Advertisement

Complement Receptors

  • S. K. Alex Law
Part of the Blood Cell Biochemistry book series (BLBI, volume 5)

Abstract

Complement was first described as a heat-labile component in serum with bactericidal activity. It was subsequently found to also participate in many aspects of host defense against infection, including the initiation of inflammation, opsonization of microorganisms, and regulation of the immune response. To date, most, if not all, of the serum proteins that constitute the complement system have been identified and their activities characterized. Three types of interactions may be described for the complement proteins: (i) with each other, resulting in the sequential activation of the complement components in a cascade manner as well as in the regulation of such activation; (ii) with surface components of target cells, leading to their opsonization by the covalent binding of activated C3 and C4 fragments, and their cytolysis by the insertion of the terminal complex into the membrane; and (iii) with receptors on cells and tissues to bring about various immunologic responses. In this chapter, the structure and function of the complement receptors on the macrophage and related cells are described.

Keywords

Phorbol Ester Complement Receptor Human Complement Membrane Cofactor Protein Lung Surfactant Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahearn, J. M., and Fearon, D. T., 1989, Structure and function of the complement receptors, CR (CD35) and CR (CD21), Adv. Immunol. 46: 183–219.PubMedCrossRefGoogle Scholar
  2. Altieri, D. C., and Edgington, T. S., 1988a, A monoclonal antibody reacting with distinct adhesion molecules defines a transition in the functional state of the receptor CD1 lb/CD18 (Mac-1), J. Immunol. 141: 2656–2660.PubMedGoogle Scholar
  3. Altieri, D. C., and Edgington, T. S., 1988b, The saturable high affinity association of factor X to ADP-stim- ulated monocytes defines a novel function of the Mac-1 receptor, J. Biol. Chem. 263: 7007–7015.PubMedGoogle Scholar
  4. Altieri, D. C., Bader, R., Mannucci, P. M., and Edgington, T. S., 1988a, Oligospecificity of the cellular adhesion receptor Mac-1 encompasses an inducible recognition specificity for fibrinogen, J. Cell Biol. 107: 1893–1900.PubMedCrossRefGoogle Scholar
  5. Altieri, D. C., Morrissey, J. H., and Edgington, T. S., 1988b, Adhesive receptor Mac-1 coordinates the activation of factor X on stimulated cells of monocytic and myeloid differentiation: An alternative initiation of the coagulation protease cascade, Proc. Natl. Acad. Sci. USA 85: 7462–7466.PubMedCrossRefGoogle Scholar
  6. Ambrus, J. L., Peters, M. G., Fauci, A. S., and Brown, E. J., 1990, The Ba fragment of complement factor B inhibits human B lymphocyte proliferation, J. Immunol. 144: 1549–1553.PubMedGoogle Scholar
  7. Arnaout, M. A., 1990, Leukocyte adhesion molecules deficiency: Its structural basis, pathophysiology and implications for modulating the inflammatory response, Immunol. Rev. 114: 145–180.PubMedCrossRefGoogle Scholar
  8. Arnaout, M. A., Todd, R. F., Dana, N., Melamed, J., Schlossman, S. F., and Colten, H. R., 1983, Inhibition of phagocytosis of complement C3– or immunoglobulin G-coated particles and of C3bi binding by monoclonal antibodies to a monocyte-granulocyte membrane glycoprotein (Mol), J. Clin. Invest. 72: 171–179.PubMedCrossRefGoogle Scholar
  9. Arnaout, M. A., Gupta, S. K., Pierce, M. W., and Tenen, D. G., 1988a, Amino acid sequence of the alpha subunit of human leukocyte adhesion receptor Mol (complement receptor type 3), J. Cell Biol. 106: 2153–2158.PubMedCrossRefGoogle Scholar
  10. Arnaout, M. A., Lanier, L. L., and Faller, D. V., 1988b, Relative contribution of the leukocyte molecules Mol, LFA-1, and p150,95 (LeuM5) in adhesion of granulocytes and monocytes to vascular endothelium is tissue-and stimulus-specific, J. Cell. Physiol. 137: 305–309.PubMedCrossRefGoogle Scholar
  11. Arvieux, J., Reboul, A., Bensa, J. C., and Colomb, M. G., 1984, Characterization of the C 1 q receptor on a human macrophage cell line U937, Biochem. J. 218: 547–555.PubMedGoogle Scholar
  12. Atkinson, J. P., and Frank, M. M., 1974, The effect of bacillus Calmette-Guerin induced macrophage activation on the in vivo clearance of sensitised erythrocytes, J. Clin. Invest. 53: 1742–1749.PubMedCrossRefGoogle Scholar
  13. Axline, S. G., and Reaven, E. P., 1974, Inhibition of phagocytosis and plasma membrane mobility of the cultivated macrophage by cytochalasin B: Role of subplasmalemmal microfilaments, J. Cell Biol. 62: 647–659.PubMedCrossRefGoogle Scholar
  14. Baatrup, G., Thiel, S., Isager, H., Svehag, S. E., and Jensenius, J. C., 1987, Demonstration in human plasma of a lectin activity analogous to that of bovine conglutinin, Scand. J. Immunol. 26: 355–361.PubMedCrossRefGoogle Scholar
  15. Bainton, D. F., Miller, L. J., Kishimoto, T. K., and Springer, T. A., 1987, Leukocyte adhesion receptors are stored in peroxidase-negative granules of human neutrophile, J. Exp. Med. 166: 1641–1653.PubMedCrossRefGoogle Scholar
  16. Barlow, P. N., Baron, M., Norman, D. G., Day, A. J., Willis, A. C., Sim, R. B., and Campbell, I. D., 1991, Secondary structure of a complement control protein module by two-dimensional ‘H NMR, Biochemistry 30: 997–1004.PubMedCrossRefGoogle Scholar
  17. Becherer, J. D., and Lambris, J. D., 1988, Identification of the C3b receptor-binding domain in third component of complement, J. Biol. Chem. 263: 14586–14591.PubMedGoogle Scholar
  18. Becherer, J. D., Alsenz, J., and Lambris, J. D., 1989, Molecular aspects of C3 interactions and structural/ functional analysis of C3 from different species, Curr. Top. Microbiol. Immunol. 153: 45–72CrossRefGoogle Scholar
  19. Becker, E. L., Kermode, J. L., Naccache, P. H., Yassin, R., Marsh, M. L., Munoz, I. J., and Sha’afi, R. I., 1985, The inhibition of neutrophil granule enzyme secretion and chemotaxis by pertussis toxin, J. Cell. Biol. 100: 1641–1646.PubMedCrossRefGoogle Scholar
  20. Becker, S., Hadding, U., Schorlemmer, H. U., and Bitter-Suermann, D., 1978a, Demonstration of highaffinity binding sites for C3a anaphylatoxin on guinea-pig platelets, Scand. J. Immunol. 8: 551–555PubMedCrossRefGoogle Scholar
  21. ecker, S., Meuer, S., Hadding, U., and Bitter-Suermann, D., 1978b, Platelet activation: A new biological activity of guinea-pig C3a anaphylatoxin, Scand. J. Immunol. 7: 173–180.CrossRefGoogle Scholar
  22. Beer, J., and Coller, B. S., 1989, Evidence that platelet glycoprotein IIIa has a large disulfide-bonded loop that is susceptible to proteolytic cleavage, J. Biol. Chem. 264: 17564–17573.PubMedGoogle Scholar
  23. Beller, D. I., Springer, T. A., and Schreiber, R. D., 1982, Anti-Mac-1 selectively inhibits the mouse and human type three complement receptor, J. Exp. Med. 156: 1000–1009.PubMedCrossRefGoogle Scholar
  24. Belt, K. T., Carroll, M. C., and Porter, R. R., 1984, The structural basis of the multiple forms of human complement component C4, Cell 36: 907–914.PubMedCrossRefGoogle Scholar
  25. Belt, K. T., Yu, C. Y., Carroll, M. C., and Porter, R. R., 1985, Polymorphism of human complement component C4, Immunogenetics 21: 173–180.PubMedCrossRefGoogle Scholar
  26. Ben-Chetrit, E., Chan, E. K. L., Sullivan, K. F., and Tan, E. M., 1988, A 52–KD protein is a novel component of the SS-A/Ro antigenic particle, J. Exp. Med. 167: 1560–1571.PubMedCrossRefGoogle Scholar
  27. Bentley, D. R., 1986, Primary structure of human complement component C2: Homology to two unrelated protein families, Biochem. J. 239: 339–345.PubMedGoogle Scholar
  28. Berger, M., Gaither, T. A., Hammer, C. H., and Frank, M. M., 1981, Lack of binding of human C3, in its native state, to C3b receptors, J. Immunol. 127: 1329–1334.PubMedGoogle Scholar
  29. Berger, M., O’Shea, J., Cross, A. S., Folks, T. M., Chused, T. M., Brown, E. J., and Frank, M. M., 1984, Human neutrophils increase expression of C3bi as well as C3b receptors upon activation, J. Clin. Invest. 74: 1566–1571.PubMedCrossRefGoogle Scholar
  30. Bianco, C., Griffin, F. M., and Silverstein, S. C., 1975, Studies of the macrophage complement receptor: Alteration of receptor function upon macrophage activation, J. Exp. Med. 141: 1279–1290.CrossRefGoogle Scholar
  31. Bitter-Suermann, D., 1988, The anaphylatoxins, in The Complement System ( K. Rother and G. O. Till, eds.), pp. 367–395, Springer-Verlag, Berlin.Google Scholar
  32. Bobak, D. A., Gaither, T. A., Frank, M. M., and Tenner, A. J., 1987, Modulation of FcR function by complement: Subcomponent Clq enhances the phagocytosis of IgG-opsonized targets by human monocytes and culture-derived macrophages, J. Immunol. 138: 1150–1156.PubMedGoogle Scholar
  33. Bobak, D. A., Frank, M. M., and Tenner, A. J., 1988a, CIq acts synergistically with phorbol dibutyrate to activate CR1–mediated phagocytosis by human mononuclear phagocytes, Eur. J. Immunol. 18: 2001–2007.PubMedCrossRefGoogle Scholar
