Gerbich Blood Groups and Minor Glycophorins

  • Yves Colin
  • Caroline Le Van Kim
Part of the Blood Cell Biochemistry book series (BLBI, volume 6)


The group of red cell membrane glycoproteins known as glycophorins, in reference to their high carbohydrate content (Marchesi et al., 1972), have been used for years as a general model to probe the structure and function of membrane proteins and as specific markers of erythroid differentiation (for reviews, see Bretscher, 1973; Steck, 1974; Marchesi et al., 1976; Wise, 1984). It has been suggested that the large quantity of sialic acids carried by these glycoproteins confers on the red cells a strong negative charge that keeps the erythrocytes apart from each other (Bretscher, 1973). They may in addition serve as ligands for viruses, bacteria, and parasites (for reviews, see Burness, 1981; Hadley et al., 1986; Gahmberg et al.,1988).


Human Erythrocyte Blood Group Antigen Human Erythrocyte Membrane Hereditary Elliptocytosis Nonerythroid Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alloisio, N., Morlé, L., Bachir, D., Guetarni, D.. Colonna, P., and Delaunay, J., 1985, Red cell membrane sialoglycoprotein in homozygous and heterozygous 4.1(—) hereditary elliptocytosis, Biochim. Biophys. Acta 816: 57–62.PubMedCrossRefGoogle Scholar
  2. Alloisio, N., Dalla Venezia, N., Rana, A., Andrabi, K., Texier, P., Gilsanz. F., Cartron, J.-P., Delaunay, J., and Chishti, A. H., 1993, Evidence that red cell protein p55 participate in skeletonmembrane linkage that involves protein 4.1 and glycophorin C, Blood 82: 1323–1327.PubMedGoogle Scholar
  3. Anstee, D. J., 1980. Blood group MNSs-active sialoglycoproteins of the human erythrocyte membrane, in Immunology of the Erythrocyte S. G. Sandler, M. D. Nusbacher, and M. S. Schanfield, eds., Vol. 43, pp. 67–98, Liss, New York.Google Scholar
  4. Anstee, D. J., 1981, The blood group MNSs active-sialoglycoproteins, Semin. Hematol. 18: 13–31.PubMedGoogle Scholar
  5. Anstee, D. J., Parsons, S. F.. Ridgwell, K., Tanner, M. J. A., Merry, A. H., Thomson, E. E., Judson, P. A., Johnson, P., Bates, S., and Fraser. I. D., 1984a, Two individuals with elliptocytic red cells lack three minor erythrocyte membrane sialoglycoproteins, Biochem. J. 218: 615–619.PubMedGoogle Scholar
  6. Anstee, D. J., Ridgwell, K., Tanner, M. J. A.. Daniels, G. L., and Parsons, S. F., 1984b, Individuals lacking the Gerbich blood-group antigen have alterations in the human erythrocyte membrane sialoglycoproteins 3 and y, Biochem. J. 221: 97–104.Google Scholar
  7. Blanchard, D., 1990, Human red cell glycophorins: Biochemical and antigenic properties, Transfus. Med. Rev. 4: 170–186.PubMedCrossRefGoogle Scholar
  8. Booth, P. B., and McLoughlin, K., 1972 The Gerbich blood group system especially in Melanesians. Vox Sang. 22: 73–84.PubMedCrossRefGoogle Scholar
  9. Bretscher, M. S., 1973, Membrane structure: Some general principle, Science 181: 622–629.PubMedCrossRefGoogle Scholar
  10. Burness, A. T. H., 1981, Glycophorin and sialylated components as receptor for viruses, in Virus Receptors, Part 2 ( K. Lonberg-Holm and L. Philipson, eds.), pp. 63–84, Chapman & Hall, London.Google Scholar
  11. Cartron, J.-P., and Rahuel, C., 1992, Human erythrocyte glycophorins: Protein and gene structure analyses, Transfus. Med. Rev. 6: 63–92.PubMedCrossRefGoogle Scholar
