Advertisement

Origin of Macrophages

  • L. A. Ginsel
Part of the Blood Cell Biochemistry book series (BLBI, volume 5)

Abstract

Macrophages are the mature elements of the mononuclear phagocyte system (MPS) (Langevoort et al., 1970; Van Furth et al., 1972). This system was developed as a result of severe criticism of the original concept of the reticuloendothelial system (Aschoff, 1924) and comprises all cells that show avid phagocytosis. The mononuclear phagocyte concept considers all macrophages to be the recent progeny of bone marrow-derived monocytes, which traverse the circulation en route to various sites of the body, where they are needed in host defense processes.

Keywords

Kupffer Cell Mononuclear Phagocyte Resident Macrophage Mouse Peritoneal Macrophage Bone Marrow Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akagawa, K. S., Kamoshita, A., and Tokunaya, T., 1988, Effects of granulocyte-macrophage colony-stimulating factor-1 on the proliferation and differentiation of murine alveolar macrophages, J. Im-monol. 141: 3383–3390.Google Scholar
  2. Aschoff, L., 1924, Das reticulo-endotheliale system, Ergehn. Inn. Med. Kinderheilk. 26: 1–5.Google Scholar
  3. Austyn, J. M., and Gordon, S., 1981, F4/80, a monoclonal antibody directed specifically against the mouse macrophage, Eur. J. Immunol. 11: 805–815.PubMedCrossRefGoogle Scholar
  4. Baccarini, M., Kiderlen, A. F., Decker, T., and Lohmann-Matthes, M. L., 1986, Functional heterogeneity of murine macrophage precursor cells from spleen and bone marrow, Cell. Immunol. 101: 339–350.PubMedCrossRefGoogle Scholar
  5. Baccarini, M., Hao, L., and Decker, T., 1988, Macrophage precursors as natural killer cells against tumor cells and microorganisms, Nat. Immun. Cell. Growth Regul. 7: 316–327.PubMedGoogle Scholar
  6. Bainton, D. F. 1980, Changes in peroxidase distribution within organelles of blood monocytes and peritoneal macrophages after surface adherence in vitro and in vivo, in Mononuclear Phagocytes: Functional Aspects ( R. Van Furth, ed.), pp. 61–86, Martinus Nijhoff, The Hague.Google Scholar
  7. Beelen, R. H. J., and Fluitsma, D. M., 1982, What is the relevance of exudate-resident macrophages? Immunobiology 161: 266–273.PubMedCrossRefGoogle Scholar
  8. Beelen, R. H. J., and Walker, W. S., 1983, Dynamics of cytochemically distinct subpopulations of macrophages in elicited rat peritoneal exudates, Cell. Immunol. 82: 246–257.PubMedCrossRefGoogle Scholar
  9. Beelen, R. H. J., Broekhuis-Fluitsma, D. M., Kornfeld, C., and Hoefsmit, E. C. M., 1978, Identification of exudate-resident macrophage on the basis of peroxidatic activity, J. Reticuloendothel. Soc. 23: 103–110.PubMedGoogle Scholar
  10. Beelen, R. H. J., Fluitsma D. M., Van der Meer, J. W. M., and Hoefsmit, E. C. M., 1979, Development of different peroxidatic activity patterns in peritoneal macrophages in vivo and in vitro, J. Reticuloendothel. Soc. 25: 513–523.PubMedGoogle Scholar
  11. Beelen, R. H. J., Fluitsma, D. M., and Hoefsmit, E. C. M., 1980, The cellular composition of omentum milky spots and the ultrastructure of milky spot macrophages and reticulum cells, J. Reticuloendothel. Soc. 28: 585–599.PubMedGoogle Scholar
  12. Berman, J. W., and Busch, R. S., 1985, Thy-1 antigen expression by murine hematopoietic precursor cells, Exp. Hematol. 13: 1152–1156.PubMedGoogle Scholar
  13. Bitterman, P. B., Saltzmann, L. E., Adelberg, S., Ferrans, V. J., and Crystal, R. G., 1984, Alveolar macrophage replication. One mechanism for the expansion of the mononuclear phagocyte population in chronically inflamed lung, J. Clin. Invest. 74: 460–469.PubMedCrossRefGoogle Scholar
  14. Blok, J., Onderwater, J. J. M., de Water, R., and Ginsel, L. A., 1982, A cytochemical method for the demonstration of 5’-nucleotidase in mouse peritoneal macrophages, with cerium ions used as trapping agent, Histochemistry 75: 437–443.PubMedGoogle Scholar
  15. Blussé van Oud Alblas, A., and Van Furth, R., 1979, Origin, kinetics and characteristics of pulmonary macrophages in the normal steady state, J. Exp. Med. 149: 1504–1511.CrossRefGoogle Scholar