  34. Bobak, D. A., Washburn, R. G., and Frank, M. M., 1988b, CI q enhances the phagocytosis of Cryptococcus neofbrmans blastospores by human monocytes, J. Immunol. 141: 592–597.PubMedGoogle Scholar
  35. Bohnsack, J. F., Kleinman, H. K., Takahashi, T., O’Shea, J. J., and Brown, E. J., 1985, Connective tissue proteins and phagocytic cell function. Laminin enhances complement and Fe-mediated phagocytosis by cultured human macrophages, J. Exp. Med. 161: 912–923.PubMedCrossRefGoogle Scholar
  36. Bohnsack, J. F., Akiyama, S. K., Damsky, C. H., Knape, W. A., and Zimmerman, G. A., 1990, Human neutrophil adherence to laminin in vitro: Evidence for a distinct neutrophil integrin receptor for laminin, J. Exp. Med. 171: 1221–1237.PubMedCrossRefGoogle Scholar
  37. Bokisch, V. A., and Müller-Eberhard, H. J., 1970, Anaphylatoxin inactivator of human plasma: Its isolation and characterization as a carboxypeptidase, J. Clin. Invest. 49: 2427–2436.PubMedCrossRefGoogle Scholar
  38. Bokisch, V. A., Müller-Eberhard, H. J., and Cochrane, C. G., 1969, Isolation of a fragment (C3a) of the third component of human complement containing anaphylatoxin and chemotactic activity and description of an anaphylatoxin inactivator of human serum, J. Exp. Med. 129: 1109–1130.PubMedCrossRefGoogle Scholar
  39. Bora, N. S., Lublin, D. M., Kumar, B. V., Hockett, R. D., Holers, V. M., and Atkinson, J. P., 1989Google Scholar
  40. Structural gene for human membrane cofactor protein (MCP) of complement maps to within 100 kb of the 3’ end of the C3b/C4b receptor gene, J. Exp. Med. 169:597–602.Google Scholar
  41. Boulay, F., Tardif, M., Brouchan, L., and Vignais, P., 1990, The human N-formylpeptide receptor. Characterization of two cDNA isolates and evidence for a new subfamily of G-protein-coupled receptors, Biochemistry 29: 11123–11133.PubMedCrossRefGoogle Scholar
  42. Boulay, F., Mery, L., Tardif, M., Brouchon, L., and Vignais, P., 1991, Expression cloning of a receptor for C5a anaphylatoxin on differentiated HL-60 cells, Biochemistry 30: 2993–2999.PubMedCrossRefGoogle Scholar
  43. Brown, E. J., and Goodwin, J. L., 1988, Fibronectin receptors of phagocytes: Characterization of the Arg-Gly-Asp binding proteins of human monocytes and polymorphonuclear leukocytes, J. Exp. Med. 167: 777–793.PubMedCrossRefGoogle Scholar
  44. Brown, E. J., Bohnsack, J. F., and Gresham, H. D., 1988, Mechanism of inhibition of immunoglobulin G-mediated phagocytosis by monoclonal antibodies that recognize the Mac-1 antigen, J. Clin. Invest. 81: 365–375.PubMedCrossRefGoogle Scholar
  45. Bullock, W. E., and Wright, S. D., 1987, Role of the adherence-promoting receptors, CR3, LFA-1, and p150,95, in binding of Histoplasma capsulatum by human macrophages, J. Exp. Med. 165: 195–210.PubMedCrossRefGoogle Scholar
  46. Burmeister, M., Kim, S., Price, R., de Lange, T., Tantravahi, U., Myers, R. M., and Cox, D. R., 1991, A map of the distal region of the long arm of human chromosome 21 constructed by radiation hybrid mapping and pulsed-field gel electrophoresis, Genomics 9: 19–30.PubMedCrossRefGoogle Scholar
  47. Burton, D. R., and Woof, J. M., 1992, Human antibody effector function, Adv. Immunol. 51: 1–84.PubMedCrossRefGoogle Scholar
  48. Buyon, J. P., Slade, S. G., Reibman, J., Abramson, S. B., Philips, M. R., Weissmann, G., and Winchester, R., 1990, Constitutive and induced phosphorylation of the a-and ß-chains of the CD!1 /CD 18leukocyte integrin family, J. Immunol. 144: 191–197.PubMedGoogle Scholar
  49. Calvete, J. J., Alvarez, M. V., Rivas, G., Hew, C. L., Henschen, A., and Gonzalez-Rodriguez, J., 1989a, Interchain and intrachain disulphide bonds in human platelet glycoprotein IIb. Localization of the epitopes for several monoclonal antibodies, Biochem. J. 261: 551–560.PubMedGoogle Scholar
  50. Calvete, J. J., Henschen, A., and Gonzalez-Rodriguez, J., 1989b, Complete localization of the intrachain disulphide bonds and the N-glycosylation points in the alpha-subunit of human platelet glycoprotein IIb, Biochem. J. 261: 561–568.PubMedGoogle Scholar
  51. Calvete, J. J., Henschen, A., and Gonzalez-Rodriguez, J., 1991, Assignment of disulphide bonds in human platelet GPIIIa: A duslphide pattern for the ß-subunits of the integrin family, Biochem. J. 274: 63–71.PubMedGoogle Scholar
  52. Campbell, R. D., Dodds, A. W., and Porter, R. R., 1980, The binding of human complement component C4 to antibody-antigen aggregates, Biochem. J. 189: 67–80.PubMedGoogle Scholar
  53. Campbell, R. D., Gagnon, J., and Porter, R. R., 1981, Amino acid sequence around the thiol and reactive acyl groups of human complement component C4, Biochem. J. 199: 359–370.PubMedGoogle Scholar
  54. Caporale, L. H., Tippett, P. S., Ericson, B. W., and Hugh, T. E., 1980, The active site of C3a anaphylatoxin, J. Biol. Chem. 255: 10758–10763.PubMedGoogle Scholar
  55. Caras, I. W., Davitz, M. A., Rhee, L., Weddell, G., Martin, D. W. J., and Nussenzweig, V., 1987, Cloning of decay-accelerating factor suggests novel use of splicing to generate two proteins, Nature (London) 325: 545–549.Google Scholar
  56. Carlo, J. R., Ruddy, S., Studer, E. J., and Conrad, D. H., 1979, Complement receptor binding of C3b- coated cells treated with C3b inactivator, ß1H globulin and trypsin, J. Immunol. 123: 523–528.PubMedGoogle Scholar
  57. Carrell, N. A., Fitzgerald, L. A., Steiner, B., Erickson, H. P., and Phillips, D. R., 1985, Structure of human platelet membrane glycoproteins IIb and IIIa as determined by electron microscopy, J. Biol. Chem. 260: 1743–1749.PubMedGoogle Scholar
  58. Carroll, M. C., Alicot, E. M., Katzman, P. J., Klickstein, L. B., Smith, J. A., and Fearon, D. T., 1988, The organization of the genes encoding complement receptors type 1 and 2, decay-accelerating factor, and C4–binding protein in the RCA locus on human chromosome 1, J. Exp. Med. 167: 1271–1280.PubMedCrossRefGoogle Scholar
  59. Changelian, P. S., and Fearon, D. T., 1986, Tissue-specific phosphorylation of complement receptors CR1 and CR2, J. Exp. Med. 163: 101–115.PubMedCrossRefGoogle Scholar
  60. Chatila, T. A., Geha, R. S., and Arnaout, M. A., 1989, Constitutive and stimulus-induced phosphorylation of CD11/CD18 leukocyte adhesion molecules, J. Cell Biol. 109: 3435–3444.PubMedCrossRefGoogle Scholar
  61. Chazin, W. J., Hugh, T. E., and Wright, P. E., 1988, ‘H NMR studies of human C3a anaphylatoxin in solution: Sequential resonance assignments, secondary structure, and global fold, Biochemistry 27: 9139–9148.Google Scholar
  62. Chenoweth, D. E., 1986, Complement mediators of inflammation, in Immunobiology of the Complement System. An Introduction for Research and Clinical Medicine ( G. D. Ross, ed.), pp. 63–86, Academic Press, Orlando, Fla.Google Scholar
  63. Chenoweth, D. E., and Hugh, T. E., 1978, Demonstration of specific C5a receptor on intact human polymorphonuclear leukocytes, Proc. Natl. Acad. Sci. USA 75: 3943–3947.PubMedCrossRefGoogle Scholar
  64. Chou, P. Y., and Fasman, G. D., 1978, Empirical predictions of protein conformation, Annu. Rev. Biochem. 47: 251–276.PubMedCrossRefGoogle Scholar
  65. Chung, L. P., Bentley, D. R., and Reid, K. B. M., 1985, Molecular cloning and characterisation of the cDNA coding for C4b-binding protein, a regulatory protein of the classical pathway of the human complement system, Biochem. J. 230: 133–141.PubMedGoogle Scholar
  66. Clas, F., Euteneuer, B., Stemmer, F., and Loos, M., 1989, Interaction of fluid phase Cl/Cl q and macro- phage membrane-associated Clq with gram-negative bacteria, Behring Inst. Mitt. 84: 236–254.PubMedGoogle Scholar
  67. Cochrane, C. G., and Müller-Eberhard, H. J., 1968, The derivation of two distinct anaphylatoxin activities from the third and fifth components of human complement, J. Exp. Med. 127: 371–386.PubMedCrossRefGoogle Scholar
  68. Codina, J., Hildebrandt, J., Iyengar, R., Birnbaumer, L., Sekura, R. D., and Manclark, C. R., 1983, Pertussis toxin substrate, the putative Ni component of adenylyl cyclase, is an alpha-beta heterodimer regulated by guanine nucleotide and magnesium, Proc. Natl. Acad. Sci. USA 80: 4276–4280.PubMedCrossRefGoogle Scholar
  69. Coller, B. S., 1985, A new murine monoclonal antibody reports an activation-dependent change in the conformation and/or microenvironment of the platelet glycoprotein IIb/IIIa complex, J. Clin. Invest. 76: 101–108.PubMedCrossRefGoogle Scholar
  70. Cooper, J. A., Lo, S. K., and Malik, A. B., 1988, Fibrin is a determinant of neutrophil sequestration in the lung, Circ. Res. 63: 735–741.PubMedCrossRefGoogle Scholar
  71. Cooper, N. R., 1969, Immune adherence by the fourth component of complement, Science 165: 396–398.PubMedCrossRefGoogle Scholar
  72. Corbi, A. L., Miller, L. J., O’Connor, K., Larson, R. S., and Springer, T. A., 1987, cDNA cloning and complete primary structure of the a subunit of a leukocyte adhesion glycoprotein, p150,95, EMBO J. 6: 4023–4028.Google Scholar
