Complement and the Mononuclear Phagocyte System

  • D. Lappin
  • K. Whaley
Part of the Blood Cell Biochemistry book series (BLBI, volume 5)


This chapter will review current knowledge of the relationship between the complement system and mononuclear phagocytes. To familiarize the reader with the complement system, its nomenclature, biochemistry, and biological activities, a brief review has been included.


Human Monocyte Complement Component Mononuclear Phagocyte Complement Protein Human Complement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alper, C. A., Johnson, A. M., Birch, A. G., and Moore, F. D., 1969, Human C3: Evidence for the liver as the primary site of synthesis, Science 163: 286–288.PubMedCrossRefGoogle Scholar
  2. Alpert, S. E., Auerbach, H. S., Cole, F. S., and Colten, H. R., 1983, Macrophage maturation: Differences in complement secretion by marrow monocyte and tissue macrophages detected with an improved hemolytic plaque assay, J. Immunol. 130: 102–107.PubMedGoogle Scholar
  3. Andus, T., Heinrich, P. C., Bauer, J., Trau-Thi, T. A., Decker, K., Manuel, D., and Northoff, H., 1987, Discrimination of hepatocyte-stimulating activity from human recombinant tumour necrosis factor a, Eur. J. Immunol. 17: 1193–1197.PubMedCrossRefGoogle Scholar
  4. Anthony, R., EI-Omar, E., Lappin, D. F., MacSween, R. N. M., and Whaley, K., 1989, Regulation of hepatic synthesis of C3 and C4 during acute-phase response in the rat, Eur. J. Immunol. 19: 1405–1412.PubMedCrossRefGoogle Scholar
  5. Arlaud, G. J., Thielens, N. M., and Aude, C. A., 1989, Structure and function of Clr and Cls: Current concepts, Behring Inst. Mitt. 84: 56–64.PubMedGoogle Scholar
  6. Augener, W., Gray, H. M., Cooper, N. R., and Muller-Eberhard, H. J., 1971, The reaction of monomeric and aggregated immunoglobulin with Cl, Immunochemistry 8: 1011–1020.PubMedCrossRefGoogle Scholar
  7. Barnum, S. R., and Volanakis, J. E., 1985, In vitro biosynthesis of complement protein D by U937 cells, J. Immunol. 134: 1799–1803.Google Scholar
  8. Belt, K. T., Carroll, M. C., and Porter, R. R., 1984, The structural basis of the multiple forms of human complement component C4, Cell 36: 907–914.PubMedCrossRefGoogle Scholar
  9. Bensa, J. C., Reboul, A., and Colomb, M. G., 1983, Biosynthesis in vitro of complement subcomponents Clq, CI and Cl-inhibitor by resting and stimulated tumour monocytes, Biochem. J. 216: 385–392.PubMedGoogle Scholar
  10. Bentley, C., Fries, W., and Brade, V., 1978, Synthesis of factors D, B and P of the alternative pathway of complement activation, as well as of C3, by guinea pig peritoneal macrophages in vitro, Immunology 35: 971–980.PubMedGoogle Scholar
  11. Bentley, D. R., and Porter, R. R., 1984, Isolation of cDNA clones for human complement component C2, Proc. Natl. Acad. Sci. USA 81: 1212–1215.PubMedCrossRefGoogle Scholar
  12. Bock, S. C., Skriver, K., Nelson, E., Thorgersen, H. C., Wiman, B., Donaldson, V. H., Eddy, R. L., Marrinan, J., Radziejeuska, E., Huber, R., Shows, T. B., and Magnusson, S., 1985, Human Cl-inhibitor: Primary structure cDNA cloning and chromosomal localization, Biochemistry 25: 4249–4301.Google Scholar
  13. Campbell, R. D., Gagnon, J., and Porter, R. R., 1981, Amino acid sequence around the thiol reactive acyl groups of human complement component C4, Biochem. J. 199: 359–370.PubMedGoogle Scholar
  14. Campbell, R. D., Law, S. K. A., Reid, K. B. M., and Sim, R. B., 1988, Structure, organization and regulation of the complement genes, Annu. Rev. Immunol. 6: 161–195.PubMedCrossRefGoogle Scholar
  15. Carell, R. W., and Boswell, D. R., 1986, Serpins, the superfamily of serine proteinase inhibitors, in Proteinase Inhibitors ( A. Barrett and G. Salvesen, eds.), pp. 403–420, Elsevier, Amsterdam.Google Scholar
  16. Caron, J. M., Jones, A. L., Rall, L. B., and Kirschner, M. W., 1985, Autoregulation of tubulin synthesis in enucleated cells, Nature (London) 317: 648–651.CrossRefGoogle Scholar
  17. Carroll, M. C., Campbell, R. D., Bentley, D. R., and Porter, R. R., 1984, A molecular map of the human MHC complex class III region linking complement genes C4, C2 and factor B, Nature (London) 307: 237–241.CrossRefGoogle Scholar
  18. Celada, A., and Schreiber, R. D., 1986, Role of protein kinase C and intracellular calcium mobilization in the induction of macrophage tumoricidal activity by interferon-y, J. Immunol. 137: 2372–2379.Google Scholar
  19. Chabbott, H., and Cabot, M. C., 1986, Phorbol-diesters inhibit enzymatic hydrolysis of diacylglycerols in vitro, Proc. Natl. Acad. Sci. USA 83: 3120–3130.CrossRefGoogle Scholar
  20. Cheung, L. P., Bentley, D. R., and Reid, K. B. M., 1985, Molecular cloning and characterisation of the cDNA coding for C4b binding protein, Biochem. J. 230: 133–141.Google Scholar
  21. Cole, F. S., and Colten, H. R., 1988, Complement biosynthesis, in The Complement System ( K. Rother and G. O. Till, eds.), pp. 44–70, Springer-Verlag, Berlin.Google Scholar
  22. Cole, J. L., Housely, G. A., Dykman, T. R., MacDermott, R. P., and Atkinson, J. P., 1985, Identification of an additional class of C3-binding membrane proteins of human peripheral blood leukocytes and cell lines, Proc. Natl. Acad. Sci. USA 82: 859–863.PubMedCrossRefGoogle Scholar
  23. Colten, H. R., 1972, Ontogeny of the human complement system: In vitro biosynthesis of individual complement components by fetal tissue, J. Clin. Invest. 51: 725–730.PubMedCrossRefGoogle Scholar
  24. Colten, H. R., 1976, Biosynthesis of complement, Adv. Immunol. 22: 67–118.PubMedCrossRefGoogle Scholar
  25. Cotten, H. R., and Alper, C. A., 1972, Haemolytic efficiencies of genetic variants of C3, J. Immunol. 108: 1184–1187.Google Scholar
  26. Colten, H. R., Borsos, T., and Rapp, H. J., 1967, Efficiency of the first component of complement in the hemolytic reaction, Science 158: 1590–1592.PubMedCrossRefGoogle Scholar
  27. Cook, K. S., Min, H. Y., Johnson, D., Chaplinsky, R. J., Frier, J. S., Hunt, C. R., and Spiegelman, B. M., 1987, Adipsin: A circulating serine protease homolog secreted by adipose tissue and sciatic nerve, Science 237: 402–408.PubMedCrossRefGoogle Scholar