  12. Cartron, J.-P.. Colin, Y., Kudo, S., and Fukuda, M., 1990, Molecular genetics of human erythrocyte sialoglycoproteins, glycophorins A, B, C and D, in Blood Cell Biochemistry ( J. R. Harris, ed.), Vol. 1, pp. 299–335, Plenum Press, New York.Google Scholar
  13. Chang, S., Reid, M. E., Conboy, J., Wai Kan, Y., and Mohandas, N., 1991, Molecular characterization of erythrocyte glycophorin C variants, Blood 77: 644–648.PubMedGoogle Scholar
  14. Chasis, J. A., and Mohandas, N., 1986, Erythrocyte membrane deformability and stability: Two distinct membrane properties that are independently regulated by skeletal protein associations, J. Cell Biol. 103: 343–350.PubMedCrossRefGoogle Scholar
  15. Chasis, J. A., and Mohandas, N., 1992, Red cell glycophorins: Role in regulating membrane function, Protein Blood Group Antigens of the Human Red Cell (P. Agre and J.-P. Cartron, eds.), pp. 152–169, Johns Hopkins University Press, Baltimore.Google Scholar
  16. Chishti, A. H.. Andrabi, K. I., Rana, A., Keeler, M., Maalouf, G., and Bruns, G., 1992, Human erythroid p55: Homolog of Drosophila tumor suppressor factor is highly conserved X-linked gene product with euanylate kinase activity, Blood 80 (Suppl. 1): 149a.Google Scholar
  17. Cleghorn, T. E., Contreras, M., and Bull, W., 1975, The occurrence of the red cell antigens Ls’ in Finns, Proc. 14th Cong. ISBT, Helsinki.Google Scholar
  18. Colin, Y., Rahuel, C., London, J., Roméo, P. H., d’Auriol, L., Galibert, F., and Cartron, J.-P., 1986, Isolation of cDNA clones for human erythrocyte glycophorin C. J. Biol. Chem. 261: 229–233.PubMedGoogle Scholar
  19. Colin, Y., Le Van Kim, C., Tsapis, A., Clerget, M., d’Auriol, L., London, J., Galibert, F., and Cartron, J.-P., 1989, Human erythrocyte glycophorin C gene structure and rearrangement in genetic variants, J. Biol. Chem. 264: 3773–3780.PubMedGoogle Scholar
  20. Colin, Y., Joulin, V., Le Van Kim, C., Roméo, P. H., and Cartron, J.-P., 1990, Characterization of a new erythroid megakaryocyte-specific nuclear factor that binds the promoter of house keeping human glycophorin C gene, J. Biol. Chem. 265: 16729–16732.PubMedGoogle Scholar
  21. Conboy, J., 1993, Structure, function, and molecular genetics of erythroid membrane skeletal protein 4.1 in normal and abnormal red blood cells, Semin. Hematol. 30: 58–73.PubMedGoogle Scholar
  22. Dahr, W., 1986, Immunochemistry of sialoglycoproteins in human red blood cell membranes, in Recent Advances in Blood Group Biochemistry ( V. Vengelen-Tyler and W. J. Judd, eds.), pp. 23–65. American Association of Blood Banks, Arlington, VA.Google Scholar
  23. Dahr, W., Beyreuther, K., Steinbach, H., Gielen, W., and Krüger, J., 1980, Structure of the Ss blood group antigens. II. A methionine/threonine polymorphism within the NH,-terminal sequence of Ss glycoprotein, Hoppe-Seyler’s Z. Physiol. Chem. 361: 895–906.PubMedCrossRefGoogle Scholar
  24. Dahr, W., Moulds, J., Baumeister, G., Moulds, M., Kiedrowski, S., and Hummel, M., 1985, Altered membrane sialoglycoproteins in human erythrocytes lacking the Gerbich blood group antigens, Biol. Chem. Hoppe-Seyler 366: 201–211.PubMedCrossRefGoogle Scholar
  25. Dahr, W., Kiedrowski, S., Blanchard, D., Hermand, P.. Moulds, J. J., and Cartron, J.-P., 1987, High frequency of human erythrocyte membrane sialoglycoproteins. V. Characterization of the Gerbich blood group antigens: Ge2 and Ge3, Biol. Chem. Hoppe-Seyler 368: 1375–1383.PubMedCrossRefGoogle Scholar