  73. Corbi, A. L., Kishimoto, T. K., Miller, L. J., and Springer, T. A., 1988a, The human leukocyte adhesion glycoprotein Mac-1 (complement receptor type 3, CD 11 b) a subunit: Cloning, primary structure, and relation to the integrins, von Willebrand factor and factor B, J. Biol. Chem. 263: 12403–12411.PubMedGoogle Scholar
  74. Corbi, A. L., Larson, R. S., Kishimoto, T. K., Springer, T. A., and Morton, C. C., 1988b, The leukocyte adhesion receptors LFA-1, Mac-1 and p150,95: Identification of a gene cluster involved in cell adhesion, J. Exp. Med. 167: 1597–1607.PubMedCrossRefGoogle Scholar
  75. Cornacoff, J. B., Herbert, L. A., Smead, W. L., Vanaman, M. E., Birmingham, D. J., and Waxman, F. J., 1983, Primate erythrocyte immune-complex clearing mechanism, J. Clin. Invest. 71: 236–247PubMedCrossRefGoogle Scholar
  76. Craddock, P. R., Hammerschmidt, D., White, J. G., Dalmasso, A. P., and Jacob, H. S., 1977, Complement (C5a)-induced granulocyte aggregation in vitro. A possible mechanism of complement-mediated leukostatis and leukopenia, J. Clin. Invest. 60: 260–264.PubMedCrossRefGoogle Scholar
  77. Dana, N., Fathallah, D. M., and Arnaout, M. A., 1991, Expression of a soluble and functional form of the human beta 2 integrin CD11b/CD18, Proc. Natl. Acad. Sci. USA 88: 3106–3110.PubMedCrossRefGoogle Scholar
  78. Davis, A. E., and Lachmann, P. J., 1984, Bovine conglutinin is a collagen-like protein, Biochemistry 23: 2139–2144.PubMedCrossRefGoogle Scholar
  79. Davis, A. E., Harrison, R. A., and Lachmann, P. J., 1984, Physiologic inactivation of fluid phase C3b: Isolation and structural analysis of C3c, C3dg (a2D) and C3g, J. Immunol. 132: 1960–1966.PubMedGoogle Scholar
  80. Day, A. J., Ripoche, J., Willis, A. C., and Sim, R. B., 1987, Structure and polymorphism of human factor H, Complement 4: 147–148.Google Scholar
  81. de Bruijn, M. H. L., and Fey, G. H., 1985, Human complement component C3: cDNA coding sequence and derived primary structure, Proc. Natl. Acad. Sci. USA 82: 708–712.PubMedCrossRefGoogle Scholar
  82. del-Balzo, U., Polley, M. J., and Levi, R., 1989, C3a-induced contraction of guinea pig ileum consists of two components: Fast histamine-mediated and slow prostanoid-mediated, J. Pharmacol. Exp. Ther. 248: 1003–1009.PubMedGoogle Scholar
  83. Diamond, M. S., Staunton, D. E., de Fougerolles, A. R., Stacker, S. A., Garcia-Aguilar, J., Hibbs, M. L., and Springer, T. A., 1990, ICAM-1 (CD54): A counter-receptor for Mac-1 (CD1 1 b/CD18), J. Cell Biol. 111: 3129–3139.PubMedCrossRefGoogle Scholar
  84. Diamond, M. S., Staunton, D. E., Marlin, S. D., and Springer, T. A., 1991, Binding of the integrin Mac-1 (CD1 lb/CD18) to the third immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation, Cell 65: 961–971.PubMedCrossRefGoogle Scholar
  85. DiScipio, R. G., and Hugli, T. E., 1989, The molecular architecture of human complement component C6, J. Biol. Chem. 264: 16197–16206.PubMedGoogle Scholar
  86. DiScipio, R. G., Chakravarti, D. N., Müller-Eberhard, H. J., and Fey, G. H., 1988, The structure of human complement component C7 and C5b-7 complex, J. Biol. Chem. 263: 549–560.PubMedGoogle Scholar
  87. Dransfield, I., and Hogg, N., 1989, Regulated expression of Mgt+ binding epitope on leukocyte integrin alpha subunits, EMBO J. 8: 3759–3765.PubMedGoogle Scholar
  88. Drickamer, K., 1989, Multiple subfamilies of carbohydrate recognition domains in animal lectins, Ciba Found. Symp. 145: 45–58.PubMedGoogle Scholar
  89. Dykman, T. R., Cole, J. L., Iida, K., and Atkinson, J. P., 1983, Polymorphism of the human erythrocyte C3b-C4b receptor, Proc. Natl. Acad. Sci. USA 80: 1698–1702.PubMedCrossRefGoogle Scholar
  90. Ember, J. A., Johansen, N. L., and Hugli, T. E., 1991, Designing synthetic superagonists of C3a anaphylatoxin, Biochemistry 30: 3603–3612.PubMedCrossRefGoogle Scholar
  91. Erdei, A., 1990, Clq receptor on murine cells, J. Immunol. 145: 1754–1760.PubMedGoogle Scholar
  92. Erdei, A., and Reid, K. B. M., 1988, The Clq receptor, Mol. Immunol. 25: 1067–1073.PubMedCrossRefGoogle Scholar
  93. Erdei, A., and Sim, R. B., 1987, Complement factor H-binding protein of Raji cells and tonsil B lymphocytes, Biochem. J. 246: 149–156.PubMedGoogle Scholar
  94. Ezekowitz, R. A. B., Kuhlman, M., Groopman, J. E., and Byrn, R. A., 1989, A human serum mannosebinding protein inhibits in vitro infection by the human immunodeficiency virus, J. Exp. Med. 169: 185–196.PubMedCrossRefGoogle Scholar
  95. Fearon, D. T., 1980, Identification of the membrane glycoprotein that is the C3b receptor of the human erythrocyte, polymorphonuclear leukocyte, B lymphocyte and monocyte, J. Exp. Med. 152: 20–30.PubMedCrossRefGoogle Scholar
  96. Fearon, D. T., and Collins, L. A., 1983, Increased expression of C3b receptors on polymorphonuclear leukocytes induced by chemotactic factors and by purification procedures, J. Immunol. 130: 370–375.PubMedGoogle Scholar
  97. Fernandez, H. N., and Hugh, T. E., 1978, Primary structural analysis of the polypeptide portion of human C5a anaphylatoxin, J. Biol. Chem. 253: 6955–6964.PubMedGoogle Scholar
  98. Fernandez, H. N., Henson, P. M., Otani, A., and Hugh, T. E., 1978, Chemotaxis response to human C3a and C5a anaphylatoxins. I. Evaluations of C3a and C5a leukotaxis in vitro and under simulated in vivo conditions, J. Immunol. 120: 109–115.PubMedGoogle Scholar
  99. Floros, J., Steinbrink, R., Jacobs, K., Phelps, D., Kriz, R., Recny, M., Sultzman, L., Jones, S., Taeusch, H. W., Frank, H. A., and Fritch, E. F., 1986, Isolation and characterization of cDNA clones for the 35–kDa pulmonary surfactant-associated protein, J. Biol. Chem. 261: 9029–9033.PubMedGoogle Scholar
  100. Friis-Christiansen, P., Thiel, S., Svehag, S. E., Dessau, R., Svendsen, P., Andersen, O., Laursen, S. B., and Jensenius, J. C., 1990, In vivo and in vitro antibacterial activity of conglutinin, a mammalian plasma lectin, Scand. J. Immunol. 31: 453–460.Google Scholar
  101. Fujita, T., Gigli, I., and Nussenzweig, V., 1978, Human C4–binding protein. II. Role in proteolysis of C4b by C3b-inactivator, J. Exp. Med. 148: 1044–1051.PubMedCrossRefGoogle Scholar
  102. Fukuoka, Y., and Hugh, T. E., 1988, Demonstration of a specific C3a receptor on guinea pig platelets, J. Immunol. 140: 3496–3501.PubMedGoogle Scholar
  103. Gerard, C., and Hugh, T. E., 1981, Identification of classical anaphylatoxin as the des-Arg form of the C5a molecule: Evidence of a modulator role for the oligosaccharide unit in human des-Arg74–05a, Proc. Natl. Acad. Sci. USA 78: 1833–1837.PubMedCrossRefGoogle Scholar
  104. Gerard, N. P., and Gerard, C., 1990, Construction and expression of a novel recombinant anaphylatoxin, C5a-N 19, as a probe for the human C5a receptor, Biochemistry 29: 9274–9281.PubMedCrossRefGoogle Scholar
  105. Gerard, N. P., and Gerard, C., 1991, The chemotactic receptor for human C5a anaphylatoxin, Nature (London) 349: 614–617.CrossRefGoogle Scholar
  106. Gerardy-Schahn, R., Ambrosius, D., Casaretto, M., Grötzinger, J., Saunders, D., Wollmer, A., Brandenburg, D., and Bitter-Suermann, D., 1988, Design and biological activity of a new generation of synthetic C3a analogues by combination of peptidic and non-peptidic elements, Biochem. J. 255: 209–216.PubMedGoogle Scholar
  107. Gerardy-Schahn, R., Ambrosius, D., Saunders, D., Casaretto, M., Mittler, C., Karwarth, G., Gorgen, S., and Bitter-Suermann, D., 1989, Characterization of C3a receptor-proteins on guinea pig platelets and human polymorphonuclear leukocytes, Eur. J. Immunol. 19: 1095–1102.PubMedCrossRefGoogle Scholar
  108. Ghebrehiwet, B., 1989, Functions associated with the Clq receptor, Behring Inst. Mitt. 84: 204–215.PubMedGoogle Scholar
  109. Ghebrehiwet, B., Silvestri, L., and McDevitt, C., 1984, Identification of the Raji cell membrane-derived Clq inhibitor as a receptor for human Clq. Purification and immunochemical characterization, J. Exp. Med. 160: 1375–1389.PubMedCrossRefGoogle Scholar
  110. Ghebrehiwet, B., Habicht, G. S., and Beck, G., 1990, Interaction of Clq with its receptor on cultured cell lines induces an anti-proliferative response, Clin. Immunol. Immunopatho!. 54: 148–159.CrossRefGoogle Scholar
  111. Goldman, D. W., Chang, F. H., Gifford, L. A., Goetzl, E. J., and Bourne, H. R., 1985, Pertussis toxin inhibition of chemotactic factor-induced calcium mobilization and function in human polymorphonuclear leukocytes, J. Exp. Med. 162: 145–156.PubMedCrossRefGoogle Scholar
  112. Gorski, J., Hugh, T. E., and Muller-Eberhard, H. J., 1979, C4a: The third anaphylatoxin of the human complement system, Proc. Natl. Acad. Sci. USA 76: 5299–5302.PubMedCrossRefGoogle Scholar
  113. Goundis, D., 1988, Structure, biosynthesis and cDNA cloning studies of properdin of the serum complement system, D. Phil. Thesis, Oxford University.Google Scholar