  16. Blussé van Oud Alblas, A., and Van Furth, R., 1982, The origin of pulmonary macrophages, Immunobiology 161: 186–192.CrossRefGoogle Scholar
  17. Blussé van Oud Alblas, A., Van der Linden-Schrever, B., and Van Furth, R., 1981, Origin and kinetics of pulmonary macrophages during an inflammatory reaction induced by intravenous administration of heat-killed bacillus Calmette-Guerin, J. Exp. Med. 154: 235–252.CrossRefGoogle Scholar
  18. Blussé van Oud Alblas, A., Mattie, H., and Van Furth, R., 1983, A quantative evaluation of pulmonary macrophage kinetics, Cell Tissue Kinet. 16: 276–281.Google Scholar
  19. Bodel, P. T., Nichols, B. A., and Bainton, D. F., 1977, Appearance of peroxidase reactivity within the rough endoplasmic reticulum of blood monocytes after surface adherence, J. Exp. Med. 145: 264–274.PubMedCrossRefGoogle Scholar
  20. Bodel, P. T., Nichols, B. A., and Bainton, D. F., 1978, Differences in peroxidase localization of rabbit peritoneal macrophages after surface adherence, Am. J. Pathol. 91: 107–118.PubMedGoogle Scholar
  21. Boswell, H. S., Wade, P. M., and Quesenberry, P. J., 1984, Thy-I antigen expression by murine high-proliferative capacity hematopoietic progenitor cells, J. Immunol. 133: 2940–2949.PubMedGoogle Scholar
  22. Bouwens, L., and Wisse, E., 1985, Proliferation, kinetics, and fate of monocytes in rat liver during a zymosan-induced inflammation, J. Leukocyte Biol. 37: 531–543.PubMedGoogle Scholar
  23. Bouwens, L., Baekeland, M., and Wisse, E., 1984, Importance of local proliferation in the expanding Kupffer cell population of rat liver after zymosan stimulation and partial hepatectomy, Hepatology 4: 213–219.PubMedCrossRefGoogle Scholar
  24. Bouwens, L., Baekeland, M., De Zanger, R., and Wisse, E., 1986a, Quantitation, tissue distribution and proliferation kinetics of Kupffer cells in normal rat liver, Hepatology 6: 718–722.PubMedCrossRefGoogle Scholar
  25. Bouwens, L., Knook, D. L., and Wisse, E., 1986b, Local proliferation and extrahepatic recruitment of liver macrophages (Kupffer cells) in partial-body irradiated rats, J. Leukocyte Biol. 39: 687–697.PubMedGoogle Scholar
  26. Bowden, D. H., and Adamson, I. Y. R., 1980, Role of monocytes and interstitial cells in the generation of alveolar macrophages. J. Kinetic studies of normal mice, Lab. Invest. 42: 511–517.Google Scholar
  27. Breatnach, A. S., 1978, Development and differentiation of dermal cells of man, J. Invest. Dermatol. 71: 2–8.CrossRefGoogle Scholar
  28. Bursuker, I., and Goldman, R., 1982, Distinct bone marrow precursors for mononuclear phagocytes expressing high and low 5’-nucleotidase activity, J. Cell. Physiol. 112: 237–242.PubMedCrossRefGoogle Scholar
  29. Bursuker, I., and Goldman, R., 1983, On the origin of macrophage heterogeneity: A hypothesis, J. Reticuloendothel. Soc. 33: 207–220.PubMedGoogle Scholar
  30. Bursuker, I., Thodes, J. M., and Goldman, R., 1982, 0-Galactosidase—an indicator of the maturational stage of mouse and human mononuclear phagocytes, J. Cell. Physiol. 112: 385–390.Google Scholar
  31. Byrne, P. V., Guilbert, L. J., and Stanley, E. R., 1981, Distribution of cells bearing receptors for a colony-stimulating factor (CSF-1) in murine tissues, J. Cell. Biol. 31: 848–853.CrossRefGoogle Scholar
  32. Coggle, J. E., and Tarling, J. D., 1984, The proliferation kinetics of pulmonary alveolar macrophages, J. Leukocyte Biol. 35: 317–327.PubMedGoogle Scholar
  33. Cohn, Z. A., and Benson, B., 1965, The differentiation of mononuclear phagocytes. Morphology, cytochemistry and biochemistry, J. Exp. Med. 121: 153–170.PubMedCrossRefGoogle Scholar
  34. Crofton, R. W., Diesselhoff-den Dulk, M. M. C., and Van Furth, R., 1978, The origin, kinetics, and characteristics of the Kupffer cells in the normal steady state, J. Exp. Med. 148: 1–17.PubMedCrossRefGoogle Scholar