  26. Dahr, W., Blanchard, D., Kiedrowski, S., Poschmann, A., Cartron, J.-P., and Moulds, J., 1989, High frequency antigens of human erythrocyte membrane sialoglycoproteins. VI. Monoclonal antibodies reacting with the NH2-terminal domain of glycophorin C. Biol. Chem. Hoppe-Seyler 370: 849–854.PubMedCrossRefGoogle Scholar
  27. Daniels, G. L., Shaw, M. A., Judson, P. A., Reid, M. E., Anstee, D. J.. Colpitis, P., Cornwall, J., Moore, B. P. L., and Lee, S., 1986, A family demonstrating inheritance of the Leach phenotype: A Gerbich-negative phenotype associated with elliptocytosis, Vox Sang. 50: 117–121.PubMedCrossRefGoogle Scholar
  28. Daniels, G., King, M.-J., Avent, N. D., Khalid, G., Reid, M.. Mallinson, G., Smythe, J.. and Cedergren, B., 1993, A point mutation in the GYPC gene results in the expression of the blood group Ana on glycophorin D but not on glycophorin C. Further evidence that glycophorin D is a product of the GYPC gene, Blood 82: 3198–3203.PubMedGoogle Scholar
  29. El-Maliki, B., Blanchard, D., Dahr, W., Beyreuther, K., and Cartron, J.-P., 1989, Structural homology between glycophorins C and D of human erythrocytes, Eur. J. Biochem. 183: 639–643.PubMedCrossRefGoogle Scholar
  30. Fairbanks, G., Steck, T. L., and Wallach, D. F. H., 1971, Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10: 2606–2617.PubMedCrossRefGoogle Scholar
  31. Fukuda, M., 1993, Molecular genetics of the glycophorin A gene cluster, Semin. Hematol. 30: 138151.Google Scholar
  32. Fukuda, M., and Fukuda, M. N., 1984, Cell surface glycoproteins and carbohydrate antigens in development and differentiation of erythroid cells, in The Biology of Glycoproteins ( R. J. Ivatt, ed.), pp. 183–234, Plenum Press, New York.CrossRefGoogle Scholar
  33. Furthmayr, H., 1978a, Glycophorins A, B, C: A family of sialoglycoproteins. Isolation and preliminary characterization of trypsin-derived peptides, J. Supramol. Struct. 9: 79–95.PubMedCrossRefGoogle Scholar
  34. Furthmayr, H., 1978b, Structural comparison of glycophorins and immunochemical analysis of genetic variants, Nature 271: 519–524.PubMedCrossRefGoogle Scholar
  35. Gahmberg, C. G., Autero, M., and Hermonen, J., 1988, Major 0-glycosylated sialoglycoproteins of human hematopoetic cells: differentiation antigens with poorly understood functions. J. Cell. Biochem. 37: 91–105.PubMedCrossRefGoogle Scholar
  36. Gahmberg, C. G., Jokinen, M., and Anderson, L. C., 1978, Expression of major sialoglycoprotein (glycophorin) on erythroid cells in human bone marrow, Blood 52: 379–387.PubMedGoogle Scholar
  37. Hadley, T. J., Klotz, F. W., and Miller, L. H., 1986. Invasion of erythrocytes by malaria parasites: A cellular and molecular overview, Annu. Rev. Microbiol. 40: 451–477.PubMedCrossRefGoogle Scholar
  38. Hemming, N. J., Anstee, D. J., Mawby, W. J., Reid, M. E., and Tanner, M. J. A., 1994, Localisation of the protein 4.1 binding site on human erythrocyte glycophorin C and D, Biochem. J. 299: 191–196.PubMedGoogle Scholar
  39. High, S., and Tanner, M. J. A., 1987, Human erythrocyte membrane sialoglycoprotein b. The cDNA sequence suggests the absence of a cleaved NH,-terminal signal sequence. Biochem. J. 243: 277280.Google Scholar
