. Telen, M. J., Rao, N., Thompson, E. S., and Lublin, D. M., 1992, Mapping and characterization of the Cr’ epitope of decay accelerating factor, Transfusion 32 (Suppl.): 47S (abstract).Google Scholar
  85. Tilley. C. A., Romans, D. G., and Crookston, M. C., 1978, Localisation of Chido and Rodgers determinants to the C4d fragment of human C4, Nature 276: 713–715.CrossRefGoogle Scholar
  86. Vik, D. P., Tack, B. F., and Wong, W. W., 1991, Structure of the complement receptor type 1 (CR1) gene and sequence of the S allele. Complement Inflamm. 8: 238–239 (abstract).Google Scholar
  87. Walthers, L., Salem, M., Tessel, J., Laird-Fryer, B., and Moulds, J. J., 1983, The Inab phenotype: Another example found. Transfusion 23: 423 (abstract).Google Scholar
  88. Wilson, J. G., Murphy, E. E., Wong, W. W., Klickstein, L. B., Weis, J. H., and Fearon, D. T., 1986, Identification of a restriction fragment length polymorphism by a CR1 cDNA that correlates with the number of CR1 on erythrocytes, J. Exp. Med. 164: 50–59.PubMedCrossRefGoogle Scholar
  89. Wong, W. W., Cahill, J. M., Rosen, M. D., Kennedy, C. A., Bonaccio, E. T., Morris, M. J., Wilson, J. G., Klickstein, L. B., and Fearon, D. T., 1989, Structure of the human CRI gene. Molecular basis of the structural and quantitative polymorphisms and identification of a new CR1-like allele, J. Exp. Med. 169: 847–863.PubMedCrossRefGoogle Scholar
  90. Yu, C. Y., 1991, The complete exon—intron structure of a human complement component C4A gene. DNA sequences, polymorphisms, and linkage to the 21-hydroxylase gene, J. Immunol. 146: 1057 1066.Google Scholar
  91. Yu, C. Y., and Campbell, R. C.. 1987, Definitive RFLPs to distinguish between human complement C4A/C4B isotypes and the major Rodgers/Chido determinants: Application to the study of C4 null alleles, Immunogenetics 25: 383–390.PubMedCrossRefGoogle Scholar
  92. Yu, C. Y., Belt, K. T., Giles, C. M., Campbell, R. D., and Porter, R. R., 1986, Structural basis of the polymorphism of human complement components C4A and C4B: Gene size, reactivity and antigenicity, EMBO J. 5: 2873–2881.PubMedGoogle Scholar
  93. Yu, C. Y., Campbell. R. D., and Porter, R. R., 1988, A structural model for the location of the Rodgers and the Chido antigenic determinants and their correlation with the human complement component C4A/C4B isotypes, Immunogenetics 27: 399–405.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Geoff Daniels
    • 1
  1. 1.Medical Research Council Blood Group Unit London UK

Personalised recommendations