  35. Cross, M., Mangelsdorf, I., Wedel, A., and Renkawitz, R., 1988, Mouse lysozyme M gene: Characterization and expression studies, Proc. Natl. Acad. Sci. USA 85: 6232–6236.PubMedCrossRefGoogle Scholar
  36. Daems, W. Th., 1980, Peritoneal macrophages, in The Reticuloendothelial System, a Comprehensive Treatise, Vol. 1, Morphology ( I. Carr and W. Th. Daems, eds.), pp. 57–127, Plenum Press, New York.Google Scholar
  37. Daems, W. Th., and De Bakker, J. M., 1982, Do resident macrophages proliferate? Immunobiology 161: 204–211.PubMedCrossRefGoogle Scholar
  38. Dantschakoff, W., 1908, Untersuchungen uber die Entwicklung des Blutes and des Bindegewebes bei den Vogeln. I. Die erste Entstehung der blutbildenes Organ, Anat. Hefte, Wiesb. 37: 471–479.Google Scholar
  39. Dawd, D. S., and Hinchcliff, J. R., 1971, Cell death is the “opaque path” in the central mesenchyme of the developing chick limb: A cytological, cytochemical, and electron microscope analysis, J. Embryo!. Exp. Morphol. 26: 401–424.Google Scholar
  40. De Bakker, J. M., 1983, On the origin of peritoneal resident macrophages, Thesis, University of Leiden, Leiden, The Netherlands.Google Scholar
  41. De Bakker, J. M., and Daems, W. Th., 1981, The heterogeneity of mouse peritoneal macrophages, in Heterogeneity of Mononuclear Phagocytes ( O. Landy, and M. Landy, eds.), pp. 11–13, Academic Press, London.Google Scholar
  42. De Bakker, J. M., De Wit, L., and Daems, W. Th., 1981, The relation between monocytes and resident (tissue) macrophages, in Haematology and Blood Transfusion, Vol. 27, Disorders of the Monocyte-Macrophage System ( F. Schmalzl, D. Huhn, and H. E. Schaefer, eds.), pp. 79–89, Springer-Verlag, Berlin.Google Scholar
  43. De Bakker, J. M., De Wit, A. W., Onderwater, J. J. M., Ginsel, L. A., and Daems, W. Th., 1985a, On the origin of peritoneal resident macrophages. I: DNA synthesis in mouse peritoneal resident macrophages, J. Submicrosc. Cytol. 17: 133–139.PubMedGoogle Scholar
  44. De Bakker, J. M., De Wit, A. W., Woelders, H., Ginsel, L. A., and Daems, W. Th., 1985b, On the origin of peritoneal resident macrophages. II: Recovery of the resident macrophage population in the peritoneal cavity and in the milky spots after peritoneal cell depletion, J. Submicrosc. Cytol. 17: 141–151.PubMedGoogle Scholar
  45. De Bakker, J. M., De Wit, A. W., Koerten, H. K., Ginsel, L. A., and Daems, W. Th., 1985c, On the origin of peritoneal resident macrophages. III: EM-immunocytochemical studies on the origin of mouse peritoneal resident macrophages, J. Submicrosc. Cytol. 17: 153–159.PubMedGoogle Scholar
  46. Decker, T., Baccarini, M., and Lohmann-Matthes, M. L., 1986a, Liver-associated macrophage precursors as natural cytotoxic effectors against Candida albicans and Yac-1 cells, Eur. J. Immunol. 16: 693–699.PubMedCrossRefGoogle Scholar
  47. Decker, T., Baccarini, M., and Lohmann-Matthes, M. L., 1986b, Bone marrow-independent induction of organ-associated macrophage precursors, Immunobiology 173: 383–389.Google Scholar
  48. DeFelici, M., Heasman, J., Wylie, C. C., and McLaren, A., 1986, Macrophages in the urogenital ridge of the mid-gestation mouse fetus, Cell Differ. 18: 119–129.CrossRefGoogle Scholar
  49. Deimann, W., and Fahimi, H. D., 1978, Peroxidase cytochemistry and ultrastructure of resident macrophages in fetal rat liver. A developmental study, Dev. Biot. 66: 43–56.CrossRefGoogle Scholar
  50. Deimann, W., Seitz, M., Gemsa, D., and Fahimi, H. D., 1984, Endogenous peroxidase in the nuclear envelope and endoplasmic reticulum of human monocytes in vitro: Association with arachidonic acid metabolism, Blood 64: 491–498.PubMedGoogle Scholar
  51. De Water, R., Van’t Noordende, J. M., Ginsel, L. A., and Daems, W. Th., 1981, Heterogeneity in wheatgerm agglutinin binding by mouse peritoneal macrophages, Histochemistry 72: 333–339.PubMedCrossRefGoogle Scholar
  52. De Water, R., Van Blitterswijk, C. A., Daems, W. Th., and Ginsel, L. A., 1982, Heterogeneity ofconcanavalin A binding by mouse peritoneal macrophages, Histochemistry 74: 301–307.PubMedCrossRefGoogle Scholar
