Advertisement

Macrophages and Prostaglandins

  • John A. Hamilton
Part of the Blood Cell Biochemistry book series (BLBI, volume 5)

Abstract

Macrophages were originally considered merely to be scavenger cells whose function was to protect against invading microbes or eliminate unwanted debris from necrotic areas. However, it has become apparent from very many in vitro studies that monocytes/macrophages or mononuclear phagocytes can synthesize an enormous number of products, many of which are secreted from the cell (Nathan, 1987). It is clear that mononuclear phagocytes change their properties depending on, for example, the tissue and species of origin and on the agent(s) used both to elicit them into tissues and also to modulate their in vitro behavior. The word “activation” was originally applied to describe alterations in macrophage properties, such as enhanced bactericidal killing or spreading (Karnovsky and Lazdins, 1978). The “activation state” of a macrophage in most cases is probably a reflection both of the degree of differentiation (or maturation) of the cell as well as of the changes resulting from “immunologic events” occurring in vivo or in vitro.

Keywords

Arachidonic Acid Alveolar Macrophage Peritoneal Macrophage Human Monocyte Murine Macrophage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aderem, A. A., and Cohn, Z. A., 1988, Calcium ionophore synergizes with bacterial lipopolysaccharides in activating macrophage arachidonic acid metabolism, J. Exp. Med. 167: 623–631.PubMedCrossRefGoogle Scholar
  2. Aderem, A. A., Cohen, D. S., Wright, S. D., and Cohn, Z. A., 1986, Bacterial lipopolysaccharides prime macrophages for enhanced release of arachidonic acid metabolites, J. Exp. Med. 164: 165–179.PubMedCrossRefGoogle Scholar
  3. Aderem, A. A., Albert, K. A., Keum, M. M., Wang, J. K., Greengard, P., and Cohn, Z. A., 1988, Stimulus dependent myristoylation of a major substrate for protein kinase C, Nature (London) 332: 362–364.Google Scholar
  4. Bachwich, P. R., Chensue, S. W., Larrick, J. W., and Kunkel, S. L., 1986, Tumor necrosis factor stimulates interleukin-1 and prostaglandin E2 production in resting macrophages, Biochem. Biophys. Res. Commun. 136: 94–101.PubMedCrossRefGoogle Scholar
  5. Bailey, J., Makheja, A. N., Pash, J., and Verma, M., 1988, Corticosteroids suppress cyclooxygenase messenger RNA levels and prostanoid synthesis in cultured vascular cells, Biochem. Biophys. Res. Commun. 157: 1159–1163.PubMedCrossRefGoogle Scholar
  6. Balter, M. S., Toews, G. B., and Peters-Golden, M., 1989, Different patterns of arachidonate metabolism in autologous human blood monocytes and alveolar macrophages, J. Immunol. 142: 602–608.PubMedGoogle Scholar
  7. Bonney, R. J., and Humes, J. L., 1984, Physiological and pharmacological regulation of prostaglandin and leukotriene production by macrophages, J. Leukocyte Biol. 35: 1–10.PubMedGoogle Scholar
  8. Boraschi, D., Censini, S., and Tagliabue, A., 1984, Interferony reduces macrophage-suppressive activity by inhibiting prostaglandin E2 release and inducing interleukin-1 production, J. Immunol. 133: 764–768.PubMedGoogle Scholar
  9. Brandwein, S. R., 1986, Regulation of interleukin-1 production by mouse peritoneal macrophages. Effects of arachidonic acid metabolites, cyclic nucleotides, and interferons, J. Biol. Chem. 261: 8624–8632.PubMedGoogle Scholar
  10. Browning, J., 1987, Interferons and rheumatoid arthritis: Insight into interferon biology? Immunol. Today 8: 372–374.CrossRefGoogle Scholar