  28. Daha, M. R., Fearon, D. T., and Austen, K. F., 1976, C3 requirements for formation of alternative pathway C5 convertase, J. Immunol. 117: 630–634.PubMedGoogle Scholar
  29. Daha, M. R., Austen, K. F., and Fearon, D. T., 1978, Heterogeneity of polypeptide chain composition and antigenic reactivity of C3 nephritic factor, J. Immunol. 120: 1389–1394.PubMedGoogle Scholar
  30. Damerau, B., Grunefeld, E., and Vogt, W., 1978, Chemotactic effects of the complement-derived peptides C3a, CSai and C5a (classical anaphylatoxin) on rabbit and guinea pig polymorphonuclear leukocytes, Arch. Pharmacol. 305: 181–184.CrossRefGoogle Scholar
  31. Davies, A., Simmons, D. L., Hale, G., Harrison, R. A., Tighe, H., Lachmann, P. J., and Waldmann, H., 1989, CD59, an LY-6 like protein expressed in human lymphoid cells, regulates the action of the complement membrane attack complex on homologous cells, J. Exp. Med. 170: 637–650.PubMedCrossRefGoogle Scholar
  32. De Ceulaer, C., Papazoglou, S., and Whaley, K., 1980, Increased biosynthesis of complement components by cultured monocyte, synovial fluid macrophages and synovial membrane cells from patients with rheumatoid arthritis, Immunology 41: 37–43.PubMedGoogle Scholar
  33. D’Eustachio, P., Kristensen, T., Wetsel, R. A., Riblet, R., Taylor, B. A., and Tack, B. F., 1986, Chromosomal location of the genes encoding complement components C5 and factor H in the mouse, J. Immunol. 137: 3990–3995.PubMedGoogle Scholar
  34. Dinarello, C. A., 1984, Interleukin 1, Rev. Infect. Dis. 6: 51–95.PubMedCrossRefGoogle Scholar
  35. DiScipio, R. G., Chakravarti, D. N., Muller-Eberhard, H. J., and Fey, G. H., 1988, The structure of human complement components C7 and C5b-7 complex, J. Biol. Chem. 203: 549–560.Google Scholar
  36. Dodds, A. W., Sim, R. B., Porter, R. R., and Kerr, M. A., 1978, Activation of the first component of human complement (C1) by antibody-antigen complexes, Biochem. J. 175: 383–390.PubMedGoogle Scholar
  37. Dodds, A. W., Law, S. K. A., and Porter, R. R., 1986, The purification and properties of some less common allotypes of the fourth component of human complement, Immunogenetics 24: 279–285.PubMedCrossRefGoogle Scholar
  38. Dunham, I., Sergent, G. A., Dawkins, R. L., and Campbell, R. D., 1989, Direct observation of the gene organization of the complement C4 and 21-hydrolase loci by pulse field electrophoresis, J. Exp. Med. 169: 1803–1818.PubMedCrossRefGoogle Scholar
  39. Einstein, L. P., Schneeberger, L. L., and Colten, H. R., 1976, Synthesis of the second component of complement by long term primary culture of human monocytes, J. Exp. Med. 143: 114–122.PubMedCrossRefGoogle Scholar
  40. Einstein, L. P., Hansen, P. J., Ballow, M., Davis, A. E., Davis, J. S., Alper, K. A., Rosen, F. S., and Colten, H. R., 1977, Biosynthesis of the third component of complement (C3) in vitro by monocytes from both normal and homozygous C3 deficient humans, J. Clin. Invest. 60: 963–969.PubMedCrossRefGoogle Scholar
  41. Falus, A., and Meretey, K., 1988, Effect of histamine on the gene expression and secretion of complement components C2, factor B and C3 in murine macrophages opposite signal processing via H 1 and H2 receptors, Mol. Immunol. 25: 1093–1097.PubMedCrossRefGoogle Scholar
  42. Farries, T. C., and Atkinson, J. P., 1989, Biosynthesis of properdin, J. Immunol. 142: 842–847.PubMedGoogle Scholar
  43. Fearon, D. T., 1980, Identification of the membrane glycoprotein that is the C3b receptor of the human erythrocyte, polymorphonuclear leukocyte, B lymphocyte and monocyte, J. Exp. Med. 152: 20–30.PubMedCrossRefGoogle Scholar
  44. Fearon, D. T., and Austen, K. F., 1975, Properdin: Binding to C3b and stabilization of the C3b-dependent C3 convertase, J. Exp. Med. 142: 856–863.PubMedCrossRefGoogle Scholar
  45. Fearon, D. T., and Austen, K. F., 1977, Activation of the alternative pathway due to resistance of zymosanbound amplification convertase to endogenous regulatory mechanisms, Proc. Natl. Acad. Sci. USA 74: 1683–1687.PubMedCrossRefGoogle Scholar
  46. Fearon, D. T., Austen, K. F., and Ruddy, S., 1973, Formation of a hemolytically active cellular intermediate by the interaction between properdin factors B and D and the activated third component of complement, J Exp. Med. 138: 1305–1313.PubMedCrossRefGoogle Scholar
  47. Fey, G., Odink, K., and Chapius, R. M., 1980, Synthesis of the mouse complement component C4 (Ss-protein) by peritoneal macrophages: Kinetics of secretion and glycosylation of the subunits, Eur. J. Immunol. 10: 75–82.PubMedCrossRefGoogle Scholar
  48. Fischer, D. G., Novick, D., Orcheinsky, P., and Rubinstein, M., 1988, Two molecular forms of the human interferon-y receptor: Ligand binding internalization and down regulation, J. Biol. Chem. 263: 2632–2637.PubMedGoogle Scholar
  49. Friedman, R. L., and Stark, G. R., 1985, a-Interferon-induced transcription of HLA and melanothionein genes containing homologous upstream sequences, Nature, London 314: 637–639.Google Scholar
  50. Gauldie, J., Richards, C., Hamish, D., Lansdorp, P., and Baumann, H., 1989, IFN-32/BSF2 IL-6 is the monocyte derived HSF that regulates receptor-specific acute phase gene regulation in hepatocytes, Ann. N. Y Acad. Sci. 557: 46–59.PubMedCrossRefGoogle Scholar
  51. Gemsa, D., Woo, Ch. H., Webb, D., Fudenberg, H. H., and Schmid, R., 1975, Erythrophagocytosis by macrophages: Suppression of heme oxygenase by cyclic AMP, Cell. Immunol. 15: 21–36.PubMedCrossRefGoogle Scholar
  52. Gigli, I., Fujita, T., and Nussenzweig, V., 1979, Modulation of the classical pathway C3 convertase by the plasma protein binding protein and C3b inactivator, Proc. Natl. Acad. Sci. USA 12: 6596–6600.CrossRefGoogle Scholar
  53. Goldberger, G., and Colten, H. R., 1980, Precursor complement protein (pro C4) is converted in vitro to native C4 by plasmin, Nature (London) 286: 511–516.CrossRefGoogle Scholar
  54. Goldberger, G., Arnaout, M. A., Aden, D., Kay, R., Rits, M., and Colten, H. R., 1984, Biosynthesis and postsynthetic processing of human C3b/C4b inactivator (factor I) in three hepatoma cell lines, J. Biol. Chem. 259: 6492–6497.PubMedGoogle Scholar
  55. Goldberger, G., Bruns, G. A. P., Rits, M., Edge, M. D., and Kwiakowski, D. J., 1987, Human complement factor I: Analysis of cDNA-derived primary structure and assignment of its gene to chromosome 4, Biochemistry 26: 10065–10071.CrossRefGoogle Scholar
  56. Goodrum, K. J., 1987, Complement component C3 secretion by mouse macrophage-like cell lines, J. Leukocyte Biol. 41: 295–301.PubMedGoogle Scholar
  57. Gotze, O., Bianco, L., Sundsmo, J. S., and Cohn, Z. A., 1979, The stimulation of mononuclear phagocytes by components of the classical and alternative pathways of complement activation, in Mononuclear Phagocytes: Functional Aspects ( R. Van Furth, ed.), pp. 1422–1442, Martinus Nijhoff, The Hague.Google Scholar
  58. Goundis, D., and Reid, K. B. M., 1987, Biosynthesis of complement proteins by the U937 cell line, Biochem. Soc. Trans. 15: 650–651.Google Scholar
  59. Goundis, D., Holt, S., Boyd, D. Y., and Reid, K. B. M., 1989, Localisation of properdin structural locus to Xp 11.23—Xp21.1, Genomics 5: 56–60.PubMedCrossRefGoogle Scholar
  60. Greenberg, M. E., and Ziff, E. B., 1984, Stimulation of 3T3 cells induces transcription of the c-fosproto-oncogene, Nature (London) 311: 433–435.CrossRefGoogle Scholar
  61. Haefliger, J. A., Tschopp, J., Vial, N., and Jenne, D. E., 1989, Complete primary structure and functional characterization of the sixth component of the human complement system, J. Biol. Chem. 264: 18041–18051.PubMedGoogle Scholar
  62. Hall, R. E., and Colten, H. R., 1977, Cell-free synthesis of the fourth component of guinea pig complement (C4): Identification of a precursor of serum C4 (pro-C4), Proc. Natl. Acad. Sci. USA 74: 1707–1710.PubMedCrossRefGoogle Scholar
  63. Hamilton, A. O., Kilpatrick, W. S., Morrison, L., Lappin, D., Bensa, J. C., Riches, D. W. H., and Whaley, K., 1984, Role of C3 in the control of monocyte C2 production, Immunology 51:169–178.Google Scholar
  64. Hamilton, A. O., Jones, L., Morrison, L., and Whaley, K., 1987, Modulation of monocyte complement synthesis by interferons, Biochem. J. 242: 809–815.PubMedGoogle Scholar
  65. Hetland, G., Johnson, E., and Aasebo, U., 1986, Human alveolar macrophages synthesise the functional alternative pathway of complement and active C5 and C9 in vitro, Scand. J. Immunol. 24: 603–608.PubMedCrossRefGoogle Scholar
  66. Hillarp, A., and Dahlbäck, B., 1990, Cloning of cDNA clones for the ß chain of human complement component C4 binding protein. Sequence homology with the a chain, Proc. Natl. Acad. Sci. USA 87: 1183–1187.PubMedCrossRefGoogle Scholar
  67. Hing, S., Day, A. J., Linton, S. J., Ripoche, J., Sim, R. B., Reid, K. B. M., and Solomon, E., 1988, Assignment of complement components C4 binding protein (C4-bp) and factor H (H) to human chromosome lq using cDNA probes, Ann. Hum. Genet. 52: 117–122.PubMedCrossRefGoogle Scholar
  68. Holers, V. M., Cole, J. L., Lubin, D. M., Seya, T., and Atkinson, J. P., 1985, C3b-and C4b-regulatory proteins: A new multi-gene family, Immunol. Today 6: 188–192.CrossRefGoogle Scholar
  69. Horiuchi, T., Mauri, K. J., Kidd, V. J., and Volanakis, J. E., 1990, Translational regulation of complement protein C2 expression by differential utilization of the 5’-untranslated region ofmRNA, J. Biol. Chem. 265: 6521–6524.PubMedGoogle Scholar
  70. Howard, O. Z. M., Rio, A. G., and Sodetz, J. M., 1987, Complementary DNA and derived amino acid sequence of the 13-subunit of C8. Identification of a close structural and ancestral relationship to the a-subunit and C9, Biochemistry 26: 3565–3570.PubMedCrossRefGoogle Scholar
  71. Humes, J. L., Bonney, R. J., Delus, L., Dahlgren, M. E., Sadowski, S. J., Kenehl, F. A., and Davies, P., 1977, Macrophages synthesise and release prostaglandins in response to inflammatory stimuli, Nature (London) 269: 149–151.CrossRefGoogle Scholar
  72. Hurst, M. M., Volanakis, J. E., Stroud, R. M., and Bennet, J. C., 1975, Cl fixation and classical comple- ment pathway activation by a fragment of the Cµ4 domain of IgM, J. Exp. Med. 142: 1322–1326.PubMedCrossRefGoogle Scholar
  73. Ishikawa, N., Nonaka, N., Wetsel, R. A., and Colten, H. R., 1990, Murine complement C2 and factor B genomic and cDNA cloning reveals different mechanisms for multiple transcripts of C2 and B, J. Biol. Chem. 265: 19040–19046.PubMedGoogle Scholar
  74. Jenne, D. E., and Tschopp, J., 1989, Molecular-structure and functional characterization of a human complement cytolysis inhibitor found in blood and seminal plasma: Identity to sulfated glycoprotein 2, a constituent of rat testis fluid, Proc. Natl. Acad. Sci. USA 86: 7123–7127.PubMedCrossRefGoogle Scholar
  75. Jeremiah, S. T., Abbott, C. M., Murad, Z., Povey, S., Thomas, H. J., Solomon, E., Di Scipio, R. G., and Fey, G. H., 1990, The assignment of the genes coding for human complement components C6 and C7 to chromosome 5, Ann. Hum. Genet. 54: 141–147.PubMedCrossRefGoogle Scholar
  76. Johnson, E., and Hetland, G., 1988, Mononuclear phagocytes have the potential to synthesise the complete functional complement system, Scand. J. Immunol. 27: 489–493.PubMedCrossRefGoogle Scholar
  77. Journet, A., and Tosi, M., 1986, Cloning and sequencing of full-length cDNA encoding the precursor of human complement component Cir, Biochem. J. 240: 783–787.PubMedGoogle Scholar
  78. Karp, D. R., 1983, Post-translational modification of the fourth component of complement: Effects of tunicamycin and amino acid analogs on the formation of the internal thiol ester and disulfide bonds, J. Biol. Chem. 258: 14490–14495.PubMedGoogle Scholar
  79. Katz, Y., and Strunk, R. C., 1988, Synthesis and regulation of complement protein factor H on human fibroblasts, J. Immunol. 141: 559–563.PubMedGoogle Scholar
  80. Katz, Y., and Strunk, R. C., 1989, IL-1 and the tumor necrosis factor: Similarities and differences in stimulation of expression of alternative pathway of complement and IFN-ß2/IL-6 genes in human fibroblasts, J. Immunol. 142: 3862–3867.PubMedGoogle Scholar
  81. Katz, Y., Revel, M., and Strunk, R. C., 1989, Interleukin-6 stimulates synthesis of complement protein factor B and C3 in human skin fibroblasts, Eur. J. Immunol. 19: 983–988.PubMedCrossRefGoogle Scholar
  82. Kaufman, K. M., Snider, J. V., Spur, N. K., Schwartz, C. E., and Sodetz, J. M., 1989, Chromosomal assignment of genes encoding the a, ß and y subunits of human complement protein C8: Identification of a close physical linkage between the a and ß loci, Genomics 5: 475–480.PubMedCrossRefGoogle Scholar
  83. Kawamura, K., Singer, L., Wetsel, R. A., and Colten, H. R., 1991, Cis-and trans-acting elements involved in constitutive and cytokine (IL-1/IL-6) regulated C3 gene expression, Complement 8: 172–173.Google Scholar
  84. Kinoshita, T., Medof, M. E., Silber, R., and Nussenzweig, V., 1985, Distribution of decay-accelerating factor in the peripheral blood of normal individuals with paroxysmal nocturnal hemoglobinuria, J. Exp. Med. 162: 75–93.PubMedCrossRefGoogle Scholar
  85. Kinoshita, T., Takata, Y., Kozono, H., Takeda, J., Hong, K., and Inoue, K., 1988, C5 convertase of the alternative complement pathway: Covalent linkage between two C3b molecules within the trimolecular complex enzyme, J. Immunol. 141: 3895–3901.PubMedGoogle Scholar
  86. Klickstein, L. B., Wong, W. W., Smith, J. A., Weis, J. H., Wilson, J. G., and Fearon, D. T., 1987, Human C3b/C4b receptor (CR 1): Demonstration of long homologous repeating domains that are composed of the short consensus repeats characteristic of C3/C4 binding proteins, J. Exp. Med. 163: 1095–1112.CrossRefGoogle Scholar
  87. Koopman, W. J., Gillis, M. A., and David, J. R., 1973, Prevention of MIF activity by agents known to increase cellular cyclic AMP, J. Immunol. 110: 1609–1614.PubMedGoogle Scholar
  88. Kristensen, T., D’Eustachio, P., Ogata, R. T., Chung, L. P., Reid, K. B. M., and Tack, B. F., 1987, The superfamily of C3b/C4b binding proteins, Fed. Proc., Fed. Am. Soc. Exp. Biol. 46: 2463–2469.Google Scholar
  89. Kulics, J., Cotten, H. R., and Perlmutter, D. H., 1990, Counter-regulatory effects of interferon-y and endotoxin on expression of the human C4 genes, J. Clin. Invest. 85: 943–949.PubMedCrossRefGoogle Scholar
  90. Kusimoto, H., Hirosawa, S., Salier, J. P., Hagen, F. S., and Kirachi, K., 1988, Human genes for complement components Clr and C1s in a close tail to tail arrangement, Proc. Natl. Acad. Sci. USA 85: 7307–7311.CrossRefGoogle Scholar
  91. Langer, J. A., and Pestka, S., 1988, Interferon receptors, Immunol. Today 9: 393–400.PubMedCrossRefGoogle Scholar
  92. Lappin, D., and Whaley, K., 1980, Effects of histamine on monocyte complement production. I. Inhibition of C2 production mediated by its action on H2 receptors, Clin. Exp. Immunol. 41: 497–504.PubMedGoogle Scholar
  93. Lappin, D., and Whaley, K., 1981a, Cyclic AMP mediated modulation of the production of the second component of human complement by monocytes, Int. Arch. Allergy Appl. Immunol. 65: 85–91.PubMedCrossRefGoogle Scholar
  94. Lappin, D., and Whaley, K., 1981b, Cyclic AMP modulation of complement protein production, Int. J. Immunopharmacol. 4: 415–422.CrossRefGoogle Scholar
  95. Lappin, D., and Whaley, K., 1982a, Prostaglandin and prostaglandin synthetase inhibitors regulate the synthesis of complement components by human monocytes, Clin. Exp. Immunol. 49: 623–630.PubMedGoogle Scholar
  96. Lappin, D., and Whaley, K., 1982b, Adrenergic receptors on monocytes modulate complement component synthesis, Clin. Exp. Immunol. 47: 606–612.PubMedGoogle Scholar
  97. Lappin, D., and Whaley, K., 1984, Adenosine Az receptors on human monocyte modulate C2 production, Clin. Exp. Immunol. 55: 454–460.Google Scholar
  98. Lappin, D., and Whaley, K., 1985, Requirement for cations in the stimulation of C2 synthesis by human monocytes, Immunology 54: 457–462.PubMedGoogle Scholar
  99. Lappin, D., and Whaley, K., 1987, The role of ion channels and protein kinase C activation in the stimulation of complement protein synthesis, J. Clin. Lab. Immunol. 24: 57–62.PubMedGoogle Scholar
  100. Lappin, D., and Whaley, K., 1989a, Modulation of monocyte complement synthesis by lymphocytes and lymphocyte conditioned media, Clin. Exp. Immunol. 76: 86–91.PubMedGoogle Scholar
  101. Lappin, D., and Whaley, K., 1989b, Regulation of CI-inhibitor synthesis by interferons and other agents, Behring Inst. Mitt. 84: 180–203.PubMedGoogle Scholar
  102. Lappin, D. F., and Whaley, K., 1990, Interferon-induced transcriptional and post-transcriptional modulation of factor H and C4 binding-protein synthesis in human monocytes, Biochem. J. 271: 767–772.PubMedGoogle Scholar
  103. Lappin, D., and Whaley, K., 1991, Modulation of complement gene expression by glucocorticoids, Biochem. J. 280: 117–123.PubMedGoogle Scholar
  104. Lappin, D., Moseley, H. L., and Whaley, K., 1980, Effects of histamine on monocyte complement protein production. II. Modulation of protein secretion, degradation and synthesis, Clin. Exp. Immunol. 42: 515–522.PubMedGoogle Scholar
  105. Lappin, D., Damerau, B., and Whaley, K., 1983, Anaphylatoxins inhibit C2 production, Clin. Exp. Immunol. 54: 455–460.PubMedGoogle Scholar
  106. Lappin, D., Riches, D. W. H., Damerau, B., and Whaley, K., 1984, Cyclic nucleotides and their relation- ship to complement component C2 synthesis by human monocytes, Biochem. J. 222: 927–986.Google Scholar
  107. Lappin, D., Hamilton, A. D., Morrison, L., Aref, M., and Whaley, K., 1986, Synthesis of complement (C3, C2, B and C1-inhibitor) and lysozyme by human monocytes and macrophages, J. Clin. Lab. Immunol. 20: 101–105.PubMedGoogle Scholar
  108. Lappin, D. F., Birnie, G. D., and Whaley, K., 1990a, Modulation by interferons of the expression of monocyte complement genes, Biochem. J. 208: 387–392.Google Scholar
  109. Lappin, D., Birnie, G. D., and Whaley, K., I 990b, Interferon-y mediated transcriptional and post-transcriptional modulation of complement gene expression in human monocytes, Eur. J. Biochem. 198: 399–404.Google Scholar
  110. Lappin, D. F., Guc, D., Hill, A., McShane, T., and Whaley, K., 1992, Cell specific expression of the human complement components C2, factor B, C3, Cl-inhibitor, C4 binding protein and factor H, Biochem. J. 281: 437–442.PubMedGoogle Scholar
  111. Law, S. K., Lichtenberg, N. A., and Levine, R. P., 1980, Covalent binding and hemolytic activity of complement proteins, Proc. Natl. Acad. Sci. USA 77: 7194–7198.PubMedCrossRefGoogle Scholar
  112. Littleton, C., Kessler, D., and Burkholder, P. M., 1970, Cellular basis for synthesis of the fourth component of guinea pig complement as determined by a hemolytic plaque technique, Immunology 18: 693–704.PubMedGoogle Scholar
  113. Littman, B. H., and Ruddy, S., 1977, Production of the second component of complement by human monocytes: Stimulation by antigen-activated lymphocytes or lymphokines, J. Exp. Med. 145: 1344–1352.PubMedCrossRefGoogle Scholar
  114. Littman, B. H., and Ruddy, S., 1979, Monocyte complement stimulator: A T-lymphocyte product which stimulates synthesis of the second component of complement C2, Cell. Immunol. 43: 388–397.PubMedCrossRefGoogle Scholar
  115. Littman, B. H., Hill, R. E., and Muchmore, A. W., 1983, Lymphocyte and phorbol (PMA) regulation of complement (C2) synthesis using U937, Cell. Immunol. 76: 189–195.PubMedCrossRefGoogle Scholar
  116. Littman, B. H., Dastvan, F. F., Carlson, P. L., and Sanders, K. M., 1989, Regulation of monocyte macrophage C2 production and HLA DR expression by IL-4 (BSF-1) and IFN-y, J. Immunol. 142: 520–525.PubMedGoogle Scholar
  117. Loos, M., 1983, Biosynthesis of the collagen-like C 1 q molecule and its receptor function for Fc and polyanionic molecules on macrophages, Curr. Top. Microbiol. Immunol. 102: 1–56.PubMedCrossRefGoogle Scholar
  118. Lowrie, D. B., Aber, V. R., and Jackett, P. S., 1979, Phagosome-lysosome fusion and cyclic adenosine 3’-5’ monophosphate in macrophages infected with Mycobacterium mircoti, Mycobacterium boris, BSG or Mycobacterium lepraemurium, J. Gen. Microbiol. 110: 431–441.PubMedGoogle Scholar
  119. Malhotra, V., and Sim, R. B., 1985, Expression of complement factor H on the cell surface of the human monocytic cell line U937, Eur. J. Immunol. 15: 935–941.PubMedCrossRefGoogle Scholar
  120. Martin, H., and Loos, M., 1988, Guinea pig macrophages synthesise a low molecular weight form of C l q with affinity for the C 1 r2C 1 s2-complex, but which does not bind to Fc in immunoglobulin aggregates, Mol. Immunol. 25: 1231–1237.PubMedCrossRefGoogle Scholar
  121. Matthews, W. J., Marino, J. T., Goldberger, G., Cash, D. J., and Colten, H. R., 1979, Feedback inhibition of the biosynthesis of the fourth component of complement (C4), Fed. Proc., Fed. Am. Soc. Exp. Biol. 38: 1011–1020.Google Scholar
  122. McPhaden, A. R., and Whaley, K., 1981, Modulation of C2 biosynthesis by antigen-antibody complexes, J. Clin. Lab. Immunol. 7: 15–20.Google Scholar
  123. McPhaden, A. R., Lappin, D., and Whaley, K., 1981, Enhancement of monocyte complement component synthesis by antigen-antibody complexes, Immunology 44: 193–200.PubMedGoogle Scholar
  124. McPhaden, A. R., Lappin, D., and Whaley, K., 1982, Biosynthesis of complement components, J. Clin. Lab. Immunol. 8: 1–8.PubMedGoogle Scholar
  125. McPhaden, A. R., Hamilton, A. O., Lappin, D., and Whaley, K., 1985, Synthesis and secretion of complement components by mononuclear phagocytes, in Mononuclear Phagocytes: Physiology and Pathology ( R. T. Dean and W. Jessup, eds.), pp. 139–159, Elsevier, Amsterdam.Google Scholar
  126. Medof, M. E., Walter, E. I., Rutgers, J. L., Knowles, D. M., and Nussenzweig, V., 1987, Identification of the complement decay-accelerating factor (DAF) in epithelium and glandular cells and in body fluids, J. Exp. Med. 165: 848–864.PubMedCrossRefGoogle Scholar
  127. Mickl, J., Unkeless, J. C., and Silverstein, S. C., 1979, Modulation of macrophage plasma membrane receptors for IgG and complement, in Mononuclear Phagocytes: Functional Aspects ( R. Van Furth, ed.), pp. 921–937, Martinus Nijhoff, The Hague.Google Scholar
  128. Miura, N., Prentice, H. L., Scheider, P. M., and Perlmutter, D. H., 1987, Synthesis and regulation of the two human complement C4 genes in stable transfected mouse fibroblasts, J. Biol. Chem. 262: 7298–7305.PubMedGoogle Scholar
  129. Miyama, A., Kawamoto, Y., Ichikawa, H., Okamoto, K., Hera, S., and Inoue, T., 1980, Complement proteins and macrophages. II. The secretion of factor B by lipopolysaccharide stimulated macrophages, Microbiol. Immunol. 24: 1223–1232.PubMedGoogle Scholar
  130. Moffat, G. J., Lappin, D., Birnie, G. D., and Whaley, K., 1989, Complement biosynthesis in human synovial tissue, Clin. Exp. Immunol. 78: 54–60.PubMedGoogle Scholar
  131. Morris, K. M., Colten, H. R., and Bing, D. H., 1978, The first component of complement (C1): A quantitative comparison of its biosynthesis in culture by human epithelial and mesenchymal cells, J. Exp. Med. 148: 1007–1019.PubMedCrossRefGoogle Scholar
  132. Morris, K. M., Aden, D. P., Knowles, B. B., and Colten, H. R., 1982a, Complement biosynthesis by the human hepatoma derived cell line Hep G2, J. Clin. Invest. 70: 906–913.PubMedCrossRefGoogle Scholar
  133. Morris, K. M., Goldberger, G., Colten, H. R., Aden, D. P., and Knowles, B. B., 1982b, Biosynthesis and processing of a human precursor complement protein pro-C3 in a hepatoma derived cell line, Science 215: 399–400.PubMedCrossRefGoogle Scholar
  134. Morrison, L., and Whaley, K., 1983, Phagocytosis inhibits the production of C2 by human monocytes, Int. Arch. Allergy Appl. Immunol. 71: 271–275.PubMedCrossRefGoogle Scholar
  135. Morrison, L., Hamilton, A., Anthony, R., Lappin, D., and Whaley, K., 1988, Adaptation of enzyme labelled immunoassay (ELISA) for measurement of biosynthesis of human and rat complement components, in Reviews on Immunoassay Technology ( S. B. Pal, ed.), pp. 147–163, Macmillan Press, London.Google Scholar
  136. Muller, W., Hanauske-Abel, H., and Loos, M., 1978, Biosynthesis of the first component of complement by human and guinea pig peritoneal macrophages. Evidence for independent production of the Cl subunits, J. Immunol. 121: 1578–1582.PubMedGoogle Scholar
  137. Muller-Eberhard, H. J., 1988, Molecular organization and function of the complement system, Annu. Rev. Biochem. 57: 321–360.PubMedCrossRefGoogle Scholar
  138. Nagasawa, S., and Stroud, R. M., 1977a, Cleavage of C2 by C 1 into the antigenically distinct fragments C2a and C2b. Demonstration of binding of C2b to C4b, Proc. Natl. Acad. Sci. USA 74: 2998–3001.PubMedCrossRefGoogle Scholar
  139. Nagasawa, S., and Stroud, R. M., 1977b, Mechanism of action of the C3b inactivator: Requirement for a high molecular weight cofactor (C3b:C4b INA cofactor) and production of a new C3b derivative (C3b’), Immunochemistry 14: 749–756.PubMedCrossRefGoogle Scholar
  140. Nakayama, K., Nonaka, M., Yokayama, S., Yeul, Y. D., Pattanakitsakul, S. N., and Takahashi, M., 1987, Recombination of two homologous MHC class III genes of the mouse (C4 and SLp) that accounts for the loss of testosterone dependence of sex-limited protein expression, J. Immunol. 138: 620–627.PubMedGoogle Scholar
  141. Newell, S. L., and Atkinson, J. P., 1983, Biosynthesis of C4 by mouse peritoneal macrophages. II. Comparison of C4 synthesis by resident and elicited cell populations, J. Immunol. 130: 834–838.PubMedGoogle Scholar
  142. Ng, S. C., and Sodetz, J. M., 1987, Biosynthesis of C8 by hepatocytes: Differential expression and intracellular association of the a, y and ß subunits, J. Immunol. 139: 3021–3027.PubMedGoogle Scholar
  143. Ng, S. C., Rao, A. G., Howard, O. M. Z., and Sodetz, J. M., 1987, The eighth component of human complement: Evidence that it is an oligomeric serum protein assembled from products of three different genes, Biochemistry 26: 5229–5233.PubMedCrossRefGoogle Scholar
  144. Nicholson-Weller, A., March, J. P., Rosen, C. E., Spicer, D. B., and Austen, K. F., 1985, Surface membrane expression by human blood leukocytes and platelets of decay-accelerating factor, a regulatory protein of the complement system, Blood 65: 1237–1244.PubMedGoogle Scholar
  145. O’Neill, G. J., Yang, S. Y., Tegoli, J., Berger, R., and Dupont, B., 1978, Chido and Rodgers blood groups are distinct antigenic components of human complement C4, Nature (London) 273: 668–670.CrossRefGoogle Scholar
  146. Ooi, Y. M., and Colten, H. R., 1979, Biosynthesis and postsynthetic modification of a precursor (pro-05) of the fifth component of mouse complement (C5), J. Immunol. 123: 2494–2498.PubMedGoogle Scholar
  147. Ooi, Y. M., and Colten, H. R., 1982, Histamine suppresses in vitro synthesis of precursor (pro-05) of the fifth complement component (C5) by mouse peritoneal macrophages, J. Immunol. 129: 200–205.PubMedGoogle Scholar
  148. Paliard, X., de Waal Malefijt, R., Yssel, H., Blanchard, D., Christien, I., Abrams, J., de Vries, J., and Spits, H., 1988, Simultaneous production of IL-2, IL-4 and IFN-y by activated CD4+ and CDS+ T cell clones, J. Immunol. 141: 849–855.PubMedGoogle Scholar
  149. Pangburn, M. K., and Muller-Eberhard, H. J., 1980, Relation of putative thiolester bond in C3 to activation of the alternative pathway and the binding of C3b to biological targets of complement, J. Exp. Med. 152: 1104–1114.CrossRefGoogle Scholar
  150. Pangburn, M. K., Schreiber, R. D., and Muller-Eberhard, H. J., 1977, Human complement C3b inactiva-tor: Isolation, characterization and demonstration of an absolute requirement for the serum protein $1H for cleavage of C3b and C4b in solution, J. Exp. Med. 146: 257–270.PubMedCrossRefGoogle Scholar
  151. Pardo-Manuel, F., Rey-Campos, J., Hillarp, A., Dahlbäck, B., and Rodriguez de Cordoba, S., 1990, Human genes for the a and ß chains of complement C4-binding protein are closely linked in a head-totail arrangement, Proc. Natl. Acad. Sci. USA 87: 4529–4532.PubMedCrossRefGoogle Scholar
  152. Perlmutter, D. H., Goldberger, G., Dinevello, C. A., Mizel, S. B., and Colten, H. R., 1986, Regulation of class III major histocompatibility complex gene products by interleukin-1, Science 232 (4752): 850–852.PubMedCrossRefGoogle Scholar
  153. Perlmutter, D. H., Colten, H. R., Adams, S. P., May, L. T., Sehgal, P. B., and Fallon, R. J., 1989, A cytokine-selective defect in interleukin-1ß mediated acute phase gene expression in a subclone of the human hepatoma cell line (Hep G2), J. Biol. Chem. 264: 7669–7674.PubMedGoogle Scholar
  154. Pettersen, H. B., Johnson, E., and Hetland, G., 1981, Human alveolar macrophages synthesise active complement components C6, C7 and C8 in vitro, Scand. J. Immunol. 25: 567–570.CrossRefGoogle Scholar
  155. Podack, E. R., and Muller-Eberhard, H. J., 1980, C5b-9 complex of complement: Formation of the dimeric membrane attack complex by removal of S protein, J. Immunol. 124: 1779–1783.PubMedGoogle Scholar
  156. Podack, E. R., Preissner, K. T., and Muller-Eberhard, H. J., 1984, Inhibition of C9 polymerisation within the SC5b-9 complex of complement by S-protein, Acta Pathol. Microbiol. Immunol. Scand. 284: 89–96.Google Scholar
  157. Prandini, M. H., Reboul, A., and Colomb, M. G., 1986, Biosynthesis of complement Cl-inhibitor by Hep G2 cells: Reactivity of different glycosylated forms of the inhibitor with C l s, Biochem. J. 237: 92–98.Google Scholar
  158. Purrello, M., Bettuzzi, S. D., Pietro, C., Mirabile, E., Di Blass, M., Rimini, R., Grzeschik, K. H., Ingletti, C., Carti, A., and Sichel, G., 1991, The gene for Sp40–40. Human homology of rat sulphated glycoprotein 2, rat clusterin and rat testosterone repressed prostate message 2. Maps to chromosome 8, Genomics 10: 151–156.PubMedCrossRefGoogle Scholar
  159. Ramadori, G., Van Daume, J., Rieder, H., and Mayer Zum Buschenfelde, K. H., 1988, Interleukin-6, the third mediator of acute-phase reaction, modulates hepatic protein synthesis in human and mouse comparisons with interleukin-lß and tumour necrosis factor-a, Eur. J. Immunol. 18: 1259–1264.PubMedCrossRefGoogle Scholar
  160. Rapp, H. J., and Borsos, T., 1970, Molecular Basis of Complement Action, Appleton Century Crofts, New York.Google Scholar
  161. Rashibaigi, A., Langer, J. A., Jung, V., Jones, C., Morse, H. G., Tischfield, J. A., Trill, J. J., Kung, H. F., and Pestka, S., 1986, The gene for the human immune interferon receptor is located on chromosome 6, Proc. Nall. Acad. Sci. USA 83: 384–388.CrossRefGoogle Scholar
  162. Raziuddin, A., Sarkar, F. H., Dutkowsky, R., Shilman, L., Ruddle, F. H., and Gupta, S. L., 1984, Receptors for human a and ß interferon but not for y interferon are specified by human chromosome 21, Proc. Natl. Acad. Sci. USA 81: 5504–5508.PubMedCrossRefGoogle Scholar
  163. Reed, W., Roubey, R. A. S., Dalzell, J. G., Matteucci, B. M., Myones, B. L., Hunt, S. W., Kolb, W. P., and Ross, G. D., 1990, Synthesis of complement component C5 by human B and T lymphoblastoid cell lines, Immunogenetics 31: 145–151.PubMedCrossRefGoogle Scholar
  164. Reid, K. B. M., 1985, Molecular cloning and characterisation of the complementary DNA and gene codin for the B-chain of subcomponent Clq of the human complement system, Biochem. J. 231: 729–735.PubMedGoogle Scholar
  165. Reid, K. B. M., Bentley, D. R., Campbell, R. D., Cheng, L. P., Sim, R. B., Kristensen, T., and Tack, B. F., 1986, Complement system proteins which interact with C3b or C4b: A superfamily of structurally related genes, Immunol. Today 7: 230–233.CrossRefGoogle Scholar
  166. Revel, M., 1983, Genetic and functional diversity of interferons in man, in Interferon 5 ( I. Gresser, ed.), pp. 205–239, Academic Press, London.Google Scholar
  167. Rey-Campos, J., Rubinstein, P., and Rodrigues de Cordoba, S., 1987, Mapping of DAF to the RCA gene cluster in humans. Complement 4: 217.Google Scholar
  168. Ripoche, J., Mitchell, A., Erdei, A., Madin, C., Moffatt, B., Mokoena, T., Gordon, S., and Sim, R. B., 1988a, Interferon-y induces synthesis of complement alternative pathway proteins by human endothelial cells in culture, J. Exp. Med. 168: 1917–1922.PubMedCrossRefGoogle Scholar
  169. Ripoche, J., Day, A. J., Harris, T. J. R., and Sim, R. B., 1988b, The complete amino acid sequence of human complement factor H, Biochem. J. 249: 593–602.PubMedGoogle Scholar
  170. Rogne, S., Myklebosk, O., Stanley, K., and Van Kessel, A. G., 1989, The gene for human complement C9 is on chromosome 5, Genomics 5: 149–152.PubMedCrossRefGoogle Scholar
  171. Rollins, S. A., and Sims, P. J., 1990, The complement-inhibitory activity of CD59 resides in its capacity to block incorporation of C9 into membrane C5b-9, J. Immunol. 144: 3478–3483.PubMedGoogle Scholar
  172. Rosen, N., Schneck, J., Bloom, B. R., and Rosen, O. M., 1978, Inhibition of plasminogen activator secretion by cyclic AMP in a macrophage like cell line, J. Cyc. Nucl. Res. 4: 345–358.Google Scholar
  173. Ross, G. D., and Medof, H. E., 1985, Membrane complement receptors specific for bound fragments of C3, Adv. Immunol. 37: 217–267.PubMedCrossRefGoogle Scholar
  174. Ruddy, S., and Colten, H. R., 1974, Rheumatoid arthritis: Biosynthesis of complement proteins by synovial tissues, N. Engl. J. Med. 290: 1284–1288.PubMedCrossRefGoogle Scholar
  175. Schneider, P. M., Carroll, M. C., Alper, C. A., Rittner, C., Whitehead, A. S., Yunis, E. J., and Colten, H. R., 1986, Polymorphism of the human complement C4 and steroid 21-hydrolase genes: Restriction fragment length polymorphisms revealing structural deletions, homoduplications and size variants, J. Clin. Invest. 78: 650–657.PubMedCrossRefGoogle Scholar
  176. Schultz, R. M., Paulidis, N. A., Stoychokov, J. N., and Chirigos, M. A., 1979, Prevention of macrophage tumoricidal activity by agents which increase cellular cyclic AMP, Cell. Immunol. 42: 71–78.PubMedCrossRefGoogle Scholar
  177. Schumaker, V. N., Tseng, Y., Poon, P. H., Bianchino, A. C., and Zavodsky, P., 1989, Spontaneous activation of reconstituted and serum C 1 and the role of Cl-inhibitor, Behring Inst. Mitt. 84: 102–110.PubMedGoogle Scholar
  178. Schwaeble, W., Zwirner, J., Schultz, T. E., Linke, R. P. J., Derich, M. P., and Weiss, E. H., 1987, Human complement factor H: Expression of an additional truncated gene product of 43kDa in human liver, Eur. J. Immunol. 17: 1485–1490.PubMedCrossRefGoogle Scholar
  179. Schwaeble, W., Schweiger, H., Brooimans, R. A., Barbieri, A., Most, J., Hurson-Kaufmann, M., Lappin, D. F., Daha, M. R., Whaley, K., and Dierich, M. P., 1991, Human complement factor H: Tissue specificity in the expression of three different mRNA species, Eur. J. Biochem. 198: 399–404.PubMedCrossRefGoogle Scholar
  180. Sellar, G. C., Blake, D. J., and Reid, K. B. M., 1990, Characterisation and organisation of the genes encoding the A-, B- and C-chains of human complement subcomponent Clq. The complete derived amino acid sequence of human Clq, Biochem. J. 274: 481–490.Google Scholar
  181. Seya, T., Ballard, L. L., Bora, N. S., Kumar, B. V., Cui, W., and Atkinson, J. P., 1988, Distribution of membrane cofactor protein (MCP) of complement on human peripheral blood cells, Eur. J. Immunol. 18: 1289–1294.PubMedCrossRefGoogle Scholar
  182. Shiang, R., Murray, J. J., Merlin, C. C., Buetow, K. A., Wagmuth, J. J., Olney, S. A. H., Singer, W. G., and Goldberger, G. G., 1989, Mapping of the human complement factor I gene to 4q25, Genomics 4: 82–86.PubMedCrossRefGoogle Scholar
  183. Silverstein, S. C., and Loike, J. D., 1979, Phagocytosis, in Mononuclear Phagocytes: Functional Aspects ( R. Van Furth, ed.), pp. 895–917, Martinus Nijhoff, The Hague.Google Scholar
  184. St. John Sutton, M. B., Strunk, R. C., and Cole, F. S., 1986, Regulation of synthesis of the third component of complement and factor B in cord blood monocytes by lipopolysaccharide, J. Immunol. 136: 1366–1372.Google Scholar
  185. Strunk, R. C., Whitehead, A. S., and Cole, F. S., 1985, Pretranslational regulation of the synthesis of the third component of complement in human mononuclear phagocytes by the lipid A portion of lipopolysaccharide, J. Clin. Invest. 76: 985–990.PubMedCrossRefGoogle Scholar
  186. Sugita, Y., Nakano, Y., and Tomita, M., 1988, Isolation from human erythrocytes of a new membrane protein which inhibits the formation of complement transmembrane channels, J. Biochem. 104: 633–637.PubMedGoogle Scholar
  187. Takamura, R., and Werb, Z., 1984, Secretory products of macrophages and their physiological function, Am. J. Physiol. 246: 1–9.Google Scholar
  188. Takata, Y., Kinoshita, T., Kozono, H., Takada, J., Tanaka, E., Hong, K., and Inoue, K., 1987, Covalent association of C3b with C4b within C5 convertase of the classical pathway, J. Exp. Med. 165: 1494–1507.PubMedCrossRefGoogle Scholar
  189. Theriault, A., Whaley, K., McPhaden, A. R., Boyd, E., and Connor, J. M., 1990, Regional assignment of the human C1-inhibitor gene to I lql 1-g13.1, Hum. Genet. 84: 477–479.PubMedCrossRefGoogle Scholar
  190. Theriault, A., Boyd, E., Whaley, K., Sodetz, J. M., and Connor, J. M., 1992, Regional chromosomal assignment of genes encoding the a and ß subunits of human C8 to 1p32, Hum. Genet. 88: 703–704.PubMedCrossRefGoogle Scholar
  191. Tosi, M. C., Duponchel, C., Meo, T., and Julier, C., 1987, Complete cDNA sequence of human complement C 1 s and close physical linkage of the homologous genes C 1 s and C 1 r, Biochemistry 26: 8516–8524.PubMedCrossRefGoogle Scholar
  192. Trinchieri, O., and Perussia, B., 1985, Immune interferon: A pleotropic lymphokine with multiple effects, Immunol. Today 6: 131–136.CrossRefGoogle Scholar
  193. Vogt, W., Schmidt, G., Buttlar, B. V., and Dieminger, L., 1978, A new function of the activated third component of complement; binding to C5 is an essential step for C5 activation. Immunology 34: 29–40.PubMedGoogle Scholar
  194. Warnick, P. R., and Densen, P., 1991, Reduced C80-messenger RNA expression in families with hereditary C8ß deficiency, J. Immunol. 146: 1052–1056.PubMedGoogle Scholar
  195. Weiler, J. M., Daha, M. R., Austen, K. F., and Fearon, D. T., 1976, Control of the amplification convertase of complement by the plasma protein 01H, Proc. Natl. Acad. Sci. USA 73: 3268–3273.PubMedCrossRefGoogle Scholar
  196. Weissmann, G., Dukor, P., and Zurier, R. B., 1971, Effect of cyclic AMP on release of lysosomal enzymes from phagocytes, Nature (London) 231: 131–132.Google Scholar
  197. Wetsel, R. A., Lemons, R. S., Le Beau, M. M., Barnum, S. R., Noack, D., and Tack, B., 1988, Molecular analysis of human complement component C5: Localization of the structural gene to chromosome 9, Biochemistry 27: 1474–1482.PubMedCrossRefGoogle Scholar
  198. Whaley, K., 1980, Biosynthesis of the complement component and the regulatory proteins of the alterna- tive complement pathway by human peripheral blood monocytes, J. Exp. Med. 151: 501–516.PubMedCrossRefGoogle Scholar
  199. Whaley, K., 1985, Hemolytic assays, in Methods in Complement for Clinical Immunologists ( K. Whaley, ed.), pp. 77–139, Churchill Livingstone, Edinburgh.Google Scholar
  200. Whaley, K., 1987, The complement system, in Complement in Health and Disease ( K. Whaley, ed.), pp. 1–17, MTP Press, Lancaster, England.Google Scholar
  201. Whaley, K., and Ferguson, A., 1981, Molecular aspects of complement activation, Mol. Aspects Med. 4: 209–273.CrossRefGoogle Scholar
  202. Whaley, K., and Ruddy, S., 1976, Modulation of C3b hemolytic activity by a plasma protein distinct from C3b inactivator, Science 193: 1011–1013.PubMedCrossRefGoogle Scholar
  203. Whaley, K., Lappin, D., and Berkas, T., 1981, C2 synthesis by human monocytes is modulated by nicotinic cholinergic receptor, Nature (London) 293: 580–583.CrossRefGoogle Scholar
  204. Whaley, K., Lappin, D., and Hamilton, A. O., 1983, Serum treated antigen-antibody complexes inhibit the production of C2 and factor B by mononuclear phagocytes, Immunology 48: 255–263.PubMedGoogle Scholar
  205. Whitehead, A. S., Solomon, E., Chambers, S., Bodiner, W. F., Povey, S., and Fey, G., 1982, Assignment of the structural gene for the third component of human complement to chromosome 19, Proc. Natl. Acad. Sci. USA 79: 5021–5025.PubMedCrossRefGoogle Scholar
  206. Whitehead, A. S., Goldberger, G., Woods, D. E., Markham, A. F., and Colten, H. R., 1983, Use of a cDNA clone for the fourth component of human complement for analysis of a genetic deficiency of C4 in guinea pig, Proc. Natl. Acad. Sci. USA 80: 5387–5391.PubMedCrossRefGoogle Scholar
  207. Wilkinson, P. C., and Allen, R. B., 1979, The locomotor behaviour of human blood monocytes in chemotactic and chemokinetic environment and the role of substratum in monocyte locomotion, in Mononuclear Phagocytes: Functional Aspects ( R. Van Furthen, ed.), pp. 475–500, Martinus Nijhoff, The Hague.Google Scholar
  208. Winter, H., and Schweizer, J., 1983, Keratin synthesis in normal mouse epithelia and in squamous cell carcinomas: Evidence in tumors for marked mRNA species coding for high molecular weight keratin polypeptides, Proc. Natl. Acad. Sci. USA 80: 6480–6486.PubMedCrossRefGoogle Scholar
  209. Wu, L. C., Morley, B. J., and Campbell, R. D., 1987, Cell-specific expression of the human complement protein factor B gene: Evidence for the role of two distinct 5’ flanking elements, Cell 48: 331–342.PubMedCrossRefGoogle Scholar
  210. Yasmeen, D., Ellerson, J. R., Dorrington, K. J., and Painter, R. H., 1976, The structure and function of immunoglobulin domains. IV. The distribution of some effector functions among the C,2 and C,3 homology regions of human immunoglobulin G1, J. Immunol. 116: 518–526.PubMedGoogle Scholar
  211. Yeung-Laiwah, A. C., Jones, L, Hamilton, A. 0., and Whaley, K., 1985, Complement subcomponent Cl-inhibitor synthesis by human monocytes, Biochem. J. 226: 199–205.Google Scholar
  212. Yoon, C. H., and Fearon, D. T., 1985, Characterization of a soluble C3b/C4b receptor (CR1) in human plasma, J. Immunol. 134: 3332–3338.PubMedGoogle Scholar
  213. Young, J. D., Unkeless, J. C., Kaback, H. R., and Cohn, Z. A., 1982, Macrophage-membrane potential changes associated with 2b11 Fc receptor-ligand binding, Proc. Natl. Acad. Sci. USA 80: 1357–1361.CrossRefGoogle Scholar
  214. Yu, C. Y., Belt, K. T., Giles, C. M., Campbell, R. D., and Porter, R. R., 1986, Structural basis of the polymorphism of human complement components C4A and C4B: Gene size, reactivity and antigenicity, EMBO J. 5: 2873–2881.PubMedGoogle Scholar
  215. Ziccardi, R. J., and Cooper, N. R., 1977, The subunit composition and sedimentation properties of human Cl, J. Immunol. 118: 2047–2052.PubMedGoogle Scholar
  216. Ziccardi, R. J., and Cooper, N. R., 1979, Active disassembly of the first component CI by Cl-inactivator, J. Immunol. 123: 788–792.PubMedGoogle Scholar
  217. Zimmer, B., Hartung, H. P., Schartenberger, G., Bitter-Suermann, D., and Hadding, U., 1982, Quantitative studies of the secretion of complement component C3 by resident elicited and activated macrophages: Comparison with C2, C4 and lysosomal enzyme release, Eur. J. Immunol. 12: 126–130.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • D. Lappin
    • 1
  • K. Whaley
    • 1
  1. 1.University of Leicester Department of ImmunologyLeicester Royal InfirmaryLeicesterUK

Personalised recommendations