  114. Graham, I. L., and Brown, E. J., 1991, Extracellular calcium results in a conformational change in Mac-1 (CD11b/CD18) on neutrophils. Differentiation of adhesion and phagocytosis functions of Mac-1, J. Immunol. 146: 685–691.PubMedGoogle Scholar
  115. Graham, I. L., Gresham, H. D., and Brown, E. J., 1989, An immobile subset of plasma membrane CD1lb/CD18 (Mac-1) is involved in phagocytosis of targets recognized by multiple receptors, J. Immunol. 14: 2352–2358.Google Scholar
  116. Greer, J., 1985, Model structure for the inflammatory protein C5a, Science 228: 1055–1060.PubMedCrossRefGoogle Scholar
  117. Gresham, H. D., Goodwin, J. L., Allen, P. M., Anderson, D. C., and Brown, E. J., 1989, A novel member of the integrin receptor family mediates Arg-Gly-Asp-stimulated neutrophil phagocytosis, J. Cell Biol. 108: 1935–1943.PubMedCrossRefGoogle Scholar
  118. Griffin, F. M., Jr., and Griffin, J. A., 1980, Augmentation of macrophage complement receptor function in vitro. II. Characterization of the effects of a unique lymphokine upon the phagocytic capabilities of macrophages, J. Immunol. 125: 844–849.PubMedGoogle Scholar
  119. Griffin, F. M., Jr., and Mullinax, P. J., 1981, Augmentation of macrophage complement receptor function in vitro. III. C3b receptors that promote phagocytosis migrate within the plane of the macrophage plasma membrane, J. Exp. Med. 154: 291–305.PubMedCrossRefGoogle Scholar
  120. Griffin, J. A., and Griffin, F. M., Jr., 1979, Augmentation of macrophage complement receptor function in vitro. I. Characterization of the cellular interactions required for the generation of a T-lymphocyte product that enhances macrophage complement receptor function, J. Exp. Med. 150: 653–675.PubMedCrossRefGoogle Scholar
  121. Guan, E., Burgess, W. H., Robinson, S. L., Goodman, E. B., McTigue, K. J., and Tenner, A. J., 1991, Phagocytic cell molecules that bind the collagen-like region of Cl q. Involvement in the C 1 q-mediated enhancement of phagocytosis, J. Biol. Chem. 266: 20345–20355.PubMedGoogle Scholar
  122. Haagsman, H. P., White, R. T., Schilling, J., Lau, K., Benson, B. J., Golden, J., Hawgood, S., and Clements, J. A., 1989, Studies of the structure of lung surfactant protein SP-A, Am. J. Physiol. 257: L421–L429.PubMedGoogle Scholar
  123. Habicht, G. S., Beck, G., and Ghebrehiwet, B., 1987, C lq inhibits the expression of B lymphoblastoid cell line interleukin 1 (IL I), J. Immunol. 138: 2593–2597.PubMedGoogle Scholar
  124. Haefliger, J. A., Tschopp, J., Vial, N., and Jenne, D. E., 1989, Complete primary structure and functional characterization of the sixth component of the human complement system. Identification of the C5b-binding domain in complement C6, J. Biol. Chem. 264: 18041–18051.PubMedGoogle Scholar
  125. Hamada, A., Young, J., Chmielewski, R. A., and Green, B. M., 1988, Clq enhancement of antibody-dependent granulocyte-mediated killing of nonphagocytosable targets in vitro, J. Clin. Invest. 82: 945–949.PubMedCrossRefGoogle Scholar
  126. Harlan, J. M., 1985, Leukocyte-endothelial interactions, Blood 65: 513–525.PubMedGoogle Scholar
  127. Harrison, R. A., and Lachmann, P. J., 1980, The physiological breakdown of the third component of human complement, Mol. Immunol. 17: 9–20.PubMedCrossRefGoogle Scholar
  128. Harrison, R. A., Thomas, M. L., and Tack, B. F., 1981, Sequence determination of the thiolester site of the fourth component of human complement, Proc. Natl. Acad. Sci. USA 78: 7388–7392.PubMedCrossRefGoogle Scholar
  129. Hemler, M. E., 1990, VLA proteins in the integrin family: Structures, functions, and their role on leukocytes, Annu. Rev. Immunol. 8: 365–400.PubMedCrossRefGoogle Scholar
  130. Hickstein, D. D., Hickey, M. J., Ozols, J., Baker, D. M., Back, A. L., and Roth, G. J., 1989, cDNA sequence for the aM subunit of the human neutrophil adherence receptor indicates homology to integrin a subunits, Proc. Natl. Acad. Sci. USA 86: 257–261.Google Scholar
  131. Hillarp, A., and Dahlbäck, B., 1990, Cloning of cDNA coding for the beta chain of human complement component C4b-binding protein: Sequence homology with the alpha chain, Proc. Natl. Acad. Sci. USA 87: 1183–1187.PubMedCrossRefGoogle Scholar
  132. Hogg, N., Takacs, L., Palmer, D. G., Salvendran, Y., and Allen, C., 1986, The p 150,95 molecule is a marker of human mononuclear phagocytes: A comparison with expression of class II molecules, Eur. J. Immunol. 16: 240–248.PubMedCrossRefGoogle Scholar
  133. Holers, V. M., Chaplin, D. D., Leykam, J. F., Gruner, B. A., Kumar, V., and Atkinson, J. P., 1987, Human complement C3b/C4b receptor (CR1) mRNA polymorphism that correlates with the CR1 allelic molecular weight polymorphism, Proc. Natl. Acad. Sci. USA 84: 2459–2463.PubMedCrossRefGoogle Scholar
  134. Hourcade, D., Garcia, A. D., Post, T. W., Taillon-Miller, P., Holens, V. M., Wagner, L. M., Bora, N. S., and Atkinson, J. P., 1992, Analysis of the human regulators of complement activation (RCA) gene cluster with yeast artificial chromosomes (YACs), Genomics 12: 289–300.PubMedCrossRefGoogle Scholar
  135. Huber, R., Scholze, H., Pâques, E. P., and Deisenhofer, J., 1980, Crystal structure analysis and molecular model of human C3a anaphylatoxin, Hoppe-Seyler’s Z. Physiol. Chem. 361: 1389–1399.PubMedCrossRefGoogle Scholar
  136. Huey, R., and Hugli, T. E., 1985, Characterization of a C5a receptor on human polymorphonuclear leukocytes (PMN), J. Immunol. 135: 2063–2068.PubMedGoogle Scholar
  137. Hugli, T. E., 1975, Human anaphylatoxin (C3a) from the third component of complement: Primary structure, J. Biol. Chem. 250: 8293–8301.PubMedGoogle Scholar
  138. Hugh, T. E., 1981, The structural basis for anaphylatoxin and chemotactic functions of C3a, C4a and C5a, CRC Crit. Rev. Immunol. 1: 321–366.Google Scholar
  139. Hugli, T. E., 1989, Structure and function of C3a anaphylatoxin, Curr. Top. Microbiol. Immunol. 153: 181–208.CrossRefGoogle Scholar
  140. Hugli, T. E., and Erickson, B. W., 1977, Synthetic peptides with the biological activities and specificity of human C3a anaphylatoxin, Proc. Natl. Acad. Sci. USA 74: 1826–1830.PubMedCrossRefGoogle Scholar
  141. Humphries, M. J., 1990, The molecular basis and specificity of integrin-ligand interactions, J. Cell Sci. 97: 585–592.PubMedGoogle Scholar
  142. Iferroudjene, D., Schouft, M. T., Lemercier, C., Gilbert, D., and Fontaine, M., 1991, Evidence for an active hydrophobic form of factor H that is able to induce secretion of interleukin 1–ß or by human monocytes, Eur. J. Immunol. 21: 967–972.PubMedCrossRefGoogle Scholar
  143. Ikeda, K., Sannoh, T., Kawasaki, N., Kawasaki, T., and Yamashina, I., 1987, Serum lectin with known structure activates complement through the classical pathway, J. Biol. Chem. 262: 7451–7454.PubMedGoogle Scholar
  144. Isenman, D. E., 1983, Conformational changes accompanying proteolytic cleavage of human complement protein C3b by the regulatory enzyme factor I and its cofactor H, J. Biol. Chem. 258: 4238–4244.PubMedGoogle Scholar
  145. Isenman, D. E., Kells, D. I. C., Cooper, N. R., Müller-Eberhard, H. J., and Pangburn, M. K., 1981, Nucleophilic modification of human complement protein C3: Correlation of conformational changes with acquisition of C3b-like functional properties, Biochemistry 20: 4458–4467.PubMedCrossRefGoogle Scholar
  146. Janatova, J., and Gobel, R. J., 1985, Activation and fragmentation of the third (C3) and the fourth (C4) components of complement: Generation and isolation of physiologically relevant fragments C3c and C4c, J. Immunol. Methods 85: 17–26.PubMedCrossRefGoogle Scholar
  147. Janatova, J., Reid, K. B. M., and Willis, A. C., 1987, Implications of disulfide bonds in the structure of C4b-binding protein, Complement 4: 173–174.Google Scholar
  148. Jensenius, J. C., Thiel, S., Baatrup, G., and Holmskov-Nielsen, U., 1985, Human conglutinin-like protein, Biosci. Rep. 5: 901–905.PubMedCrossRefGoogle Scholar
  149. Jeremiah, S. J., Abbott, C. M., Murad, Z., Povey, S., Thomas, H. J., Solomon, E., DiScipio, R. G., and Fey, G. H., 1990, The assignment of the genes coding for human complement components C6 and C7 to chromosome 5, Ann. Hum. Genet. 54: 141–147.PubMedCrossRefGoogle Scholar
  150. Jiang, H., Siegel, J. N., and Gewurz, H., 1991, Binding and complement activation by C-reactive protein via the collagen-like region of Clq and inhibition of these reactions by monoclonal antibodies to C-reactive protein and Clq, J. Immunol. 146: 2324–2330.Google Scholar
  151. Johnston, R. B., Jr., Lehmeyer, J. E., and Guthrie, L. A., 1976, Generation of superoxide anion and chemiluminescence by human monocytes during phagocytosis and on contact with surface-bound immunoglobulin G, J. Exp. Med. 143: 1551–1557.PubMedCrossRefGoogle Scholar
  152. Johnson, R. J., and Chenoweth, D. E., 1985, Labeling the granulocyte C5a receptor with a unique photoreactive probe, J. Biol. Chem. 260: 7161–7164.PubMedGoogle Scholar