  11. Browning, J. L., and Ribolini, A., 1987, Interferon blocks interleukin-l -induced prostaglandin release from human peripheral monocytes, J. Immunol. 138: 2857–2863.PubMedGoogle Scholar
  12. Brune, K., Glatt, M., Kalin, H., and Peskar, B. A., 1978, Pharmacological control of prostaglandin and thromboxane release from macrophages, Nature(London) 274: 261–263.CrossRefGoogle Scholar
  13. Brune, K., Aehringhaus, U., and Peskar, B. A., 1984, Pharmacological control of leukotriene and prostaglandin production from mouse peritoneal macrophages, Agents Actions 14: 729–734.PubMedCrossRefGoogle Scholar
  14. Cantarow, W. D., Cheung, H. T., and Sundharadas, G., 1978, Effects of prostaglandins on the spreading, adhesion and migration of mouse peritoneal macrophages, Prostaglandins 16: 39–46.PubMedCrossRefGoogle Scholar
  15. Censini, S., Bartalini, M., Tagliabue, A., and Boraschi, D., 1989, Interleukin-1 stimulates production of LTC, and other eicosanoids by macrophages, Lymphokine Res. 8: 107–114.PubMedGoogle Scholar
  16. Chang, J., Cherney, M. L., Moyer, J. A., and Lewis, A. J., 1984, Effect of forskolin on prostaglandin synthesis by mouse resident peritoneal macrophages, Eur. J. Pharmacol. 103: 303–312.PubMedCrossRefGoogle Scholar
  17. Chensue, S. W., and Kunkel, S. L., 1985, Induction of interleukin-1 release by leukotrienes, Fed. Proc. 44: 1270.Google Scholar
  18. Cheung, D. L., and Hamilton, J. A., 1992, The regulation of human monocyte DNA synthesis by colony stimulating factors, cytokines and cAMP, Blood, 79: 1972–1981.PubMedGoogle Scholar
  19. Cochrane, F. R., Roddick, V. L., Connor, J., Thornburg, J. T., and Waite, M., 1987, Regulation of arachidonic acid metabolism in resident and BCG-activated alveolar macrophages: Role of lyso (bis) phosphatidic acid, J. Immunol. 138: 1877–1883.Google Scholar
  20. Cocks, B. G., Vairo, G., Bodrug, S. E., and Hamilton, J. A., 1992, Suppression of growth factor-induced CYL1 cyclin gene expression by antiproliferative agents, J. Biol. Chem., 267: 12307–12310.PubMedGoogle Scholar
  21. Dieter, P., Schulze-Specking, A., and Fitzke, E., 1991, Activation of phospolipase C is not correlated to the formation of prostaglandins and superoxide in cultured rat liver macrophages, Cell. Signal. 3: 65–71.PubMedCrossRefGoogle Scholar
  22. Dinarello, C. A., Bishai, J., Rosenwasser, L. J., and Coceani, F., 1984, The influence of lipoxygenase inhibitors on the in vitro production of human leucocytic pyrogen and lymphocyte activating factor (interleukin-1), Int. J. Immunopharmacol. 6: 43–50.PubMedCrossRefGoogle Scholar
  23. Di Rosa, M., Flower, R. J., Hirata, F., Parente, L., and Russo-Marie, A., 1984, Nomenclature announcement: Anti-phospholipase proteins, Prostaglandins 28: 441–442.PubMedCrossRefGoogle Scholar
  24. Drysdale, B. E., and Shin, M. S., 1981, Activation of macrophages for tumor cell cytotoxicity: Identification of indomethacin sensitive and insensitive pathways, J. Immunol. 127: 760–765.PubMedGoogle Scholar
  25. Elias, J. A., Ferro, T. J., Rossman, M. D., Greenberg, J. A., Daniele, R. P., Schreiber, A. D., and Freundlich, B., 1987, Differential prostaglandin production by unfractionated and density-fractionated human monocytes and alveolar macrophages, J. Leukocyte Biol. 42: 114–121.PubMedGoogle Scholar
  26. Fels, A. O. S., Pawlowski, N. A., Cramer, E. B., King, T. K. C., Cohn, Z. A., and Scott, W. A., 1982, Human alveolar macrophages produce leukotriene B,, Proc. Natl. Acad. Sci. USA 79: 7866–7870.PubMedCrossRefGoogle Scholar