  40. High, S., Tanner, M. J. A., Macdonald, E. B., and Anstee, D. J., 1989. Rearrangements of the red cell membrane glycophorin C (sialoglycoprotein 3) gene, Biochem. J. 262: 47–54.PubMedGoogle Scholar
  41. Huang, C. H., Johe, K. K., Seifter, S., and Blumenfeld, O., 1991, Biochemistry and molecular biology of MNSs antigens, in Molecular Immunohematology (A. E. G. K. von dem Borne, ed.), Bailliere’s Clinical Haematology, Vol. 4, pp. 821–848, Bailliere Tindall, London.Google Scholar
  42. Jorgensen, J., Drachmann, O., and Gavin, J., 1982, Duch, Dh’. A low frequency red cell antigen, Hum. Hered. 32: 73–75.PubMedCrossRefGoogle Scholar
  43. King, M. J., Avent, N. D., Mallison, G., and Reid, M. E., 1992, Point mutation in the glycophorin C gene results in the expression of the blood group antigen Dha. Vox Sang. 63: 56–58.PubMedCrossRefGoogle Scholar
  44. Kozak, M., 1986, Bifunctional messenger RNAs in eukaryotes, Cell 47: 481–483.PubMedCrossRefGoogle Scholar
  45. Kozak, M., 1989, The scanning model for translation: An update, J. Cell Biol. 108: 229–241.PubMedCrossRefGoogle Scholar
  46. Kudo, S., and Fukuda, M., 1990, Identification of a novel human glycophorin, glycophorin E, by isolation of genomic clones and complementary DNA clones utilizing polymerase chain reaction, J. Biol. Chem. 265: 1102–1110.PubMedGoogle Scholar
  47. Laemmli, U. K., 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–681.PubMedCrossRefGoogle Scholar
  48. Le Van Kim, C., Colin, Y., Blanchard, D., Dahr, W., London, J., and Cartron, J.-P., 1987, Gerbich group deficiency of the Ge:1, —2, —3 and Ge:—I, —2, 3 types, Eur. J. Biochem. 165: 571–579.CrossRefGoogle Scholar
  49. Le Van Kim, C., Colin, Y., Mitjavila, M. T., Clerget, M., Dubart, A., Nakazawa, M., Vainchenker, W.. and Cartron, J.-P., 1989, Structure of the promoter region and tissue specificity of the human glycophorin C. J. Biol. Chem. 264: 20407–20414.Google Scholar
  50. Le Van Kim, C., Mitjavila, M. T., Clerget, M., Cartron, J.-P., and Colin, Y.. 1990. An ubiquitous isoform of glycophorin C is produced by alternative splicing, Nucleic Acids Res. 18: 3076.CrossRefGoogle Scholar
  51. Lisowska, E., 1989, Antigenic properties of human erythrocyte glycophorins, in Molecular Immunology of Complex Carbohydrates ( A. M. Wu, ed.), Plenum Press, New York.Google Scholar
  52. Loirat, M. J., Gourbil, A.. Frioux, Y., Muller, J. Y., and Blanchard, D., 1992, A murine monoclonal antibody directed against the Gerbich 3 blood group antigen, Vox Sang. 62: 45–48.Google Scholar
  53. Macdonald, E. B., and Gems, L. M., 1986. An unusual sialoglycoprotein associated with the Webbpositive phenotype, Vox Sang. 50: 112–116.PubMedCrossRefGoogle Scholar
  54. Macdonald, E. B., Condon, J., Ford, D., Fisher, B., and Gems, L. M., 1990, Abnormal beta and gamma sialoglycoprotein associated with the low-frequency antigen Ls“, Vox Sang. 58: 300–304.PubMedCrossRefGoogle Scholar
  55. McShane, K., and Chung. A., 1989, A novel human allo antibody in the Gerbich system, Vox Sang. 57: 205–209.PubMedCrossRefGoogle Scholar
  56. Marchesi, V. T., Tillack, T. W., Jackson, R. L., Segrest, J. P., and Scott, R. E., 1972, Chemical characterization and surface orientation of the major glycoprotein of the human erythrocyte membrane, Proc. Natl. Acad. Sci. USA 69: 1445–1449.PubMedCrossRefGoogle Scholar
  57. Marchesi, V. T., Furthmay, H., and Tomita, M., 1976, The red cell membrane, Annu. Rev. Biochem. 45: 667–698.PubMedCrossRefGoogle Scholar