  53. De Water, R., Ginsel, L. A., de Bakker, J. M., Blok, J., and Daems, W. Th., 1984a, Cytochemical probes for the characterization of peritoneal macrophages, in Mononuclear Phagocyte Biology ( A. Volkman, eds.), pp. 167–188, Marcel Dekker, New York.Google Scholar
  54. De Water, R., Van’t Noordende, J. M., Daems, W. Th., and Ginsel, L. A., 1984b, Wheat-germ agglutinin binding in four types of mouse peritoneal macrophage: A quantitative EM-cytochemical study, Histochemistry 80: 449–456.PubMedCrossRefGoogle Scholar
  55. De Water, R., Van der Meer, J. W. M., Van’t Noordende, J. M., Onderwater, J. J. M., Van de Gevel, J. S., and Ginsel, L. A., 1985, Expression of 5’-nucleotidase activity and wheat germ agglutinin binding sites in mononuclear phagocytes from bone-marrow cultures, J. Leukocyte Biol. 37: 263–277.PubMedGoogle Scholar
  56. Diesselhoff-den Dulk, M. M. C., Crofton, R. W., and Van Furth, R., 1979, Origin and kinetics of Kupffer cells during an acute inflammatory response, Immunology 37: 7–14.Google Scholar
  57. Dougherty, G. J., and McBride, W. H., 1984, Macrophage heterogeneity, J. Clin. Lab. Immunol. 14: 1–11.PubMedGoogle Scholar
  58. Evans, M. J., Shami, S. G., and Martinez, L. A., 1986, Enhanced proliferation of pulmonary alveolar macrophages after carbon installation in mice depleted of blood monocytes by strontium-89, Lab. Invest. 54: 154–159.PubMedGoogle Scholar
  59. Ginsel, L. A., 1987, F4/80 and peroxidatic activity of macrophages, J. Histochem. Cytochem. 35: 1168–1170.PubMedCrossRefGoogle Scholar
  60. Ginsel, L. A., De Water, R., Onderwater, J. J. M., Blok, J., and Daems, W. Th., 1983, Heterogeneity in 5’-nucleotidase activity of mouse peritoneal macrophages. An EM-cytochemical and biochemical study, Histochemistry 79: 295–309.PubMedCrossRefGoogle Scholar
  61. Ginsel, L. A., de Water, R., Blok, J., and Daems, W. Th., 1984, Cell-surface heterogeneity in mouse peritoneal macrophages: 5’-Nucleotidase and wheat-germ agglutinin binding, in Tissue Culture and RES ( P. Rölich and E. Bâcsy, eds.), pp. 11–25, Akadémia Kiadb, Budapest.Google Scholar
  62. Ginsel, L. A., Rijfkogel, L. P., and Daems, W. Th., 1985a, A dual origin of macrophages? Review and hypothesis, in Macrophage Biology ( S. Reichert and M. Kojima, eds.), pp. 621–649, Alan R. Liss, New York.Google Scholar
  63. Ginsel, L. A., De Water, R., Van der Meer, J. W. M., and Daems, W. Th., 1985b, Heterogeneity of 5’-nucleotidase activity and wheat-germ agglutinin binding in mononuclear phagocytes, in Mononuclear Phagocytes: Characteristics, Physiology and Function ( R. Van Furth, ed.), pp. 99–113, Martinus Nijhoff, Dordrecht.CrossRefGoogle Scholar
  64. Ginsel, L. A., De Goede, R., Huisman, E., Rook, M., Van’t Noordende, J. M., and Onderwater, J. J. M., 1992, Origin of resident macrophages and their (PO-negative) precursor cultured from mouse blood samples, submitted.Google Scholar
  65. Golde, D. W., and Lisken, A. B., 1974, Proliferative capacity of human alveolar macrophage, Nature (London) 247: 373–375.CrossRefGoogle Scholar
  66. Gordon, S., 1986, Biology of the macrophage, J. Cell Sci. Suppl. 4: 267–286.PubMedGoogle Scholar
  67. Gordon, S., Crocker, P., Lee, S. H., Morris, L., and Raboniwitz, S., 1986, Trophic and defense functions of murine macrophages, in Mechanisms of Host Resistance to Infectious Agents, Tumors, and Allografts ( R. M. Steinman and R. J. North, eds.), pp. 121–137, Rockefeller University Press, New York.Google Scholar
  68. Goud, T. J. L. M., and Van Furth, R., 1975, Proliferative characteristics of monoblasts grown in vitro, J. Exp. Med. 142: 1200–1217.PubMedCrossRefGoogle Scholar
  69. Goud, T. J. L. M., Schotte, C., and Van Furth, R., 1975, Identification and characterization of the mono-blast in mononuclear phagocyte colonies grown in vitro, J. Exp. Med. 142: 1180–1199.PubMedCrossRefGoogle Scholar
  70. Hirsch, S., Austyn, J. M., and Gordon, S., 1981, Expression of the macrophage specific antigen F4/80 during differentiation of mouse bone marrow cells in culture, J. Exp. Med. 154: 713–725.PubMedCrossRefGoogle Scholar