  27. Fu, J. Y., Masferrer, J. L., Seibert, K., Raz, A., and Needleman, P., 1990, The induction and suppression of prostaglandin H2 synthase (cyclooxygenase) in human monocytes, J Biol. Chem. 265: 16737–16740.PubMedGoogle Scholar
  28. Fulford, D. E., and Rutherford, R. B., 1987, Cell-bound C3b stimulates human monocyte release of prostaglandin E and thromboxane B2, J. Leukocyte Biol. 41: 363–366.Google Scholar
  29. Gonzales-Crussi, F., Hsueh, W., and Lamb, R., 1982, Decreased phospholipase A2 activity and prostaglandin biosynthesis in bacillus Calmette-Guerin activated alveolar macrophages, Fed. Proc. 41: 449–453.Google Scholar
  30. Hamilton, J. A., 1980, Stimulation of macrophage prostaglandin and neutral protease production by phorbol esters as a model for the induction of vascular changes associated with tumor promotion, Cancer Res. 40: 2273–2280.PubMedGoogle Scholar
  31. Hamilton, J. A., 1981, Regulation of prostaglandin and plasminogen activator production by mouse peritoneal macrophages, J. Reticuloendothel. Soc. 30: 115–128.PubMedGoogle Scholar
  32. Hamilton, J. A., 1983, Glucocorticoids and prostaglandins inhibit the induction of macrophage DNA synthesis by macrophage growth factor and phorbol ester, J. Cell. Physiol. 115: 67–74.PubMedCrossRefGoogle Scholar
  33. Hamilton, J. A., Vairo, G., Knight, K., and Cocks, B. G., 1991, Activation and proliferation signals in murine macrophages. Biochemical signals controlling the regulation of macrophage urokinase-type plasminogen activator activity by colony-stimulating factors and other agents, Blood 77: 616–627.PubMedGoogle Scholar
  34. Hamilton, J. A., Vairo, G., and Cocks, B. G., 1992, Inhibition of S-phase progression in macrophages is linked to GI/S-phase suppression of DNA synthesis genes, J. Immunol., 148: 4028–4035.PubMedGoogle Scholar
  35. Hart, P. H., Whitty, G. A., Piccoli, D. S., and Hamilton, J. A., 1988, Synergistic activation of human monocytes by granulocyte-macrophage colony-stimulating factor and IFN-y. Increased TNF-a but not IL-1 activity, J. Immunol. 141: 1516–1521.PubMedGoogle Scholar
  36. Hart, P. H., Whitty, G. A., Piccoli, D. S., and Hamilton, J. A., 1989, Control by IFN-ry and PGE2 of TNFa and IL-1 production by human monocytes, Immunology 66: 376–383.PubMedGoogle Scholar
  37. Hartung, H. P., Hadding, U., Bitter-Suermann, D., and Gemsa, D., 1983, Stimulation of prostaglandin E and thromboxane synthesis in macrophages by purified C3b, J. Immunol. 130: 2861–2865.PubMedGoogle Scholar
  38. Hsueh, W., 1979, Prostaglandin biosynthesis in pulmonary macrophages, Am. J. Pathol. 97: 137–147.PubMedGoogle Scholar
  39. Hsueh, W., and Sun, F., 1982, Leukotriene B4 biosynthesis by alveolar macrophages, Biochem. Biophys. Res. Commun. 106: 1085–1091.PubMedCrossRefGoogle Scholar
  40. Humes, J. L., Bonney, R. J., Pelus, L., Dahlgren, M. E., Sadowski, S. J., Kuehl, F. A., Jr., and Davies, P., 1977, Macrophages synthesise and release prostaglandins in response to inflammatory stimuli, Nature (London) 269: 149–150.Google Scholar
  41. Humes, J. L., Burger, S., and Galavage, M., 1980, The diminished production of arachidonic acid oxygenated products by elicited mouse peritoneal macrophages: Possible mechanism, J. Immunol. 124: 2110–2116.PubMedGoogle Scholar
  42. Humes, J. L., Sadowski, S., Galavage, M., Goldenberg, M. M., Subers, E., Bonney, R. J., and Kuehl, F. A., Jr., 1982, Evidence for two sources of arachidonic acid for oxidative metabolism by mouse peritoneal macrophages, J. Biol. Chem. 257: 1591–1594.PubMedGoogle Scholar
  43. Hunt, N. H., Lim, L. K., Eichner, R. D., Buffinton, G. D., and Weidemann, M. J., 1984, Activation of cyclic AMP-dependent protein kinase in macrophages, Biochem. Biophys. Res. Commun. 119: 1082–1088.PubMedCrossRefGoogle Scholar
  44. Hutchinson, D. L., and Myers, R. L., 1987, Prostaglandin-mediated suppression of macrophage phagocytosis of Listeria monocytogenes, Cell Immunol. 110: 68–76.CrossRefGoogle Scholar
  45. Kaever, V., Pfannkuche, H. J., Wessel, K., and Resch, K., 1990, The ratio of macrophage prostaglandin and leukotriene synthesis is determined by the intracellular free calcium level, Biochem. Pharmacol. 39: 1313–1319.PubMedCrossRefGoogle Scholar
  46. Karnovsky, M. L., and Lazdins, J. K., 1978, Biochemical criteria for activated macrophages, J. Immunol. 121: 809–813.PubMedGoogle Scholar
  47. Katakami, Y., Nakao, Y., Koizumi, T., Katakami, N., Ogawa, R., and Fujita, T., 1988, Regulation of tumor necrosis factor production by mouse peritoneal macrophages: The role of cellular cAMP, Immunology 64: 719–724.PubMedGoogle Scholar
  48. Khansari, N., Chou, Y. K., and Fudenberg, H. H., 1985, Human monocyte heterogeneity: Interleukin-1 and prostaglandin E2 production by separate subsets, Eur. J. Immunol. 15: 48–51.PubMedCrossRefGoogle Scholar
  49. Knight, K. R., Vairo, G., and Hamilton, J. A., 1992, Regulation of pinocytosis in murine macrophages by colony stimulating factors and other agents, J. Leukocyte Biol., 57: 350–359.Google Scholar
  50. Knudsen, P. J., Dinarello, C. A., and Strom, T. B., 1986, Prostaglandins transcriptionally inhibit monocyte expression of interleukin-1 activity by increasing intracellular cyclic adenosine monophosphzate, J. Immunol. 137: 3189–3194.PubMedGoogle Scholar
  51. Kröner, E. E., Peskar, B. A., Fischer, H., and Ferber, E., 1981, Control of arachidonic acid accumulation in bone marrow-derived macrophages by acyltransferases, J. Biol. Chem. 256: 3690–3697.PubMedGoogle Scholar
  52. Kunkel, S. L., 1988, The importance of arachidonate metabolism by immune and nonimmune cells, Lab. Invest. 58: 119–121.PubMedGoogle Scholar
  53. Kunkel, S. L., and Chensue, S. W., 1985, Arachidonic acid metabolites regulate interleukin-1 production, Biochem. Biophys. Res. Commun. 128: 892–897.CrossRefGoogle Scholar
  54. Kunkel, S. L., Chensue, S. W., and Phan, S. M., 1986a, Prostaglandins as endogenous mediators of interleukin-1 production, J. Immunol. 136: 186–192.PubMedGoogle Scholar
  55. Kunkel, S. L., Wiggins, R. C., Chensue, S. W., and Larrick, J., 1986b, Regulation of macrophage tumor necrosis factor production by prostaglandin E2, Biochem. Biophys. Res. Commun. 137: 404–410.PubMedCrossRefGoogle Scholar
  56. Kurland, J. I., and Bockman, R., 1978, Prostaglandin E production by human monocytes and mouse peritoneal macrophages, J. Exp. Med. 147: 952–957.PubMedCrossRefGoogle Scholar
  57. Kurland, J. 1., Hadden, J. W., and Moore, M. A. S., 1977, Role of cyclic nucleotides in the proliferation of committed granulocyte—macrophage progenitor cells, Cancer Res. 37: 4534–4538.Google Scholar
  58. Kurland, J. I., Broxmeyer, H. E., Pelus, L. M., Bockman, R. S., and Moore, M. A. S., 1978, Role of monocyte—macrophage-derived colony stimulating factor and prostaglandin E in the positive and negative feedback control of myeloid stem cell proliferation, Blood 52: 388–407.Google Scholar
  59. Kurland, J. I., Pelus, L. M., Ralph, P., Bockman, R. S., and Moore, M. A. S., 1979, Induction of prostaglandin E synthesis in normal and neoplastic macrophages: Role for colony-stimulating factor(s) distinct from effects on myeloid progenitor cell proliferation, Proc. Natl. Acad. Sci. USA 76: 2326–2330.PubMedCrossRefGoogle Scholar
  60. Lee, M.-T., Kaushansky, K., Ralph, P., and Ladner, M. B., 1990, Differential expression of M-CSF, G-CSF and GM-CSF by human monocytes, J. Leukocyte Biol. 47: 275–282.PubMedGoogle Scholar
  61. Lim, L. K., Hunt, N. H., Eichner, R. D., and Weidemann, M. J., 1983, Cyclic AMP and the regulation of prostaglandin production by macrophages, Biochem. Biophys. Res. Commun. 114: 248–254.PubMedCrossRefGoogle Scholar
  62. Masferrer, J. L., Zweifel, B. S., Seibert, K., and Needleman, P., 1990, Selective regulation of cellular cyclooxygenase by dexamethasone and endotoxin in mice, J. Clin. Invest. 86: 1375–1379.PubMedCrossRefGoogle Scholar
  63. Matsunaga, A., Miller, B. C., and Cottam, G. L., 1990, Pertussi toxin and H-7 distinguish mechanisms involved in eicosanoid release from lipopolysaccharide-primed macrophages, Eur. J. Biochem. 187: 599–603.PubMedCrossRefGoogle Scholar
  64. Moore, R. N., Urbascheck, R., Wahl, L. M., and Mergenhagen, S. E., 1979, Prostaglandin regulation of colony-stimulating factor production by lipopolysaccharide-stimulated murine leukocytes, Infect. Immun. 26: 408–414.PubMedGoogle Scholar
  65. Movat, H. Z. (ed.), 1977, Inflammation, Immunity and Hypersensitivity, 2nd ed., Harper and Row, New York.Google Scholar
  66. Nathan, C. F., 1987, Secretory products of macrophages, J. Clin. Invest. 79: 319–326.PubMedCrossRefGoogle Scholar
  67. Needleman, P., Turk, J., Jakschik, B. A., Morrison, A. R., and Lefkowith, J. B., 1986, Arachidonic acid metabolism, Annu. Rev. Biochem. 55: 69–102.PubMedCrossRefGoogle Scholar
  68. Nichols, F. C., and Garrison, S. W., 1987, Interferon-y potentiation of lipopolysaccharide-induced eicosanoid release from human monocytes, J. Interferon Res. 7: 121–129.PubMedCrossRefGoogle Scholar
  69. Ogle, C. K., Ogle, J. D., Johnson, C., Keynton, L., and Alexander, J. W., 1988, The production of C3, PGE2 and thromboxane by splenic, alveolar, and peritoneal guinea pig macrophages, Prostaglandins 36: 279–289.PubMedCrossRefGoogle Scholar
  70. Ohmori, Y., Strassman, G., and Hamilton, T. A., 1990, cAMP differentially regulates expression of mRNA encoding IL-la and IL-113 in murine peritoneal macrophages, J. Immunol. 145: 3333–3339.Google Scholar
  71. Okonogi, K., Getty, T. W., Uhing, R. J., Tarry, W. C., Adams, D. O., and Prpic, V., 1991, Inhibition of prostaglandin E2-stimulated cAMP accumulation by lipopolysaccharide in murine peritoneal macrophages, J. Biol. Chem. 296: 10305–10312.Google Scholar
  72. Oropeza-Rendon, R. L., Speth, V., Hiller, G., Weber, K., and Fischer, H., 1979, Prostaglandin E1 reversibly induces morphological changes in macrophages and inhibits phagocytosis, Exp. Cell. Res. 119: 365–371.PubMedCrossRefGoogle Scholar
  73. Ozaki, T., Moriguchi, H., Nakamura, Y., Kamei, T., Yasuoka, S., and Ogura, T., 1990, Regulatory effect of prostaglandin E2 on fibronectin release from human alveolar macrophages, Am. Rev. Respir. Dis. 141: 965–969.PubMedCrossRefGoogle Scholar
  74. Parker, C. W., 1987, Lipid mediators produced through the lipoxygenase pathway, Annu. Rev. Immunol. 5: 65–84.PubMedCrossRefGoogle Scholar
  75. Passwell, J. H., Dayer, J.-M., and Merler, E., 1979, Increased prostaglandin production by human monocytes after membrane receptor activation, J. Immunol. 123: 115–120.PubMedGoogle Scholar
  76. Passwell, J. H., Geiger, B., Levanon, M., Davidsohn, J. Cohen, B. E., and Ramot, B., 1984, IgE induces secretion of prostaglandin E2 by human monocytes, Clin. Exp. Immunol. 58: 566–572.Google Scholar
  77. Pfannkuche, H.-J., Kaever, V., Gemsa, D., and Resch, K., 1989, Regulation of prostaglandin synthesis by protein kinase C in mouse peritoneal macrophages, Biochem. J. 260: 471–478.PubMedGoogle Scholar
  78. Remick, D. G., Larrick, J. W., Nguyen, D. T., and Kunkel, S. L., 1987, Stimulation of prostaglandin E2 and thromboxane E2 production by human monocytes in response to interleukin-2, Biochem. Biophys. Res. Commun. 147: 86–93.PubMedCrossRefGoogle Scholar
  79. Rhodes, J., Salmon, J., and Wood, J., 1985, Macrophage Fcy2b receptor expression and receptor-mediated phospholipase activity: Regulation by endogenous eicosanoids, Eur. J. Immunol. 15: 222–227.PubMedCrossRefGoogle Scholar
  80. Rola-Plesczcynski, M., and Lemaire, I., 1985, Leukotrienes augment interleukin-1 production by human monocytes, J. Immunol. 135: 3985–3991.Google Scholar
  81. Rosen, A., Nairn, A. C., Greengard, P., Cohn, Z. A., and Aderem, A., 1989, Bacterial lipopolysaccharide regulates the phosphorylation of the 68K protein kinase C substrate in macrophages, J. Biol. Chem. 264: 9118–9121.PubMedGoogle Scholar
  82. Rouzer, C. A., Scott, W. A., Cohn Z. A., Blackburn, P., and Manning, J. M., 1980a, Mouse peritoneal macrophages release leukotriene C in response to a phagocytic stimulus, Proc. Natl. Acad. Sci. USA 77: 4928–4933.PubMedCrossRefGoogle Scholar
  83. Rouzer, C. A., Scott, W. A., Kempe, J., and Cohn, Z. A., 1980b, Prostaglandin synthesis by macrophages requires a specific receptor-ligand interaction, Proc. Natl. Acad. Sci. USA 77: 4279–4282.PubMedCrossRefGoogle Scholar
  84. Rouzer, C. A., Scott, W. A., Hamill, A. L., and Cohn, Z. A., 1982, Synthesis of leukotriene C and other arachidonic acid metabolites by mouse pulmonary macrophages, J. Exp. Med. 155: 720–733.PubMedCrossRefGoogle Scholar
  85. Schade, U. F., Moll, H., and Rietschel, E. T., 1987, Metabolism of exogneous arachidonic acid by mouse peritoneal macrophages, Prostaglandins 34: 401–412.PubMedCrossRefGoogle Scholar
  86. Schlick, E., Hartung, K., and Chirigos, M. A., 1984, Role of prostaglandin E and interferon in secretion of colony-stimulating factor by murine macrophages after in vitro treatment with biological response modifiers, Int. J. Immunopharmacol. 6: 407–418.PubMedCrossRefGoogle Scholar
  87. Schreiber, S., Blum, S., Chappel, J. C., Stenson, W. F., Stahl, P. D., Teitelbaum, S. L., and Perkins, S. L., 1990, Prostaglandin E specifically upregulates the expression of the mannose-receptor on mouse bone marrow-derived macrophages, Cell Regul. 1: 403–413.PubMedGoogle Scholar
  88. Scott, W. A., Pawlowski, N. A., Murray, H. W., Andreach, M., Zrike, J., and Cohn, Z. A., 1982, Regulation of arachidonic acid metabolism by macrophage activation, J. Exp. Med. 155: 1148–1160.PubMedCrossRefGoogle Scholar
  89. Sitrin, R. G., Kaltreider, H. B., and Goldyne, M. E., 1984, Prostaglandin E is required for the augmentation of procoagulant activity of LPS-stimulated rabbit alveolar macrophages, J. Immunol. 132: 867–871.PubMedGoogle Scholar
  90. Snyder, D. S., Beller, D. I., and Unanue, E. R., 1982, Prostaglandins modulate macrophage la expression, Nature (London) 299: 163–165.CrossRefGoogle Scholar
  91. Strassmann, G., Bertolini, D. R., Kerby, S. B., and Fong, M., 1991, Regulation of murine mononuclear phagocyte inflammatory products by macrophage colony-stimulating factor. Lack of IL-1 and prostaglandin E2 production and generation of a specific IL-1 inhibitor, J. Immunol. 147: 1279–1285.PubMedGoogle Scholar
  92. Stuart, R. K., Hamilton, J. A., Sensenbrenner, L. L., and Moore, M. A. S., 1981, Regulation of myelopoiesis in vitro: Partial replacement of colony-stimulating factors by tumor-promoting phorbol esters, Blood 57: 1032–1042.PubMedGoogle Scholar
  93. Taffet, S. M., and Russell, S. W., 1981, Macrophage mediated tumor cell killing: Regulation of expression of cytolytic activity, J. Immunol. 126: 424–427.PubMedGoogle Scholar
  94. Tripp, C. S., Mahoeny, M., and Needleman, P., 1985, Calcium ionophore enables soluble agonists to stimulate macrophage 5-lipooxygenase, J. Biol. Chem. 260: 5895–5898.PubMedGoogle Scholar
  95. Utsugi, T., and Fidler, I. J., 1991, Prostaglandin E2 does not inhibit tumoricidal activity of mouse macrophages against adherent tumor cells, J. Immunol. 146: 2066–2071.PubMedGoogle Scholar
  96. Vairo, G., Argyriou, S., Bordun, A.-M., Whitty, G., and Hamilton, J. A., 1990, Inhibition of the signaling pathways for macrophage proliferation by cyclic AMP. Lack of effect on early responses to colony stimulating factor, J. Biol. Chem. 265: 2692–2701.PubMedGoogle Scholar
  97. Vairo, G., Royston, A. K., and Hamilton, J. A., 1992, Biochemical events accompanying macrophage activation and the inhibition of colony-stimulating factor-1 induced macrophage proliferation by tumor necrosis factor-a, interferon-y and lipopolysaccharide, J. Cell. Physiol. 151: 630–641.PubMedCrossRefGoogle Scholar
  98. Vane, J. R., 1971, Inhibition of prostaglandin synthesis as a mechanism of action of aspirin-like drugs, Nature (London) 231: 232–235.Google Scholar
  99. Vassalli, J.-D., Hamilton, J. A., and Reich, E., 1976, Macrophage plasminogen activator: Modulation of enzyme production by anti-inflammatory steroids, mitotic inhibitors and compounds affecting cyclic nucleotide metabolism, Cell 8: 271–281.PubMedCrossRefGoogle Scholar
  100. Wahl, L. M., McCarthy, J. B., Olsen, C. E., Wahl, S. M., Sandberg, A. L., and Mergenhagen, S. E., 1977, Prostaglandin regulation of macrophage collagenase production, Proc. Natl. Acad. Sci. USA 74: 4955–4958.PubMedCrossRefGoogle Scholar
  101. Wightman, D. B., and Dallob, A., 1990, Regulation of phosphatidylinositol breakdown and leukotriene synthesis by endogenous prostaglandins in resident mouse peritoneal macrophages, J. Biol. Chem. 265: 9176–9180.PubMedGoogle Scholar
  102. Wightman, P. D., Humes, J. L., Davies, P., and Bonney, R. J., 1981, Identification and characterization of two phospholipase A2 activities in resident mouse peritoneal macrophages, Biochem. J. 195: 427–433.PubMedGoogle Scholar
  103. Williams, J. D., Robin, J. L., Lewis, R. A., Lee, T. H., and Austen, K. F., 1986, Generation of leukotrienes by human monocytes pretreated with cytochalasin B and stimulated with formyl-methionyl-leucylphenylalanine, J. Immunol. 136: 642–648.PubMedGoogle Scholar
  104. Yamamoto, H., and Suzuki, T., 1987, Prostaglandin E2-induced activation of adenosine 3’-5’-cyclic monophosphate-dependent protein kinase of a murine macrophage-like cell line (P388D1), J. Immunol. 139: 3416–3421.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • John A. Hamilton
    • 1
  1. 1.Department of MedicineUniversity of Melbourne, Royal Melbourne HospitalParkvilleAustralia

Personalised recommendations