  58. Marfatia, S. N., Lue, R. A., Branton, D., and Chesti, A. H., 1994, In vitro binding studies suggest a membrane-associated complex between erythroid p55. protein 4.1 and glycophorin C, J. Biol. Chem. 269: 8631–8634.Google Scholar
  59. Mattei, M. G., Colin, Y., Le Van Kim, C., Mattei, J. F., and Cartron, J.-P., 1986, Localization of the gene for human erythrocyte glycophorin C to chromosome 2814—q21, Hum. Genet. 74: 420422.Google Scholar
  60. Metzenberg, A. B., and Gitschier, J., 1992, The gene encoding the palmitoylated erythrocyte membrane protein, p55, originates at the CpG island 3’ to the factor VIII gene, Hum. Mol. Genet. 1: 97–101.PubMedCrossRefGoogle Scholar
  61. Mueller, T. J., and Morrison, M., 1981, Glycoconnectin (PAS 2), a membrane attachment site for the human erythrocyte cytoskeleton, in Erythrocyte Membrane 2: Recent Clinical and Experimental Advances (W. C. Kruckenberg, J. W. Eaton, and G. J. Brewer, eds.), pp. 95–112, Liss, New York.Google Scholar
  62. Nash, G. B., Parmar, J., and Reid, M. E., 1990, Effects of deficiencies of glycophorins C and D on the physical properties of the red cell, Br. J. Haematol. 76: 282–287.PubMedCrossRefGoogle Scholar
  63. Orkin, S. H., 1990, Globin gene regulation and switching: Circa 1990, Cell 63: 665–672.PubMedCrossRefGoogle Scholar
  64. Pasvol, G., Anstee, D. J., and Tanner, M. J. A., 1984, Glycophorin C and the invasion of red cells by Plasmodium falciparum, Lancet 1: 907.PubMedCrossRefGoogle Scholar
  65. Pinder, J. C., Chung, A., Reid, M. E.. and Gratzer, W. B., 1994, Membrane attachment sites for the membrane cytoskeletal protein 4.1 of the red blood cell, Blood 82: 3482–3488.Google Scholar
  66. Reid, E. M., Shaw, M. A., Rowe, G., Anstee, D. J., and Tanner, M. J. A., 1985, Abnormal minor human erythrocyte membrane sialoglycoprotein 13 in association with the rare blood-group antigen Webb (Wb), Biochem. J. 232: 289–291.PubMedGoogle Scholar
  67. Reid. E. M., Anstee, D. J., Tanner, M. J. A., Rigdwell, K., and Nurse, C. T.. 1987a, Structural relationships between human erythrocyte sialoglycoproteins ß and -y and abnormal sialoglycoproteins found in certain rare human erythrocyte variants lacking the Gerbich blood-group antigen(s), Biochem. J. 244: 123–128.Google Scholar
  68. Reid, E. M., Chasis, J. A., and Mohandas, N., 1987b, Identification of a functional role for human erythrocyte sialoglycoproteins 13 and -y, Blood 69: 1068–1072.PubMedGoogle Scholar
  69. Reid, E. M., Takakuwa, Y.. Conboy, J., Tchemia, G., and Mohandas, N., 1990, Glycophorin C content of human erythrocytes membrane is regulated by protein 4.1, Blood 75: 2229–2234.Google Scholar
  70. Rosenfield, R. E., Haber, G. V., Kissmeyer-Nielson, J. A., et al.,1960, Ge, a very common red cell antigen, Br. J. Haematol. 6:344–349.Google Scholar
  71. Rountree, J., Chen, J., Moulds, M. K., Moulds, J. J., Green, A. M., and Telen, M. J., 1989, A second family demonstrating inheritance of the Leach phenotype, Transfusion 29 (Suppl.): 15S.Google Scholar
  72. Ruff, P., Speicher, D. W., and Husain-Chishti, A., 1991, Molecular identification of a major palmitoylated erythrocyte membrane protein containing the src homology 3 motif, Proc. Natl. Acad. Sci. USA 88: 6595–6599.PubMedCrossRefGoogle Scholar