  153. Journet, A., and Tosi, M., 1986, Cloning and sequencing of full-length cDNA encoding the precursor of human complement component CI r, Biochem. J. 240: 783–787.PubMedGoogle Scholar
  154. Kawasaki, N., Kawasaki, T., and Yamashina, I., 1985, Mannan-binding protein and conglutinin in bovine serum, J. Biochem. (Tokyo) 98: 1309–1320.Google Scholar
  155. Kawasaki, N., Kawasaki, T., and Yamashina, I., 1989, A serum lectin (mannan-binding protein) has complement-dependent bactericidal activity, J. Biochem. (Tokyo) 106: 483–489.Google Scholar
  156. Kay, A. B., and Austen, K. F., 1972, Chemotaxis of human basophil leucocytes, Clin. Exp. Immunol. 11: 557–563.PubMedGoogle Scholar
  157. Kay, A. B., Shin, H. S., and Austen, K. F., 1973, Selective attraction of eosinophils and synergism between eosinophil chemotactic factor of anaphylataxis (ECF-A) and a fragment cleaved from the fifth component of complement (C5a), Immunology 24: 969–976.PubMedGoogle Scholar
  158. Kishimoto, T. K., O’Connor, K., Lee, A., Roberts, T. M., and Springer, T. A., 1987, Cloning of the ß subunit of the leukocyte adhesion proteins: Homology to an extracellular matrix receptor defines a novel supergene family, Cell 48: 681–690.PubMedCrossRefGoogle Scholar
  159. Klickstein, L. B., Wong, W. W., Smith, J. A., Weis, J. H., Wilson, J. G., and Fearon, D. T., 1987, Human C3b/C4b receptor (CR1). Demonstration of long homologous repeating domains that are composed of the short consensus repeats characteristic of C3/C4 binding proteins, J. Exp. Med. 165: 1095–1112.PubMedCrossRefGoogle Scholar
  160. Klickstein, L. B., Bartow, T. J., Miletic, V., Rabson, L. D., Smith, J. A., and Fearon, D. T., 1988, Identification of distinct C3b and C4b recognition sites in the human C3b/C4b receptor (CR1, CD35) by deletion mutagenesis, J. Exp. Med. 168: 1699–1717.PubMedCrossRefGoogle Scholar
  161. Knobel, H. R., Villiger, W., and Isliker, H., 1975, Chemical analysis and electron microscopy studies of human Clq prepared by different methods, Eur. J. Immunol. 5: 78–82.PubMedCrossRefGoogle Scholar
  162. Krych, M., Hourcade, D., and Atkinson, J. P., 1991, Sites within the complement C3b/C4b receptor important for the specificity of ligand binding, Proc. Natl. Acad. Sci. USA 88: 4353–4357.PubMedCrossRefGoogle Scholar
  163. Lad, P. M., Olson, C. V., and Smiley, P. A., 1985, Association of the N-formyl-Met-Leu-Phe receptor in human neutrophils with a GTP-binding protein sensitive to pertussis toxin, Proc. Natl. Acad. Sci. USA 82: 869–873.PubMedCrossRefGoogle Scholar
  164. Lambris, J. D., and Ross, G. D., 1982, Characterisation of the lymphocyte membrane receptor for factor H (01H-globulin) with an antibody to anti-factor H idiotype, J. Exp. Med. 155: 1400–1411.PubMedCrossRefGoogle Scholar
  165. Lanier, L. L., Arnaout, M. A., Schwarting, R., Warner, N. L., and Ross, G. D., 1985, p150/95, third member of the LFA-1 /CR3 polypeptide family identified by anti-Leu M5 monoclonal antibody, Eur. J. Immunol. 15: 713–718.Google Scholar
  166. Larson, R. S., and Springer, T. A., 1990, Structure and function of leukocyte integrins, Immunol. Rev. 114: 181–217.PubMedCrossRefGoogle Scholar
  167. Larson, R. S., Corbi, A. L., Berman, L., and Springer, T., 1989, Primary structure of the leukocyte function-associated molecule-1 alpha subunit: An integrin with an embedded domain defining a protein superfamily, J. Cell Biol. 108: 703–712.PubMedCrossRefGoogle Scholar
  168. Law, S. K. A., 1983, The covalent binding reaction of C3 and C4, Ann. N. Y. Acad. Sci. 421: 246–258.PubMedCrossRefGoogle Scholar
  169. Law, S. K. A., 1988, C3 receptors on macrophages, J. Cell Sci. Suppl. 9: 67–97.PubMedGoogle Scholar
  170. Law, S. K., and Levine, R. P., 1977, Interaction between the third complement protein and cell surface macromolecules, Proc. Natl. Acad. Sci. USA 74: 2701–2705.PubMedCrossRefGoogle Scholar
  171. Law, S. K. A., and Reid, K. B. M., 1988, Complement (in In Focus series), IRL Press, Oxford, U.K. Law, S. K., Fearon, D. T., and Levine, R. P., 1979a, Action of the C3b-inactivator on cell-bound C3b, J. Immunol. 122: 759–765.Google Scholar
  172. Law, S. K. A., Lichtenberg, N. A., and Levine, R. P., 1979b, Evidence for an ester linkage between the labile binding site of C3b and receptive surfaces, J. Immunol. 123: 1388–1394.PubMedGoogle Scholar
  173. Law, S. K., Lichtenberg, N. A., Holcombe, F. H., and Levine, R. P., 1980, Interaction between the labile binding sites of the fourth (C4) and fifth (CS) human complement proteins and erythrocyte cell membranes, J. Immunol. 125: 634–639.PubMedGoogle Scholar
  174. Law, S. K. A., Gagnon, J., Hildreth, J. E. K., Wells, C. E., Willis, A. C., and Wong, A. J., 1987, The primary structure of the 0–subunit of the cell surface adhesion glycoproteins LFA-1, CR3 and p150,95 and its relationship to the fibronectin receptor, EMBO J. 6: 915–919.PubMedGoogle Scholar
  175. Lay, W. H., and Nussenzweig, V., 1968, Receptors for complement on leukocytes, J. Exp. Med. 128: 991–1010.PubMedCrossRefGoogle Scholar
  176. Lee, Y. M., Leiby, K. R., Allar, J., Paris, K., Lerch, B., and Okarma, T. B., 1991, Primary structure of bovine conglutinin, a member of the C-type animal lectin family, J. Biol. Chem. 266: 2715–2723.PubMedGoogle Scholar
  177. Leytus, S. P., Kurachi, K., Sakariassen, K. S., and Davie, E. W., 1986, Nucleotide sequence of the cDNA coding for human complement Clr, Biochemistry 25: 4855–4863.PubMedCrossRefGoogle Scholar
  178. Lo, S. K., Detmers, P. A., Levin, S. M., and Wright, S. D., 1989a, Transient adhesion of neutrophils to endothelium, J. Exp. Med. 169: 1779–1793.PubMedCrossRefGoogle Scholar
  179. Lo, S. K., van Seventer, G. A., Levin, S. M., and Wright, S. D., 1989b, Two leukocyte receptors (CD’ la/ CD 18 and CD I 1 b/CD 18) mediate transient adhesion to endothelium by binding to different ligands, J. Immunol. 143: 3325–3329.PubMedGoogle Scholar
  180. Loike, J. D., Sodeik, B., Cao, L., Leucona, S., Weitz, J. I., Detmers, P. A., Wright, S. D., and Silverstein, S. C., 1991, CD l lc/CD18 on neutrophils recognizes a domain at the N terminus of the Aa chain of fibrinogen, Proc. Natl. Acad. Sci. USA 88: 1044–1048.CrossRefGoogle Scholar
  181. Lu, J., Thiel, S., Wiedemann, H., Timpl, R., and Reid, K. B. M., 1990, Binding of the pentamer/hexamer forms of mannan-binding protein to zymosan activates the proenzyme C1r2Cls2 complex, of the classical pathway of complement, without involvement of C iq, J. Immunol. 144: 2287–2294.PubMedGoogle Scholar
  182. Lu, J., Willis, A. C., and Reid, K. B. M., 1992, Purification, characterisation and cDNA cloning of human lung surfactant protein D, Biochem. J., 284: 795–802.PubMedGoogle Scholar
  183. Lu, Z. X., Fok, K. F., Erickson, B. W., and Hugli, T. E., 1984, Conformational analysis of COOH-terminal segments of human C3a. Evidence of ordered conformation in an active 21–residue peptide, J. Biol. Chem. 259: 7367–7370.PubMedGoogle Scholar
  184. Lublin, D. M., Liszewski, M. K., Post, T. W., Arce, M. A., Le-Beau, M. M., Rebentisch, M. B., Lemons, L. S., Seya, T., and Atkinson, J. P., 1988, Molecular cloning and chromosomal localization of human membrane cofactor protein (MCP). Evidence for inclusion in the multigene family of complement-regulatory proteins, J. Exp. Med. 168: 181–194.PubMedCrossRefGoogle Scholar
  185. Malhotra, R., and Sim, R. B., 1989, Chemical and hydrodynamic characterization of the human leucocyte receptor for complement subcomponent Clq, Biochem. J. 262: 625–631.PubMedGoogle Scholar
  186. Malhotra, R., Thiel, S., Reid, K. B. M., and Sim, R. B., 1990, Human leukocyte C lq receptor binds other soluble proteins with collagen domains, J. Exp. Med. 172: 955–959.PubMedCrossRefGoogle Scholar
  187. Malhotra, R., Willis, A. C., and Sim, R. B., 1991, Structural characterisation of C lq receptor, Complement, and Inflammation 8: 188.Google Scholar
  188. Malhotra, V., Hogg, N., and Sim, R. B., 1986, Ligand binding by the p 150,95 antigen of U937 monocytic cells: Properties in common with complement receptor type 3 (CR3), Eur. J. Immunol. 16: 1117–1123.PubMedCrossRefGoogle Scholar
  189. Mantovani, B., Rabinovitch, M., and Nussenzweig, V., 1972, Phagocytosis of immune complexes by macrophages: Different roles of the macrophage receptor sites for complement (C3) and for immunoglobulin (IgG), J. Exp. Med. 135: 780–792.PubMedCrossRefGoogle Scholar
  190. Marlin, S. D., and Springer, T. A., 1987, Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1), Cell 51: 813–819.PubMedCrossRefGoogle Scholar
  191. Marlin, S. D., Morton, C. C., Anderson, D. C., and Springer, T. A., 1986, LFA-1 immunodeficiency disease—definition of the genetic defect and chromosomal mapping of a and ß subunits of the lymphocyte function associated antigen 1 (LFA-1) by complementation in hybrid cells, J. Exp. Med. 164: 855–867.PubMedCrossRefGoogle Scholar