  71. Hume, D. A., Robinson, A. P., MacPherson, G. G., and Gordon, S., 1983, The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80. Relationship between macrophages, Langerhans cells, reticular cells, and dendritic cells in lymphoid and hematopoietic organs, J. Exp. Med. 158: 1522–1536.PubMedCrossRefGoogle Scholar
  72. Janossy, G., Bofill, M., Poultner, L. W., Rawlings, E., Burford, G. D., Navarret, C., Ziegler, A., and Kelemen, E., 1986, Separate ontogeny of two macrophage-like accessory cell populations in the human fetus, J. Immunol. 136: 4354–4361.PubMedGoogle Scholar
  73. Langevoort, H. L., Cohn, Z. A., Hirsch, J. G., Humphrey, J. H., Spector, W. G., and Van Furth, R., 1970, The nomenclature of mononuclear phagocytic cells. Proposal for a new classification, in Mononuclear Phagocytes ( R. van Furth, ed.), pp. 1–6, Blackwell Scientific, Oxford.Google Scholar
  74. Lee, K. C., 1980, On the origin and mode of action of functionally distinct macrophage subpopulations, Mol. Cell. Biochem. 30: 39–55.PubMedCrossRefGoogle Scholar
  75. Lee, S. H., Starkey, P. M., and Gordon, S., 1985, Quantitative analysis of total macrophage content in adult mouse tissues, Immunochemical studies with monoclonal antibody F4/80, J. Exp. Med. 161: 475–489.PubMedCrossRefGoogle Scholar
  76. Leenen, P. J. M., Jansen, A. M. A. C., and Ewijk, W. V., 1986, Murine macrophage cell lines can be ordered in a linear differentiation sequence, Differentiation 32: 157–164.PubMedCrossRefGoogle Scholar
  77. Leenen, P. J. M., Slieker, W. A. T., Melis, M., and Van Ewijk, W., 1990a, Murine macrophage precursor characterization I. Production, phenotype and differentiation of macrophage precursor hybrids, Eur. J. Immunol. 20: 15–25.PubMedCrossRefGoogle Scholar
  78. Leenen, P. J. M., Melis, M., Slieker, W. A. T., and Van Ewijk, W., 1990b, Murine macrophage precursor characterization 11. Monoclonal antibodies against macrophage precursor antigens, Eur. J. Immunol. 20: 27–34.PubMedCrossRefGoogle Scholar
  79. Lin, H. S., Kuhn, C., and Kuo, T., 1975, Clonal growth of hamster free alveolar cells in soft agar, J. Exp. Med. 142: 877–886.PubMedCrossRefGoogle Scholar
  80. Lin, H. S., Lokeshwar, B. L., and Hsu, S., 1989, Both granulocyte-macrophage CSF and macrophage CSF control the proliferation and survival of the same subset of alveolar macrophages, J. Immunol. 142: 515–519.PubMedGoogle Scholar
  81. Lohmann-Matthes, M. L., Domzig, W., and Roder, J., 1979, Promonocytes have the functional characteristics of natural killer cells, J. Immunol. 123: 1883–1886.PubMedGoogle Scholar
  82. Lombard, Y., Bartholeyns, J., Chockri, M., Illinger, D., Hartmann, D., Dumont, S., Kaufmann, S. H. E., Landmann, R., Loor, F., and Poindron, P., 1988, Establishment and characterization of long-term cultured cell lines of murine resident macrophages, J. Leukocyte Biol. 44: 391–401.PubMedGoogle Scholar
  83. Malorny, U., Michels, E., and Sorg, C., 1986, A monoclonal antibody against an antigen present on mouse macrophages and absent from monocytes, Cell Tissue Res. 243: 421–428.PubMedCrossRefGoogle Scholar
  84. Maximow, A., 1909, Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung and im postfoetalen Leben der Saugetiere, Folia Haematol. 8: 125–132.Google Scholar
  85. Melnicoff, J. J., Horan, P. K., Breslin, E. W., and Morahan, P. S., 1988, Maintenance of peritoneal macrophages in the steady state, J. Leukocyte Biol. 44: 367–375.PubMedGoogle Scholar
  86. Melnicoff, M. J., Horan, P. K., and Morahan, P. S., 1989, Kinetics of changes in peritoneal cell populations following acute inflammation, Cell. Immunol. 118: 178–191.PubMedCrossRefGoogle Scholar
  87. Metcalf, D., 1984, The Hemopoietic Colony Stimulating Factors, Elsevier, Amsterdam.Google Scholar
  88. Metcalf, D., 1988, The Molecular Control of Blood Cells, Harvard University Press, Cambridge, Mass.Google Scholar