  73. Simmons, R. T., and Albrey, J. A., 1973, A `new“ blood group antigen Webb (Wb) of low frequency found in two Australian families, Med. J. Aust. 1: 8–10.Google Scholar
  74. Smythe, J., Gardner, B., and Anstee, D. J., 1994, Quantitation of the number of molecules of glycophorins C and D on normal red cells using radioiodinated Fab fragments of monoclonal antibodies, Blood 83: 1668–1672.PubMedGoogle Scholar
  75. Sondag, D., Alloisio, N., Blanchard, D., Ducluzeau, M. T., Colonna, P., Bachir, D., Bloy, C.. Cartron, J. P., and Delaunay, J., 1987, Gerbich reactivity in 4. I(—) hereditary elliptocytosis and protein 4.1 level in blood group Gerbich deficiency, Br. J. Haematol. 65: 43–50.PubMedCrossRefGoogle Scholar
  76. Spring, F. A., 1991, Immunochemical characterisation of the low-incidence antigen Dh’, Vox Sang. 61: 65–68.PubMedCrossRefGoogle Scholar
  77. Steck, T. L., 1974, The organization of proteins in the human red blood cell membrane, J. Cell Biol. 62: 1–19.PubMedCrossRefGoogle Scholar
  78. Tanner, M. J., High, S., Martin, P. G., Anstee, D. J., Judson, P. A., and Jones. T. J., 1988. Genetic variants of human red cell membrane sialoglycoprotein 3. Study of the alterations occurring in the sialoglycoprotein ß gene, Biochem. J. 250: 407–414.PubMedGoogle Scholar
  79. Telen, M. J., Le Van Kim, C., Chung, A., Cartron, J.-P., and Colin, Y., 1991a, Molecular basis for elliptocytosis associated with glycophorin C deficiency in the Leach phenotype, Blood 78: 1603 1606.Google Scholar
  80. Telen, M. J., Le Van Kim. C., Guizzo, M. L., Cartron, J.-P., and Colin, Y., 1991b, Erythrocyte Webb-type glycophorin C variant lacks N-glycosylation due to an asparagine to serine substitution, Am. J. Hematol. 37: 51–52.PubMedCrossRefGoogle Scholar
  81. Tomita, A., Radike, E. L., and Parker C. J., 1993, Isolation of erythrocyte membrane inhibitor of reactive lysis type II: Identification as glycophorin A, J. Immunol. 151: 3308–3323.PubMedGoogle Scholar
  82. Vignal, A., Rahuel, C., London, J., Chérif-Zahar, B., Schaff, S., Hattab, C., Okubo, Y., and Cartron, J.-P., 1990, A novel gene member of the human glycophorin A and B gene family. Molecular cloning and expression, Eur. J. Biochem. 191: 619–625.PubMedCrossRefGoogle Scholar
  83. Villeval, J. L., Cramer, P., Lemoine, F., Henri, A.. Bettaieb, A., Bernaudin, F., Beuzard, Y., Berger, R., Flandrin, G., Breton-Gorius, J., and Vainchenker, W., 1986, Phenotype of early erythroblastic leukemia, Blood 68: 1167–1174.Google Scholar
  84. Villeval, J. L., Le Van Kim, C., Bettaieb, A., Debili, N., Colin, Y., El Maliki, B., Blanchard, D., Vainchenker, W., and Cartron, J.-P., 1989, Early expression of glycophorin C during normal and leukemic human erythroid differentiation, Cancer Res. 49: 2626–2629.PubMedGoogle Scholar
  85. Winardi, R., Reid, M., Conboy, J., and Mohandas, N., 1993, Molecular analysis of glycophorin C deficiency in human erythrocytes, Blood 81: 2799–2803.PubMedGoogle Scholar
  86. Wise, G. E., 1984, Identification and function of transmembrane glycoproteins. The red cell model, Tissue Cell 16: 665–676.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Yves Colin
    • 1
  • Caroline Le Van Kim
    • 1
  1. 1.Unité de Recherche U76 de l’Institut National de la Santéet de la Recherche Médicale (INSERM)Institut National de la Transfusion Sanguine ParisFrance

Personalised recommendations