  192. McCauliffe, D. P., Lux, F. A., Lieu, T. S., Sanz, I., Hanke, J., Newkirk, M. M., Bachinski, L. L., Itoh, Y., Siciliano, M. J., Reichlin, M., Sontheimer, D. D., and Capra, J. D., 1990, Molecular cloning, expression, and chromosome 19 localization of a human Ro/SS-A autoantigen, J. Clin. Invest. 85: 1379–1391.PubMedCrossRefGoogle Scholar
  193. Medof, M. E., and Oger, J. J. F., 1982, Competition for immune complexes by red cells in human blood, J. Lab. Clin. Immunol. 7: 7–13.Google Scholar
  194. Medof, M. E., Lublin, D. M., Holers, V. M., Ayers, D. J., Getty, R. R., Leykam, J. F., Atkinson, J. P., and Tykocinski, M. L., 1987, Cloning and characterization of cDNAs encoding the complete sequence of decay-accelerating factor of human complement, Proc. Natl. Acad. Sci. USA 84: 2007–2011.PubMedCrossRefGoogle Scholar
  195. Micklem, K. J., and Sim, R. B., 1985, Isolation of complement-fragment-iC3b binding proteins by affinity chromatography: The identification ofp 150,95 as an iC3b-binding protein, Biochem. J. 231: 233–236.PubMedGoogle Scholar
  196. Miller, L. J., Bainton, D. F., Borregaard, N., and Springer, T. A., 1987, Stimulated mobilization of monocyte Mac-1 and p150,95 adhesion proteins from an intracellular vesicular compartment to the cell surface, J. Clin. Invest. 80: 535–544.PubMedCrossRefGoogle Scholar
  197. Moon, K. E., Gorski, J. P., and Hugli, T. E., 1981, Complete primary structure of human C4a anaphylatoxin, J. Biol. Chem. 256: 8685–8692.PubMedGoogle Scholar
  198. Moore, M. D., Cooper, N. R., Tack, B. F., and Nemerow, G. R., 1987, Molecular cloning of the cDNA encoding the Epstein-Barr virus/C3d receptor (complement receptor type 2) of human B lymphocytes, Proc. Natl. Acad. Sci. USA 84: 9194–9198.PubMedCrossRefGoogle Scholar
  199. Morley, B. J., and Campbell, R. D., 1984, Internal homologies of the Ba fragment from human complement component factor B, a class III MHC antigen, EMBO J. 3: 153–157.PubMedGoogle Scholar
  200. Morris, K. M., Goldberger, G., and Colten, H. R., 1982, Biosynthesis and processing of a human precursor complement protein, pro-C3, in a hepatoma-derived cell line, Science 215: 399–400.PubMedCrossRefGoogle Scholar
  201. Müller-Eberhard, H. J., Dalmasso, A. P., and Calcott, M. A., 1966, The reaction mechanism of 01C-globulin (C’3) in immune hemolysis, J. Exp. Med. 124: 33–54.CrossRefGoogle Scholar
  202. Myones, B. L., Dalzell, J. G., Hogg, N., and Ross, G. D., 1988, Neutrophil and monocyte cell surface p150,95 has iC3b-receptor (CR4) activity resembling CR3, J. Clin. Invest. 82: 640–651.PubMedCrossRefGoogle Scholar
  203. Nagasawa, S., Ichihara, C., and Stroud, R. M., 1980, Cleavage of C4b by C3b inactivator: Production of a nicked form of C4b, C4b’, as an intermediate cleavage product of C4b by C3b inactivator, J. Immunol. 125: 578–582.PubMedGoogle Scholar
  204. Nehesheim, D. G., Edalji, R. P., Mollison, D. W., Greer, J., and Zuiderweg, R. P., 1988, Secondary structure of complement component C3a anaphylatoxins in solution as determined by NMR spectroscopy: Differences between crystal and solution conformations, Proc. Natl. Acad. Sci. USA 85: 5036–5040.CrossRefGoogle Scholar
  205. Nermut, M. V., Green, N. M., Eason, P., Yamada, S S, and Yamada, K. M., 1988, Electron microscopy and structural model of human fibronectin receptor, EMBO J. 7: 4093–4099.PubMedGoogle Scholar
  206. Newman, S. L., Mikus, L. K., and Tucci, M. A., 1991, Differential requirements for cellular cytoskeleton in human macrophage complement receptor-and Fc receptor-mediated phagocytosis, J. Immunol. 146: 967–974.PubMedGoogle Scholar
  207. Nguyen, V. C., Tosi, M., Gross, M. S., Cohen-Haguenauer, O., Jegou-Foubert, C., de-Tand, M. F., Meo, T., and Frezal, J., 1988, Assignment of the complement serine protease genes C I r and C 1 s to chromosome 12 region 12p13, Hum. Genet. 78: 363–368.PubMedCrossRefGoogle Scholar
  208. Nicholson-Weller, A., Burge, J., Fearon, D. T., Weller, P. F., and Austen, K. F., 1982, Isolation of a human erythrocyte membrane glycoprotein with decay accelerating activity for C3 convertases of the complement system, J. Immunol. 129: 184–189.PubMedGoogle Scholar
  209. Ninomiya, Y., Gordon, M., van der Rest, M., Schmid, T., Linsenmayer, T., and Olsen, B. R., 1986, The developmentally regulated type X collagen gene contains a long open reading frame without introns, J. Biol. Chem. 261: 5041–5050.PubMedGoogle Scholar
  210. Norman, D. G., Barlow, P. N., Baron, M., Day, A. J., Sim, R. B., and Campbell, I. D., 1991, Three-dimensional structure of a complement control protein module in solution, J. Mol. Biol. 219: 717–725.PubMedCrossRefGoogle Scholar
  211. O’Flaherty, J. T., and Ward, P. A., 1978, Leukocyte aggregation induced by chemotactic factors, Inflammation 3: 177–194.PubMedCrossRefGoogle Scholar
  212. O’Flaherty, J. T., Kreutzer, D. L., and Ward, P. A., 1978, The influence of chemotactic factors on neutrophil adhesiveness, Inflammation 3: 37–48.PubMedCrossRefGoogle Scholar
  213. Ohta, M., Okada, M., Yamashina, I., and Kawasaki, T., 1990, The mechanism of carbohydrate mediated- complement activation by the serum mannan-binding protein, J. Biol. Chem. 265: 1980–1984.PubMedGoogle Scholar
  214. Pangburn, M. K., 1986, The alternative pathway, in Immunobiology of the Complement System: An Introduction for Research and Clinical Medicine ( G. D. Ross, ed.), pp. 45–62, Academic Press, Orlando, Fla.Google Scholar
  215. Pangburn, M. K., Schreiber, R. D., and Müller-Eberhard, H. J., 1977, Human complement C3b inactiva-tor: Isolation, characterization, and demonstration of an absolute requirement for the serum protein 01H for cleavage of C3b and C4b in solution, J. Exp. Med. 146: 257–270.PubMedCrossRefGoogle Scholar
  216. Pardo-Manuel, F., Rey-Campos, J., Hillarp, A., Dahlbäck, B., and Rodriguez de Cordoba, S., 1990, Human genes for the a and ß chains of complement C4b-binding protein are closely linked in a head-totail arrangement, Proc. Natl. Acad. Sci. USA 87: 4529–4532.PubMedCrossRefGoogle Scholar
  217. Peerschke, E. 1. B., and Ghebrehiwet, B., 1988, Modulation of platelet responses to collagen by Clq receptors, J. Immunol. 144: 221–225.Google Scholar
  218. Peerschke, E. I. B., and Ghebrehiwet, B., 1990, Platelet Clq receptor interactions with collagen-and Clq-coated surfaces, J. Immunol. 145: 2984–2988.PubMedGoogle Scholar
  219. Persson, A., Chang, D., and Crouch, E., 1990, Surfactant protein D is a divalent cation-dependent carbohydrate-binding protein, J. Biol. Chem. 265: 5755–5760.PubMedGoogle Scholar
  220. Peters, M. G., Ambrus, J. L., and Fauci, A. S., 1988, The Bb fragment of complement factor B acts as a B cell growth factor, J. Exp. Med. 168: 1225–1235.PubMedCrossRefGoogle Scholar
  221. Polley, M. J., and Nachman, R. L., 1983, Human platelet activation by C3a and C3a des arg, J. Exp. Med. 158: 603–615.PubMedCrossRefGoogle Scholar
  222. Pommier, C. G., Inada, S., Fries, L. F., Takahashi, T., Frank, M. M., and Brown, E. J., 1983, Plasma fibronectin enhances phagocytosis of opsonized particles by human peripheral blood monocytes, J. Exp. Med. 157: 1844–1854.PubMedCrossRefGoogle Scholar
  223. Poncz, M., Eisman, R., Heidenreich, R., Silver, S. M., Vilaire, G., Surrey, S., Schwartz, E., and Bennett, J. S., 1987, Structure of the platelet membrane glycoprotein Ilb. Homology to the alpha subunits of the vitronectin and fibronectin membrane receptors, J. Biol. Chem. 262: 8476–8482.PubMedGoogle Scholar
  224. Possmayer, F., 1988, A proposed nomenclature for pulmonary surfactant-associated proteins, Am. Rev. Respir. Dis. 138: 990–998.PubMedCrossRefGoogle Scholar
  225. Reid, K. B. M., 1983, Proteins involved in the activation and control of the two pathways of human complement, Biochem. Soc. Trans. 11: 1–12.PubMedGoogle Scholar
  226. Rey-Campos, J., Rubinstein, P., and Rodriguez de Cordoba, S., 1988, A physical map of the human regulator of complement activation gene cluster linking the complement genes CR 1, CR2, DAF, and C4BP, J. Exp. Med. 167: 664–669.PubMedCrossRefGoogle Scholar
  227. Ripoche, J., Day, A. J., Harris, T. J. R., and Sim, R. B., 1988, The complete amino acid sequence of human complement factor H, Biochem. J. 249: 593–602.PubMedGoogle Scholar
  228. Rodriguez de Cordoba, S., and Rubinstein, P., 1987, New alleles of C4–binding protein and factor H and further linkage data in the regulator of complement activation (RCA) gene cluster in man, Immunogenetics 25: 267–268.CrossRefGoogle Scholar
  229. Rollins, T. E., and Springer, M. S., 1985, Identification of the polymorphonuclear leukocyte C5a receptor, J. Biol. Chem. 260: 7157–7160.PubMedGoogle Scholar
  230. Rollins, T. E., Siciliano, S., Kobayashi, S., Cianciarulo, D. N., Bonilla-Argudo, V., Collier, K., and Springer, M. S., 1991, Purification of the active C5a receptor from human polymorphonuclear leukocytes as a receptor-G1 complex, Proc. Natl. Acad. Sci. USA 88: 971–975.PubMedCrossRefGoogle Scholar
  231. Rosen, H., and Law, S. K. A., 1989, The leukocyte cell surface receptor(s) for the iC3b product of complement, Curr. Top. Microbiol. Immunol. 153: 99–122.CrossRefGoogle Scholar
  232. Ross, G. D., Newman, S L, Lambris, J. D., Devery-Pocius, J. E., Cain, J. A., and Lachmann, P. J., 1983, Generation of three different fragments of bound C3 with purified factor I or serum. II. Location of binding sites in the C3 fragments for factors B and H, complement receptors, and bovine conglutinin, J. Exp. Med. 158: 334–352.PubMedCrossRefGoogle Scholar
  233. Ross, G. D., Cain, J. A., and Lachmann, P. J., 1985a, Membrane complement receptor type three (CR3) has lectin-like properties analogous to bovine conglutinin and functions as a receptor for zymosan and rabbit erythrocytes as well as a receptor for iC3b, J. Immunol. 134: 3307–3315.PubMedGoogle Scholar
  234. Ross, G. D., Thompson, R. A., Walport, M. J., Springer, T. A., Watson, J. V., Ward, R. H. R., Lida, J., Newman, S. L., Harrison, R. A., and Lachmann, P. J., 1985b, Characterization of patients with an increased susceptibility to bacterial infections and a genetic deficiency of leukocyte membrane complement receptor type 3 and the related membrane antigen LFA-1, Blood 66: 882–890.PubMedGoogle Scholar
  235. Ross, G. D., Cain, J. A., Myones, B. L., Newman, S. L., and Lachmann, P. J., 1987, Specificity of membrane complement receptor type three (CR3) for beta-glucans, Complement 4: 61–74.PubMedGoogle Scholar
  236. Rothlein, R., Dustin, M. L., Marlin, S. D., and Springer, T. A., 1986, A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1, J. Immunol. 137: 1270–1274.PubMedGoogle Scholar
  237. Ruoslahti, E., 1991, Integrins, J. Clin. Invest. 87: 1–5.PubMedCrossRefGoogle Scholar
  238. Russell, D. G., and Wright, S. D., 1988, Complement receptor type 3 (CR3) binds to an Arg-Gly-Asp-containing region of the major surface glycoprotein, gp63, of leishmania promastigotes, J. Exp. Med. 168: 279–292.PubMedCrossRefGoogle Scholar
  239. Sanchez-Madrid, F., Nagy, J. A., Robbins, E., Simon, P., and Springer, T. A., 1983, A human leukocyte differentiation antigen family with distinct a-subunits and a common ß-subunit: The lymphocyte function-associated antigen (LFA-1), the C3bi complement receptor (OKM 1 /Mac-1), and the p150,95 molecule, J. Exp. Med. 158: 1785–1803.PubMedCrossRefGoogle Scholar
  240. Schifferli, J. A., Ng, Y. C., Estreicher, J., and Walport, M. J., 1988, The clearance of tetanus toxoid/antitetanus toxoid immune complexes from the circulation of humans. Complement-and erythrocyte complement receptor 1–dependent mechanisms, J. Immunol. 140: 899–904.PubMedGoogle Scholar
  241. Schlesinger, L. R., and Horwitz, M. A., 1991, Phagocytosis of Mycobacterium leprae by human monocyte-derived macrophages is mediated by complement receptors CR1 (CD35), CR3 (CD11b/CD18), and CR (CDI lc/CD18) and IFN-7 activation inhibits complement receptor function and phagocytosis of this bacterium, J. Immunol. 147: 1983–1994.PubMedGoogle Scholar
  242. Schweinle, J. E., Ezekowitz, R. A., Tenner, A. J., Kuhlman, M., and Joiner, K. A., 1989, Human mannosebinding protein activates the alternative complement pathway and enhances serum bactericidal activity on a mannose-rich isolate of Salmonella, J. Clin. Invest. 84: 1821–1829.CrossRefGoogle Scholar
  243. Sellar, G. C., Blake, D. J., and Reid, K. B. M., 1991, Characterization and organization of the genes encoding the A-, B- and C-chains of human complement subcomponent C l q. The complete derived amino acid sequence of human Clq, Biochem. J. 274: 481–490.PubMedGoogle Scholar
  244. Seya, T., Turner, J., and Atkinson, J. P., 1986, Purification and characterization of membrane cofactor protein (MCP or gp 45–70) which is a cofactor for cleavage of C3b and C4b, J. Exp. Med. 163: 837–855.PubMedCrossRefGoogle Scholar
  245. Shiraishi, S, and Stroud, R. M., 1975, Cleavage products of C4b produced by enzymes in human serum, Immunochemistry 12: 935–939.PubMedCrossRefGoogle Scholar
  246. Shirato, M., Takahashi, K., Nagasawa, S., and Koyama, J, 1988, Different sensitivities of the responses of human neutrophils stimulated with immune complex and C5a anaphylatoxin to pertussis toxin, FEBS Lett. 234: 231–234.PubMedCrossRefGoogle Scholar
  247. Siciliano, S. J., Rollins, T. E., and Springer, M. S., 1990, Interaction between the C5a receptor and G; in both the membrane-bound and detergent-solubilized states, J. Biol. Chem. 265: 19568–19574.PubMedGoogle Scholar
  248. Sim, E., Wood, A. B., Hsiung, L. M., and Sim, R. B., 1981, Pattern of degradation of human complement fragment C3b, FEBS Lett. 132: 55–60.PubMedCrossRefGoogle Scholar
  249. Sim, R. B., Arlaud, G. J., and Colomb, M. G., 1979, Cl inhibitor-dependent dissociation of human complement component CI bound to immune complexes, Biochem. J. 179: 449–457.PubMedGoogle Scholar
  250. Simmons, D., Makgoba, M. W., and Seed, B., 1988, ICAM, an adhesion ligand of LFA-1, is homologous to the neural cell adhesion molecule NCAM, Nature (London) 331: 624–627.Google Scholar
  251. Smith, C. W., Marlin, S. D., Rothlein, R., Toman, C., and Anderson, D. C., 1989, Cooperative interactions of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro, J. Clin. Invest. 83: 2008–2017.CrossRefGoogle Scholar
  252. Solomon, E., Palmer, R. W., Hing, S., and Law, S. K. A., 1988, Regional localization of CD18, the ß-subunit of the cell surface adhesion molecule LFA-1, on human chromosome 21 by in situ hybridization, Ann. Hum. Genet. 52: 123–128.PubMedCrossRefGoogle Scholar
  253. Springer, T., Galfré, G., Secher, D. S., and Milstein, C., 1979, Mac-1: A macrophage differentiation antigen identified by monoclonal antibody, Eur. J. Immunol. 9: 301–306.PubMedCrossRefGoogle Scholar
  254. Stacker, S. A., and Springer, T. A., 1991, Leukocyte integrin p150,95 (CD11c/CD18) functions as an adhesion molecule binding to a counter-receptor on stimulated endothelium, J. Immunol. 146: 648–655.PubMedGoogle Scholar
  255. Staunton, D. E., Marlin, S. D., Stratowa, C., Dustin, M. L., and Springer, T. A., 1988, Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families, Cell 52: 925–933.PubMedCrossRefGoogle Scholar
  256. Staunton, D. E., Dustin, M. L., Erickson, H. P., and Springer, T. A., 1990, The arrangement of the immunoglobulin-like domains of ICAM-1 and the binding sites for LFA- I and rhinovirus, Cell 61:243–254 [published erratum appears in Ce1161:1157].Google Scholar
  257. Symon, F. A., Anandavijayan, S., and Fothergill, J. E., 1991, A receptor for C3a on HL60 cells, Complement, and Inflammation 8: 228.Google Scholar
  258. Szebenyi, D. M. E., Obendorf, S. K., and Moffat, K., 1981, Structure of vitamin D dependent calcium-binding protein from bovine intestine, Nature (London) 294: 327–332.Google Scholar
  259. Tack, B. F., Harrison, R. A., Janatova, J., Thomas, M. L., and Prahl, J. W., 1980, Evidence for presence of an internal thioester bond in the third component of complement, Proc. Natl. Acad. Sci. USA 77: 5764–5768.PubMedCrossRefGoogle Scholar
  260. Takada, Y., and Hemler, M. E., 1989, The primary structure of the VLA-2/collagen receptor a2 subunit (platelet GPIa): Homology to other integrins and the presence of a possible collagen-binding domain, J. Cell Biol. 109: 397–407.PubMedCrossRefGoogle Scholar
  261. Talamas-Rohana, P., Wright, S. D., Lennartz, M. R., and Russell, D. G., 1990, Lipophosphoglycan from Leishmania mexicana promastigotes binds to members of the CR3, p150,95 and LFA-1 family of leukocyte integrins, J. Immunol. 144: 4817–4824.PubMedGoogle Scholar
  262. Taniguchi-Sidle, A., and Isenman, D. E., 1992, Mutagenesis of the Arg-Gly-Asp (RGD) triplet in human complement component C3 does not abolish binding of iC3b to the leukocyte integrin complement receptor type III (CR3, CD11b/CD18), J. Biol. Chem. 267: 635–643.PubMedGoogle Scholar
  263. Tenner, A. J., 1989, Clq interactions with cell surface receptors, Behring Inst. Mitt. 84:220–235. Tenner, A. J., and Cooper, N. R., 1980, Analysis of receptor-mediated Clq binding to human peripheral blood mononuclear cells, J. Immunol. 125: 1658–1664.Google Scholar
  264. Tenner, A. J., and Cooper, N. R., 1982, Stimulation of a human polymorphonuclear leukocyte oxidative response by the C lq subunit of the first complement component, J. Immunol. 128: 2547–2552.PubMedGoogle Scholar
  265. Tenner, A. J., Robinson, S. L., Borchelt, J., and Wright, J. R., 1989, Human pulmonary surfactant protein (SP-A), a protein structurally homologous to Clq, can enhance FcR- and CR1–mediated phagocytosis, J. Biol. Chem. 264: 13923–13928.PubMedGoogle Scholar
  266. Thiel, S., and Reid, K. B. M., 1989, Structures and functions associated with the group of mammalian lectins containing collagen-like sequences, FEBS Lett. 250: 78–84.PubMedCrossRefGoogle Scholar
  267. Todd, R. F., IIl, Arnaout, M. A., Rosin, R. E., Crowley, C. A., Peters, W. A., and Babior, B. M., 1984, Subcellular localization of the large subunit of Mo 1 (Mo 1 a; formerly gp 110), a surface glycoprotein associated with neutrophil adhesion, J. Clin. Invest. 74: 1280–1290.Google Scholar
  268. Tosi, M., Duponchel, C., Meo, T., and Julier, C., 1987, Complete cDNA sequence of human complement C l s and close physical linkage of the homologous genes C I s and C 1 r, Biochemistry 26: 8516–8524.PubMedCrossRefGoogle Scholar
  269. van Dyne, S., Holers, V. M., Lublin, D. M., and Atkinson, J. P., 1987, The polymorphism of the C3b/C4b receptor in the normal population and in patients with systemic lupus erythematosus, Clin. Exp. Immunol. 68: 570–579.PubMedGoogle Scholar
  270. Voss, T., Eistetter, H., Schafer, K. P., and Engel, J., 1988, Macromolecular organization of natural and recombinant lung surfactant protein SP 28–36. Structural homology with the complement factor C 1 q, J. Mol. Biol. 201: 219–227.PubMedCrossRefGoogle Scholar
  271. Voss, T., Melchers, K., Scheirle, G., and Schäfer, K. P., 1991, Structural comparison of recombinant pulmonary surfactant protein SP-A derived from two human coding sequences: Implications for the chain composition of natural human SP-A, Am. J Respir. Cell Mol. Biol. 4: 88–94.PubMedCrossRefGoogle Scholar
  272. Waxman, F. J., Herbert, L. A., Cornacoff, J. B., Vanaman, M. E., Smead, W. F., Kraut, E., Birmingham, D. J., and Taguiam, J. M., 1984, Complement depletion accelerates the clearance of immune complexes from the circulation of primates, J. Clin. Invest. 74: 1329–1340.PubMedCrossRefGoogle Scholar
  273. Weiler, J. M., Daha, M. R., Austen, K. F., and Fearon, D. T., 1976, Control of the amplification convertase of complement by the plasma protein ß1H, Proc. Natl. Acad. Sci. USA 73: 3268–3272.PubMedCrossRefGoogle Scholar
  274. Weis, J. H., Morton, C. C., Bruns, G. A. P., Weis, J. J., Klickstein, L. B., Wong, W. W., and Fearon, D. T., 1987, A complement receptor locus: Genes encoding C3b/C4b receptor and C3d/Epstein—Barr virus receptor map to 1q32, J. Immunol. 138: 312–315.PubMedGoogle Scholar
  275. Weis, J. J., Tedder, T. F., and Fearon, D. T., 1984, Identification of a 145,000 M membrane protein as the C3d receptor (CR2) of human B lymphocytes, Proc. Natl. Acad. Sci. USA 81: 881–885.PubMedCrossRefGoogle Scholar
  276. Weis, J. J., Toothaker, L. E., Smith, J. A., Weis, J. H., and Fearon, D. T., 1988, Structure of the human B lymphocyte receptor for C3d and the Epstein—Barr virus and relatedness to other members of the family of C3/C4 binding proteins, J. Exp. Med. 167: 1047–1066 [published erratum appears in J. Exp. Med. 168:1953–1954].Google Scholar
  277. Weisman, H. F., Bartow, T., Leppo, M. K., Marsh, H. C. J., Carson, G. R., Concino, M. F., Boyle, M. P., Roux, K. H., Weisfeldt, M. L., and Fearon, D. T., 1990, Soluble human complement receptor type 1: In vivo inhibitor of complement suppressing post-ischemic myocardial inflammation and necrosis, Science 249: 146–151.PubMedCrossRefGoogle Scholar
  278. Weitkamp, L. R., and Lamm, L. U., 1982, Report of the committee on the genetic constitution of chromosome 6, Cytogenet. Cell Genet. 32: 130–143.PubMedCrossRefGoogle Scholar
  279. Weitzman, J. B., and Law, S. K. A., 1992, CR3 and its relationship with other phagocytic receptors, in Complement in Health and Disease, 2nd edition ( K. Whaley, ed.), pp. 265–293, Kluwar Academic Publishers, Lancaster.Google Scholar
  280. Weitzman, J. B., Wells, C. E., Wright, A. H., Clark, P. A., and Law, S. K. A., 1991, The gene organisation of the human ß2 integrin subunit (CD18), FEBS Leu. 294: 97–103.CrossRefGoogle Scholar
  281. Whaley, K., and Ruddy, S., 1976, Modulation of C3b haemolytic activity by a plasma protein distinct from C3b-inactivator, Science 193: 1011–1013.PubMedCrossRefGoogle Scholar
  282. Whitehead, A. S., Solomon, E., Chambers, S., Bodmer, W. F., Povey, S., and Fey, G., 1982, Assignment of the structural gene for the third component of human complement to chromosome 19, Proc. Natl. Acad. Sci. USA 79: 5021–5025.PubMedCrossRefGoogle Scholar
  283. Wilson, J. G., Murphy, E. E., Wong, W. W., Klickstein, L. B., Weis, J. H., and Fearon, D. T., 1986, Identification of a restriction fragment length polymorphism by a CR1 cDNA that correlates with the number of CR1 on erthyrocytes, J. Exp. Med. 164: 50–62.PubMedCrossRefGoogle Scholar
  284. Wilson, J. G., Wong, W. W., Murphy, E. E., Schur, P. H., and Fearon, D. T., 1987, Deficiency of the C3b/C4b receptor (CR1) of erythrocytes in systemic lupus erythematosus: Analysis of the stability of the defect and of a restriction fragment length polymorphism of the CRI gene, J. Immunol. 138: 2706–2710.Google Scholar
  285. Wong, W. W., Wilson, J. G., and Fearon, D. T., 1983, Genetic regulation of a structural polymorphism of human C3b receptor, J. Clin. Invest. 72: 685–693.PubMedCrossRefGoogle Scholar
  286. Wright, S. D., and Jong, M. T., 1986, Adhesion-promoting receptors on human macrophages recognize Escherichia coli by binding to lipopolysaccharide, J. Exp. Med. 164: 1876–1888.PubMedCrossRefGoogle Scholar
  287. Wright, S. D., and Meyer, B. C., 1986, Phorbol esters cause sequential activation and deactivation of complement receptors on polymorphonuclear leukocytes, J. Immunol. 136: 1759–1764.PubMedGoogle Scholar
  288. Wright, S. D., and Silverstein, S. C., 1982, Tumor-promoting phorbol esters stimulated C3b and C3b’ receptor-mediated phagocytosis in cultured human monocytes, J. Exp. Med. 156: 1149–1164.PubMedCrossRefGoogle Scholar
  289. Wright, S. D., and Silverstein, S. C., 1983, Receptors for C3b and Cb3i promote phagocytosis but not the release of toxic oxygen from human phagocytes, J. Exp. Med. 158: 2016–2023.PubMedCrossRefGoogle Scholar
  290. Wright, S. D., Craigmyle, L. S., and Silverstein, S. C., 1983a, Fibronectin and serum amyloid P component stimulate C3b-and C3bi-mediated phagocytosis in cultured human monocytes, J. Exp. Med. 158: 1338–1343.PubMedCrossRefGoogle Scholar
  291. Wright, S. D., Rao, P. E., Van Voorhis, W. C., Craigmyle, L. S., Iida, K., Talle, M. A., Westberg, E. F., Goldstein, G., and Silverstein, S., 1983b, Identification of the C3bi receptor of human monocytes and macrophages by using monoclonal antibodies, Proc. Natl. Acad. Sci. USA 80: 5699–5703.PubMedCrossRefGoogle Scholar
  292. Wright, S. D., Licht, M. R., Craigmyle, L. S., and Silverstein, S. C., 1984, Communication between receptors for different ligands on a single cell: Ligation of fibronectin receptors induces a reversible alteration in the function of complement receptors on cultured human monocytes, J. Cell Biol. 99: 336–339.PubMedCrossRefGoogle Scholar
  293. Wright, S. D., Detmers, P. A., Jong, M. T. C., and Meyer, B. C., 1986, Interferon-7 depresses binding of ligand by C3b and C3bi receptors on cultured human monocytes, an effect reversed by fibronectin, J. Exp. Med. 163: 1245–1259.PubMedCrossRefGoogle Scholar
  294. Wright, S. D., Reddy, P. A., Jong, M. T., and Erickson, B. W., 1987, C3bi receptor (complement receptor type 3) recognizes a region of complement protein C3 containing the sequence Arg-Gly-Asp, Proc. Natl. Acad. Sci. USA 84: 1965–1968.PubMedCrossRefGoogle Scholar
  295. Wright, S. D., Weitz, J. I., Huang, A. J., Levin, S. M., Silverstein, S. C., and Loike, J. D., 1988, Complement receptor type three (CD 11 b/CD 18) of human polymorphonuclear leukocytes recognizes fibrinogen, Proc. Natl. Acad. Sci. USA 85: 7734–7738.PubMedCrossRefGoogle Scholar
  296. Wright, S. D., Levin, S. M., Jong, M. T. C., Chad, Z., and Kabbash, L. G., 1989, CR3 (Cdl lb/CD18) expresses one binding site for Arg-Gly-Asp-containing peptides and a second site for bacterial lipopolysaccharide, J. Exp. Med. 169: 175–183.PubMedCrossRefGoogle Scholar
  297. Yamaguchi, N., Benya, P. D., van der Rest, M., and Nimomiya, Y., 1989, The cloning and sequencing of a1 (VIII) collagen cDNAs demonstrate that the type VIII collagen is a short chain collagen and contains triple helical and carboxyl-terminal non-triple-helical domains similar to those of type X collagen, J. Biol. Chem. 264: 16022–16029.PubMedGoogle Scholar
  298. Yamamoto, K., and Johnston, R. B., Jr., 1984, Dissociation of phagocytosis from stimulation of the oxidative metabolic burst in macrophages, J. Exp. Med. 159: 405–416.PubMedCrossRefGoogle Scholar
  299. Ziccardi, R. J., and Cooper, N. R., 1979, Active disassembly of the first complement component, Cl, by Cl inactivator, J. Immunol. 123: 788–792.PubMedGoogle Scholar
  300. Zohair, A., Chesne, S., Wade, R. H., and Colomb, M. G., 1989, Interaction between complement subcomponent Clq and bacterial lipopolysaccharides, Biochem. J. 257: 865–873.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • S. K. Alex Law
    • 1
  1. 1.The MRC Immunochemistry Unit, Department of BiochemistryUniversity of OxfordOxfordUK

Personalised recommendations