  89. Moore, M. A. S., and Owen, J. J. T., 1965, Chromosome marker studies on the development of the haemopoietic system in the chick embryo, Nature (London) 208: 965–967.Google Scholar
  90. Moore, M. A. S., and Owen, J. J. T., 1967, Stem cell migration in developing myeloid and lymphoid systems, Lancet 1: 658–659.CrossRefGoogle Scholar
  91. Morahan, P. S., Volkman, A., Melnicoff, M. J., and Dempsey, W. L., 1988, Macrophage heterogeneity, in Macrophages and Cancer ( G. H. Heppner and A. Fulton, eds.), p. 1–37, CRC Press, Boca Raton, Fla.Google Scholar
  92. Naito, M., Takahashi, K., Takahashi, H., and Kojima, M., 1982, Ontogenetic development of Kupffer cells, in Sinusoidal Liver Cells ( E. Wisse and D. L. Knook, eds.), pp. 155–161, Elsevier Biomedical Press, Amsterdam.Google Scholar
  93. Naito, M., Yamamura, F., Nishikawa, S. J., and Takahashi, K., 1989, Development, differentiation and maturation of fetal mouse yolk sac macrophages in cultures, J. Leukocyte Biol. 46: 1–10.PubMedGoogle Scholar
  94. Naito, M., Takahashi, K., and Nishikawa, S., 1990, Development, differentiation, and maturation of macrophages in the fetal mouse liver, J. Leukocyte Biol. 48: 27–37.PubMedGoogle Scholar
  95. Nakata, K., Akagawa, K. S., Fukayama, M., Hayashi, Y., Kadokura, M., and Tokunaya, T., 1991, Granulocyte-macrophage colony-stimulating factor promotes the proliferation of human alveolar macrophages in vitro, J. Immunol. 147: 1266–1272.PubMedGoogle Scholar
  96. Neumann, C., and Sorg, C., 1980, Sequential expression of functions during macrophage differentiation in murine bone marrow liquid cultures, Eur. J. Immunol. 10: 834–840.PubMedCrossRefGoogle Scholar
  97. Nibbering, P. H., Leijh, P. C. J., and Van Furth, R., 1987, Quantitative immunocytochemical characterization of mononuclear phagocytes. I. Monoblasts, promonocytes, monocytes, and peritoneal and alveolar macrophages, Cell. Immunol. 105: 374–385.PubMedCrossRefGoogle Scholar
  98. Nicola, N. A., 1987, Why do hemopoietic growth factor receptors interact with each other? Immunol. Today 8: 134–140.CrossRefGoogle Scholar
  99. Noga, S. J., Normann, S. J., and Weiner, R. S., 1984, Methods in laboratory investigation, isolation of guinea pig monocytes and Kurloff cells: Characterization of monocyte subsets by morphology, cytochemistry, and adherence, Lab. Invest. 51: 244–252.PubMedGoogle Scholar
  100. Ogawa, M., Porter, P. N., and Nakahata, T., 1983, Renewal and commitment to differentiation of hemopoietic stem cells (an interpretive review), Blood 61: 823–829.PubMedGoogle Scholar
  101. Oka, K., Miyazaki, M., and Kojima, M., 1982, An electron microscopical study on peroxidase activity of rabbit monocytes, resident and exudate macrophages, Acta Pathol. Jpn. 32: 445–460.PubMedGoogle Scholar
  102. Papadimitriou, J. M., and Ashman, R. B., 1989, Macrophages: Current views on their differentiation, structure, and function, Ultrastruct. Pathol. 13: 343–372.PubMedCrossRefGoogle Scholar
  103. Sawyer, R. T., 1986a, The ontogeny of pulmonary alveolar macrophages in parabiotic mice, J. Leukocyte Biol. 40: 347–353.PubMedGoogle Scholar
  104. Sawyer, R. T. 1986b, The significance of local resident pulmonary alveolar macrophage proliferation to population renewal, J. Leukocyte Biol. 39: 77–87.PubMedGoogle Scholar
  105. Sawyer, R. T., Strausbauch, P. H., and Volkman, A., 1982, Resident macrophage proliferation in mice depleted of blood monocytes by strontium-89, Lab. Invest. 46: 165–170.PubMedGoogle Scholar
  106. Shellito, J., Esparza, C., and Armstrong, C., 1987, Maintenance of the normal rat alveolar macrophage cell population, Am. Rev. Respir. Dis. 135: 78–82.PubMedGoogle Scholar
  107. Shibata, Y., and Volkman, A., 1985a, The effect of bone marrow depletion on prostaglandin E-producing suppressor macrophages in mouse spleen, J. Immunol. 135: 3897–3904.PubMedGoogle Scholar
  108. Shibata, Y., and Volkman, A., 1985b, The effect of hemopoietic microenvironment on splenic suppressor macrophages in congenitally anemic mice of genotype SI/SI3, I Immunol. 135: 3905–3910.Google Scholar
  109. Springer, T. A., 1980, Cell-surface differentiation in the mouse. Characterization of “jumping” and “lineage” antigens using xenogeneic rat monoclonal antibodies, in Monoclonal Antibodies. Hybridomas; A New Dimension in Biological Analysis ( R. H. Kennett, T. J. McKearn, and K. B. Bechtol, eds.), pp. 305–313, Academic Press, New York.Google Scholar
  110. Stewart, C., Lin, H., and Adles, C., 1978, Proliferation and colony-forming activity of peritoneal exudate cells in liquid culture, J. Exp. Med. 147: 1253–1259.PubMedCrossRefGoogle Scholar
  111. Takahashi, K., Yamamura, F., and Naito, M., 1989, Differentiation, maturation and proliferation of macrophages in the mouse yolk sac: A light-microscopic, enzyme-cytochemical, immunohistochemical, and ultrastructural study, J. Leukocyte Biol. 45: 87–96.PubMedGoogle Scholar
  112. Tarling, J. D., Lin, H. S., and Hsu, S., 1987, Self-renewal of pulmonary alveolar macrophages: Evidence from radiation chimera studies, J. Leukocyte Biol. 42: 443–446.PubMedGoogle Scholar
  113. Thompson, J., and Van Furth, R., 1970, The effect of glucocorticosteroids on the kinetics of mononuclear phagocytes, J. Exp. Med. 131: 429–449.PubMedCrossRefGoogle Scholar
  114. Thompson, J., and Van Furth, R., 1973, The effect of glucocorticosteroids on the proliferation and kinetics of promonocytes in the bone marrow, J. Exp. Med. 137: 10–21.PubMedCrossRefGoogle Scholar
  115. Treves, A. J., 1984, The origin of monocyte-macrophage heterogeneity: Possible alternatives, Med. Hypothes. 14: 335–346.CrossRefGoogle Scholar
  116. Van der Meer, J. W. M., Beelen, R. H. J., Fluitsma, D. M., and Van Furth, R., 1979, Ultrastructure of mononuclear phagocytes developing in liquid bone marrow cultures: A study on peroxidative activity, J. Exp. Med. 149: 17–26.PubMedCrossRefGoogle Scholar
  117. Van der Meer, J. W. M., Van de Gevel, J. S., and Van Furth, R., 1983, Characteristics of long-term cultures of proliferating, mononuclear phagocytes from bone marrow, J. Reticuloendothel. Soc. 34: 203–225.PubMedGoogle Scholar
  118. Van der Meer, J., Van de Gevel, J. S., De Water, R., Ginsel, L. A., Wouters, C., Daems, W. Th., and Van Furth, R., 1985, Proliferation and differentiation of mononuclear phagocytes in vitro, in Mononuclear Cells (R. Van Furth, ed.), pp. 243–254, Martinus Nijhoff, The Hague.CrossRefGoogle Scholar
  119. Van Furth, R., 1980, Cells of the mononuclear phagocyte system. Nomenclature in terms of sites and conditions, in Mononuclear Phagocytes: Functional Aspects ( R. Van Furth, ed.), pp. 1–30, Martinus Nijhoff, The Hague.Google Scholar
  120. Van Furth, R., 1981, Current view of the mononuclear phagocyte system, in Haematology and Blood Transfusion, Vol. 27, Disorders of the Monocyte-Macrophage System ( F. Schmalzl, D. Huhn, and H. E. Schaefer, eds.), pp. 3–10, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  121. Van Furth, R., 1988, Phagocytic cells: Development and distribution of mononuclear phagocytes in normal steady state and inflammation, in Inflammation: Basic Principles and Clinical Correlates (J. I. Gallin, I. M. Goldstein, and R. Snyderman, eds.), pp. 281–295, Raven Press, New York.Google Scholar
  122. Van Furth, R., 1989, Origin and turnover of monocytes and macrophages, in Cell Kinetics of the Inflammatory Reaction (O. H. Iversen, ed.), Current Topics in Pathology, pp. 125–150, Springer-Verlag, Heidelberg.Google Scholar
  123. Van Furth, R., and Cohn, Z. A., 1968, The origin and kinetics of mononuclear phagocytes, J. Exp. Med. 128: 415–433.PubMedCrossRefGoogle Scholar
  124. Van Furth, R., and Diesselhoff-den Dulk, M. M. C., 1970, The kinetics of promonocytes and monocytes in the bone marrow, J. Exp. Med. 132: 813–828.PubMedCrossRefGoogle Scholar
  125. Van Furth, R., and Diesselhoff-den Dulk, M. M. C., 1982, Characterization of mononuclear phagocytes from the mouse, guinea pig, rat, and man, Inflammation 6: 39–53.PubMedCrossRefGoogle Scholar
  126. Van Furth, R., and Diesselhoff-den Dulk, M. M. C., 1984, Dual origin of mouse spleen macrophages, J. Exp. Med. 160: 1273–1283.PubMedCrossRefGoogle Scholar
  127. Van Furth, R., and Sluiter, W., 1986, Distribution of blood monocytes between a marginating and a circulating pool, J. Exp. Med. 163: 474–479.PubMedCrossRefGoogle Scholar
  128. Van Furth, R., Cohn, Z. A., Hirsch, J. G., Humphrey, J. H., Spector, W. G., and Langevoort, H. L., 1972, The mononuclear phagocyte system: A new classification of macrophages, monocytes and their precursor, Bull. WHO 46: 845–852.PubMedGoogle Scholar
  129. Van Furth, R., Diesselhoff-den Dulk, M. M. C., and Mattie, H., 1973, Quantitative study on the production and kinetics of mononuclear phagocytes during an acute inflammatory reaction, J. Exp. Med. 138: 1314–1321.PubMedCrossRefGoogle Scholar
  130. Van Furth, R., Diesselhoff-den Dulk, M. M. C., Sluiter, W., and Van Dissel, J. T., 1985, New perspectives on the kinetics of mononuclear phagocytes, in Mononuclear Phagocytes: Characteristics, Physiology and Function ( R. Van Furth, ed.), pp. 201–208, Martinus Nijhoff, Dordrecht.Google Scholar
  131. Van Rooijen, N., Kors, N., and Kraal, G., 1989, Macrophage subset repopulation in the spleen: Differential kinetics after liposome-mediated elimination, J. Leukocyte Biol. 45: 97–104.PubMedGoogle Scholar
  132. Volkman, A., Chang, N. C., Strausbauch, P. H., and Morahan, P. S., 1983, Differential effects of chronic monocyte depletion on macrophage populations, Lab. Invest. 49: 291–298.PubMedGoogle Scholar
  133. Walker, W. S., 1982. Macrophage functional heterogeneity, Adv. Exp. Med. Biol. 155: 435–441.PubMedCrossRefGoogle Scholar
  134. Walker, W. S., 1987, Origins of macrophage diversity: Functional and phenotypic analysis of cloned populations of mouse splenic macrophages, Cell. Immunol. 107: 417–432.PubMedCrossRefGoogle Scholar
  135. Walker, W. S., and Hester, R. B., 1983, The functional heterogeneity of macrophages, in The Reticuloen- dothelial System ( J. A. Bellanti and H. B. Herscowitz, eds.), pp. 27–42, Plenum Press, New York.Google Scholar
  136. Walker, E. B., Akporiaye, E. T. Warner, N. L., and Stewart, C. C., 1985, Characterization of subsets of bone marrow-derived macrophages by flow cytometry analysis, J. Leukocyte Biol. 37: 121–136.PubMedGoogle Scholar
  137. Warnock, M. L., Sniezek, M., and Shellito, J., 1987, Endogenous peroxidase activity as a marker of macrophage renewal during BCG-induced inflammation in the rat, Am. J. Pathol. 128: 171–180.PubMedGoogle Scholar
  138. Watt, S. M., Karhi, K., Gatter, K., Furley, A. J. W., Katz, F. E., Healy, L. E., Altass, L. J., Bradley, N. J., Sutherland, D. R., Levinsky, R., and Greaves, M. F., 1987, Distribution and epitope analysis of the cell membrane glycoprotein (HPCA-1) associated with human hemopoietic progenitor cells, Leukemia 1: 417–426.PubMedGoogle Scholar
  139. Werb, Z., and Chin, J. R., 1983, Onset of apoprotein E secretion during differentiation of mouse bone marrow-derived mononuclear phagocytes, J. Cell Biol. 97: 1113–1118.PubMedCrossRefGoogle Scholar
  140. Widmann, J. J., and Fahimi, H. D., 1975, Proliferation of mononuclear cells (Kupffer cells) and endothelial cells in regenerating rat liver. A light and electron microscopic cytochemical study, Am. J. Pathol. 80: 349–366.PubMedGoogle Scholar
  141. Wisse, E., Van der Meulen, J., and Van’t Noordende, J. M., 1974, Kupffer cell reactions in rat liver under various conditions as observed in the electron microscope, J. Ultrastruct. Res. 46: 499–520.PubMedCrossRefGoogle Scholar
  142. Yamada, M., Naito, M., and Takahashi, K., 1990, Kupffer cell proliferation and glucan-induced granuloma formation in mice depleted of blood monocytes by strontium-89, J. Leukocyte Biol. 47: 195–205.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • L. A. Ginsel
    • 1
    • 2
  1. 1.Laboratory for Electron MicroscopyUniversity of LeidenLeidenThe Netherlands
  2. 2.Department of Cell Biology and HistologyUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations