Carbohydrate-Recognition Proteins of Macrophages and Related Cells

  • Maureen E. Taylor
Part of the Blood Cell Biochemistry book series (BLBI, volume 5)


The widespread distribution of complex carbohydrates and the variety of different naturally occurring structures form the basis for the hypothesis that carbohydrates act as recognition elements. There is experimental evidence for the involvement of carbohydrates in cell—cell adhesion, in interaction of cells with the extracellular matrix, and in specific recognition of one cell by another (Yamada, 1983; Edelman, 1985; Hook et al., 1984, Rademacher et al., 1988). For carbohydrates to act as recognition elements, there must be other molecules that selectively interact with them. Lectins, which are nonenzymatic, nonimmune proteins that bind to carbohydrates (Sharon and Lis, 1989), have the potential to fulfill this function. Many animal lectins have been isolated, from a wide variety of tissues and cell types. Before considering lectins of macrophages and related cells, the properties of animal lectins in general will be reviewed briefly.


Kupffer Cell Peritoneal Macrophage Mannose Receptor Asialoglycoprotein Receptor Zymosan Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrwal, N., Wang, J. L., and Voss, P. G., 1989, Carbohydrate-binding protein 35. Levels of transcription and mRNA accumulation in quiescent and proliferating cells, J. Biol. Chem. 264: 17236–17242.PubMedGoogle Scholar
  2. Albrandt, K., Orida, N. K., and Liu, F. T., 1987, An IgE-binding protein with a distinctive repetitive sequence and homology with an IgG receptor, Proc. Natl. Acad. Sci. USA 84: 6859–6863.PubMedCrossRefGoogle Scholar
  3. Bettler, B., Maier, R., Ruegg, D., and Hoffstetter, H., 1989, Binding site for IgE of the human lymphocyte low-affinity Fcc receptor (Fc /CD23) is confined to the domain homologous with animal lectins, Proc. Natl. Acad. Sci. USA 86: 7118–7122.PubMedCrossRefGoogle Scholar
  4. Bevilacqua, M. P., Stengelin, S., Gimbrone, M. A., Jr., and Seed, B., 1989, Endothelial leukocyte adhesion molecule 1: An inducible receptor for neutrophils related to complement regulatory proteins and lectins, Science 243: 1160–1165.PubMedCrossRefGoogle Scholar
  5. Bezouska, K., Crichlow, G. V., Rose, J. M., Taylor, M. E., and Drickamer, K., 1991, Evolutionary conservation of intron position in a subfamily of genes encoding carbohydrate-recognition domains, J. Biol. Chem. 266:11604–11609Google Scholar
  6. Boyle, D., Tien, L., Cooper, N. G. F., Shepherd, V. L., and McLaughlin, B. J., 1991, A mannose receptor is involved in retinal phagocytosis, Invest. Ophthalmol. Visual Sci. 32: 1464–1470.Google Scholar
  7. Brandley, B. K., Sweidler, S. J., and Robbins, P. W., 1990, Carbohydrate ligands of the LEC cell adhesion molecules, Cell 63: 861–863.PubMedCrossRefGoogle Scholar
  8. Canfield, W. M., Johnson, K. F., Richard, D. Y., Gregory, W., and Kornfeld, S., 1991, Localization of the signal for rapid internalization of the bovine cation-independent mannose 6-phosphate/insulin-like growth factor-II receptor to amino acids 24–29 of the cytoplasmic tail, J. Biol. Chem. 266: 5682–5688.PubMedGoogle Scholar
  9. Capron, A., Dessaint, J. P., Capron, M., Joseph, M., Ameisen, J. C., and Tonnel, A. B., 1986, From parasites to allergy: A second receptor for IgE, Immunol. Today 7: 15–18.CrossRefGoogle Scholar
  10. Chakraborty, P., and Das, P. K., 1988, Role of mannose/N-acetylglucosamine receptors in blood clearance and cellular attachment of Leishmania donovani, Mol. Biochem. Parasitol. 28: 55–62.PubMedCrossRefGoogle Scholar
  11. Chakraborty, P., Bhaduri, A. N., and Das, P. K., 1990, Sugar receptor mediated drug delivery to macrophages in the therapy of experimental visceral leishmaniasis, Biochem. Biophys. Res. Commun. 166: 404–410.PubMedCrossRefGoogle Scholar
  12. Chen, W. J., Goldstein, J. L., and Brown, M. S., 1990, NPXY, a sequence often found in cytoplasmic tails, is required for coated-pit mediated internalization of low density lipoprotein receptor, J. Biol. Chem. 265: 3116–3123.PubMedGoogle Scholar
  13. Cherayil, B. J., Weiner, S. J., and Pillai, S., 1989, The Mac-2 antigen is a galactose-specific lectin that binds IgE, J. Exp. Med. 170: 1959–1972.PubMedCrossRefGoogle Scholar
  14. Cherayil, B. J., Chaitovitz, S., Wong, C., and Pillai, S., 1990, Molecular cloning of a human macrophage lectin specific for galactose, Proc. Natl. Acad. Sci. USA 87: 7324–7328.PubMedCrossRefGoogle Scholar
  15. Childs, R. A., Feizi, T., Yuen, C. T., Drickamer, K., and Quesenberry, M. S., 1990, Differential recognition of core and terminal portions of oligosaccharide ligands by carbohydrate-recognition domains of two mannose binding proteins, J. Biol. Chem. 265: 20770–20777.PubMedGoogle Scholar
  16. Clohisy, D. R., Bar-Shavit, Z., Chappel, J. C., and Teitelbaum, S. L., 1989, Dihydroxy vitamin D3 modulates bone marrow macrophage precursor proliferation and differentiation, J. Biol. Chem. 264: 2385–2390.Google Scholar
  17. Crittenden, S. L., Roff, C. F., and Wang, J. L., 1984, Carbohydrate-binding protein 35: Identification of the galactose-specific lectin in various tissues of mice, Mol. Cell. Biol. 4: 1252–1259.PubMedGoogle Scholar
  18. Crocker, P. R., and Gordon, S., 1986, Properties and distribution of a lectin-like hemagglutinin differentially expressed by murine stromal tissue macrophages, J. Exp. Med. 164: 1862–1875.PubMedCrossRefGoogle Scholar
  19. Crocker, P. R., and Gordon, S., 1989, Mouse macrophage hemagglutinin (sheep erythrocyte receptor) with specificity for sialylated glycoconjugates characterized by a monoclonal antibody, J. Exp. Med. 169: 1333–1346.PubMedCrossRefGoogle Scholar
  20. Crocker, P. R., Kelm, S., Dubois, C., Martin, B., McWilliam, A. S., Shotton, D. M., Paulson, J. C., and Gordon, S., 1991, Purification and properties of sialoadhesin, a sialic acid-binding receptor of murine tissue macrophages, EMBO J. 10: 1661–1669.PubMedGoogle Scholar
  21. Czop, J. K., and Austen, K. F., 1985, A ß-glucan inhibitable receptor on human monocytes: Its identity with the phagocytic receptor for particulate activators of the alternative complement pathway, J. Immunol. 134: 2588–2593.PubMedGoogle Scholar
  22. Czop, J. K., and Kay, J., 1991, Isolation and characterization of ß-glucan receptors on human mononuclear phagocytes, J. Exp. Med. 173: 1511–1520.PubMedCrossRefGoogle Scholar
  23. Czop, J. K., Fearon, D. T., and Austen, K. F., 1978, Opsonin-independent phagocytosis of activators of the alternative complement pathway by human monocytes, J. Immunol. 120: 1132–1138.PubMedGoogle Scholar
  24. Czop, J. K., Puglisi, A. V., Miorandi, D. Z., and Austen, K. F., 1988, Perturbation of ß-glucan receptors on human neutrophils initiates phagocytosis and leukotriene B, production, J. Immunol. 141: 3170–3176.PubMedGoogle Scholar
  25. Czop, J. K., Gurish, M. F., and Kadish, J. L., 1990, Production and isolation of rabbit anti-idiotypic antibodies directed against the human monocyte receptor for yeast ß-glucans, J. Immunol. 145: 995–1001.PubMedGoogle Scholar
  26. Dahms, M. N., Lobel, P., and Kornfeld, S., 1989, Mannose 6-phosphate receptors and lysosomal enzyme targeting, J. Biol. Chem. 264: 12115–12118.PubMedGoogle Scholar
  27. Drickamer, K., 1988a, Two distinct classes of carbohydrate-recognition domains in animal lectins, J. Biol. Chem. 263: 9557–9560.PubMedGoogle Scholar
  28. Drickamer, K., 1988b, Demonstration of carbohydrate-recognition activity in diverse proteins which share a common primary structure, Biochem. Soc. Trans. 17: 13–15.Google Scholar
  29. Drickamer, K., 1989, Multiple subfamilies of carbohydrate-recognition domains in animal lectins, Ciba Found. Symp. 145: 45–58.PubMedGoogle Scholar
  30. Drickamer, K., Dordal, M. S., and Reynolds, L., 1986, Mannose-binding proteins isolated from rat liver contain carbohydrate-recognition domains linked to collagenous tails, J. Biol. Chem. 261: 6878–6887.PubMedGoogle Scholar
  31. Edelman, G. M., 1985, Cell adhesion and the molecular processes of morphogenesis, Annu. Rev. Biochem. 54: 135–169.PubMedCrossRefGoogle Scholar
  32. Ezekowitz, R. A. B., Hill, M., and Gordon, S., 1986, Interferon alpha/beta selectively antagonizes down-regulation of mannosyl fucosyl receptors on macrophages activated by interferon gamma, Biochem. Biophys. Res. Commun. 136: 737–744.PubMedCrossRefGoogle Scholar
  33. Ezekowitz, R. A. B., Day, L. E., and Herman, G. A., 1988, A human mannose-binding protein is an acute phase reactant that shares sequence homology with other vertebrate lectins, J. Exp. Med. 167: 1034–1046.PubMedCrossRefGoogle Scholar
  34. Ezekowitz, R. A. B., Kuhlman, M., Groopman, J. E., and Byrn, R. A., 1989, A human serum mannosebinding protein inhibits in vitro infection by the human immunodeficiency virus, J. Exp. Med. 169: 185–196.PubMedCrossRefGoogle Scholar
  35. Ezekowitz, R. A. B., Sastry, K., Bailly, P., and Warner, A., 1990, Molecular characterization of the human macrophage mannose receptor: Demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos-1 cells, J. Exp. Med. 172: 1785–1794.PubMedCrossRefGoogle Scholar
  36. Ezekowitz, R. A. B., Williams, D. J., Koziel, H., Armstrong, M. Y. K., Warner, A., Richards, F. F., and Rose, R. M., 1991, Uptake of Pneumocystis carinii mediated by the macrophage mannose receptor, Nature (London) 351: 155–158.CrossRefGoogle Scholar
  37. Feizi, T., 1991, Cell-cell adhesion and membrane glycosylation, Curr. Opin. Struct. Biol. 1: 766–770.CrossRefGoogle Scholar
  38. Flotte, T. J., Springer, T. A., and Thorbecke, G. J., 1983, Dendritic cell and macrophage staining by monoclonal antibodies in tissue sections and epidermal sheets, Am. J. Pathol. 111: 112–124.PubMedGoogle Scholar
  39. Frigeri, L. G., Robertson, M. W., and Liu, F. T., 1990, Expression of biologically active recombinant IgE-binding protein in Escherichia coli, J. Biol. Chem. 265: 20763–20769.PubMedGoogle Scholar
  40. Goldman, R., 1988, Characteristics of the ß-glucan receptor of murine macrophages, Exp. Cell Res. 174: 481–490.PubMedCrossRefGoogle Scholar
  41. Haltiwanger, R. S., and Hill, R. L., 1986, Isolation of a rat alveolar macrophage lectin, J. Biol. Chem. 261: 7440–7444.PubMedGoogle Scholar
  42. Ho, M. K., and Springer, T. A., 1982, Mac-2, a novel 32,000 M mouse macrophage subpopulation-specific antigen defined by monoclonal antibodies, J. Immunol. 128: 1221–1228.PubMedGoogle Scholar
  43. Holt, G. D., Krivan, H. C., Gasic, G. J., and Ginsburg, V., 1989, Antistasin, an inhibitor of coagulation and metastasis, binds to sulfatide (Gal(3-SO4)131-ICer) and has a sequence homology with other proteins that bind sulfated glycocojugates, J. Biol. Chem. 264: 12138–12140.PubMedGoogle Scholar
  44. Hook, M., Kjellen, L., Johansson, S., and Robinson, J., 1984, Cell-surface glycosaminoglycans, Annu. Rev. Biochem. 53: 847–869.PubMedCrossRefGoogle Scholar
  45. Hoyle, G. W., and Hill, R. L., 1988, Molecular cloning and sequencing of a cDNA for a carbohydrate binding receptor unique to rat Kupffer cells, J. Biol. Chem. 263: 7487–7492.PubMedGoogle Scholar
  46. Ii, M., Kurata, H., Itoh, N., Yamashina, I., and Kawasaki, T., 1990, Molecular cloning and sequence analysis of cDNA encoding the macrophage lectin specific for galactose and N-acetylgalactosamine, J. Biol. Chem. 265: 11295–11298.PubMedGoogle Scholar
  47. Ikeda, K., Sannoh, T., Kawasaki, N., Kawasaki, T., and Yamashina, I., 1987, Serum lectin with known structure activates complement through the classical pathway, J. Biol. Chem. 262: 7451–7454.PubMedGoogle Scholar
  48. Ikuta, K., Takami, M., Choong, W. K., Honjo, T., Miyoshi, T., Tagaya, Y., Kawabe, T., and Yodoi, J., 1987, Human lymphocyte Fc receptor for IgE: Sequence homology of its cloned cDNA with animal lectins, Proc. Natl. Acad. Sci. USA 84: 819–823.PubMedCrossRefGoogle Scholar
  49. Jain, S., Kaul, D., and Vinayak, V. K., 1987, Elucidation of the receptors in Plasmodium yoeli interactions, Immunol. Invest. 16: 179–187.PubMedCrossRefGoogle Scholar
  50. Jia, S., and Wang, J. L., 1988, Carbohydrate binding protein 35. Complementary DNA sequence reveals homology with proteins of the heterogeneous nuclear RNP, J. Biol. Chem. 263: 6009–6011.PubMedGoogle Scholar
  51. Johnston, G. I., Cook, R. G., and McEver, R. P., 1989, Cloning of GMP-140, a granule membrane protein of platelets and endothelium: Sequence similarity to proteins involved in cell adhesion and inflammation, Cell 56: 1033–1044.PubMedCrossRefGoogle Scholar
  52. Kan, V. L., and Bennet, J. E., 1988, Lectin-like attachment sites on murine pulmonary alveolar macrophages bind Aspergillus fumigatus conidia, J. Infect. Dis. 158: 407–414.PubMedCrossRefGoogle Scholar
  53. Kawasaki, T., Ii, M., Kozutsumi, Y., and Yamashina, I., 1986, Isolation and characterization of a receptor lectin specific for galactose/N-acetylgalactosamine from macrophages, Carbohydr. Res. 151: 197–206.PubMedCrossRefGoogle Scholar
  54. Kawasaki, N., Kawasaki, T., and Yamashina, I., 1989, A serum lectin (mannan-binding protein) has complement-dependent bactericidal activity, J. Biochem. (Tokyo) 106: 483–489.Google Scholar
  55. Kempka, G., and Kolb-Bachoven, V., 1985, Galactose-specific receptors on liver cells. 1. Hepatocyte and liver macrophage receptors differ in their membrane anchorage, Biochim. Biophvs. Acta 847: 108–114.CrossRefGoogle Scholar
  56. Kempka, G., Roos, P. H., and Kolb-Bachoven, V., 1990, A membrane-associated form of C-reactive protein is the galactose-specific particle receptor on rat liver macrophages, J. Immunol. 144: 1004–1009.PubMedGoogle Scholar
  57. Kolb-Bachoven, V., Schlepper-Schafer, J., and Vogell, W., 1982, Electron microscopic evidence for an asialoglycoprotein receptor on Kupffer cells: Localization of lectin-mediated endocytosis, Cell 29: 859–866.CrossRefGoogle Scholar
  58. Kornblihtt, A. R., Umezawa, K., Vibe-Pedersen, K., and Baralle, F. E., 1985, Primary structure of human fibronectin: Differential splicing may generate at least 10 polypeptides from a single gene, EMBO J. 4: 1755–1759.PubMedGoogle Scholar
  59. Kuhlman, M., Joiner, K., and Ezekowitz, R. A. B., 1989, The human mannose-binding protein functions as an opsonin, J. Exp. Med. 169: 1733–1745.PubMedCrossRefGoogle Scholar
  60. Laing, J. G., and Wang, J. L., 1988, Identification of carbohydrate binding protein 35 in heterogeneous nuclear ribonucleoprotein complex, Biochemistry 27: 5329–5334.PubMedCrossRefGoogle Scholar
  61. Largent, B. L., Walton, K. M., Hoppe, C. A., Lee, Y. C., and Schnaar, R. L., 1984, Carbohydrate-specific adhesion of alveolar macrophages to mannose-derivatized surfaces, J. Biol. Chem. 259: 1764–1769.PubMedGoogle Scholar
  62. Lasky, L. A., Singer, M. S., Yednock, T. A., Dowbenko, D., Fennie, C., Rodriguez, H., Nguyen, T., Stachel, S., and Rosen, S. D., 1989, Cloning of a lymphocyte homing receptor reveals a lectin domain, Cell 56: 1045–1055.PubMedCrossRefGoogle Scholar
  63. Lehrman, M. A., and Hill, R. L., 1986, The binding of fucose-containing glycoproteins by hepatic lectins. Purification of a fucose-binding protein from rat liver, J. Biol. Chem. 261: 7419–7425.PubMedGoogle Scholar
  64. Lehrman, M. A., Haltiwanger, R. S., and Hill, R. L., 1986, The binding of fucose-containing glycoproteins by hepatic lectins. The binding specificity of the rat liver fucose lectin, J. Biol. Chem. 261: 7426–7432.PubMedGoogle Scholar
  65. Lennartz, M. R., Cole, F. S., Shepherd, V. L., Wileman, T. E., and Stahl, P. D., 1987, Isolation and characterization of a mannose-specific endocytosis receptor from human placenta, J. Biol. Chem. 262: 9943–9944.Google Scholar
  66. Lennartz, M. R., Cole, F. S., and Stahl, P. D., 1989, Biosynthesis and processing of the mannose receptor in human macrophages, J. Biol. Chem. 264: 2385–2390.PubMedGoogle Scholar
  67. Lobel, P., Dahms, N. M., and Kornfeld, S., 1988, Cloning and sequence analysis of the cation-independent mannose 6-phosphate receptor, J. Biol. Chem. 263: 2563–2570.PubMedGoogle Scholar
  68. Lu, J., Thiel, S., Wiedemann, H., Timpl, R., and Reid, K. B. M., 1990, Binding of the pentamer/hexamer forms of a mannan-binding protein to zymosan activates the proenzyme C1r2Cls2 complex of the classical pathway of complement, without involvement of Clq, J. Immunol. 144: 2287–2294.PubMedGoogle Scholar
  69. Ludin, C., Hofstetter, H., Sarfati, M., Levy, C. A., Suter, U., Alaimo, D., Kilchherr, E., Frost, H., and Delespesse, G., 1987, Cloning and expression of the cDNA coding for a human lymphocyte IgE receptor, EMBO J. 6: 109–114.PubMedGoogle Scholar
  70. Mahauthaman, R., Howell, C. J., Spur, B. W., Youlten, L. J., Clark, T. J., Lessof, M. H., and Lee, T. H., 1988, The generation and cellular distribution of leukotriene C4 in human eosinophils stimulated by unopsonized zymosan and glucan particles, J. Allergy Clin. Immunol. 81: 696–705.PubMedCrossRefGoogle Scholar
  71. Malhotra, R., Thiel, S., Reid, K. B. M., and Sim, R. B., 1990, Human leukocyte C l q receptor binds other soluble proteins with collagen domains, J Exp. Med. 172: 955–959.PubMedCrossRefGoogle Scholar
  72. Marodi, L., Korchak, H. M., and Johnston, R. B. Jr., 1991, Mechanisms of host defence against Candida species. I. Phagocytosis by monocytes and monocyte-derived macrophages, J. Immunol. 146: 2783–2789.PubMedGoogle Scholar
  73. Mercurio, A. M., 1990, Laminin: Multiple forms, multiple receptors, Curr. Opin. Cell Biol. 2: 845–849.PubMedCrossRefGoogle Scholar
  74. Mizuno, Y., Kozutsumi, Y., Kawasaki, T., and Yamashina, I., 1981, Isolation and characterization of a mannan-binding protein from rat liver, J. Biol. Chem. 256: 4247–4252.PubMedGoogle Scholar
  75. Morgan, D. O., Edman, J. C., Standring, D. N., Fried, V. A., Smith, M. C., Roth, R. A., and Rutter, W. J., 1987, Insulin-like growth factor II receptor as a multifunctional binding protein, Nature (London) 329: 301–307.CrossRefGoogle Scholar
  76. Moutsatsos, I. K., Wade, M., Schindler, M., and Wang, J. L., 1987, Endogenous lectins from cultured cells: Nuclear localization of carbohydrate-binding protein 35 in proliferating 3T3 fibroblasts, Proc. Natl. Acad. Sci. USA 84: 6452–6456.PubMedCrossRefGoogle Scholar
  77. Oda, S., Masahiro, S., Toyoshima, S., and Osawa, T., 1988, Purification and characterization of a lectinlike molecule specific for galactose/N-acetylgalactosamine from tumoricidal macrophages, J. Biochem. (Tokyo) 104: 600–605.Google Scholar
  78. Otter, M., Barrett-Bergshoeff, M. M., and Rijken, D. C., 1991, Binding of tissue-type plasminogen activator by the mannose receptor, J. Biol. Chem. 266: 13931–13935.PubMedGoogle Scholar
  79. Parise, E. R., Taylor, M. E., and Summerfield, J. A., 1984, Effects of iron loading and bacillus Calmette-Guerin on a glycoprotein recognition system on rat hepatic sinusoidal cells, J. Lab. Clin. Med. 104: 908–920.PubMedGoogle Scholar
  80. Pepys, M. B., and Baltz, M. L., 1983, Acute phase proteins with special reference to C-reactive protein and related proteins (pentraxins) and serum amyloid A protein, Adv. Immunol. 34: 141–211.PubMedCrossRefGoogle Scholar
  81. Perry, A., and Ofek, I., 1984, Inhibition of blood clearance and hepatic tissue binding of Escherichia coli by liver lectin-specific sugars and glycoproteins, Infect. Immun. 43: 257–262.PubMedGoogle Scholar
  82. Quesenberry, M. S., and Drickamer, K., 1991, Determination of the minimum carbohydrate-recognition domain in two C-type animal lectins, Glycobiology, 1: 615–621.PubMedCrossRefGoogle Scholar
  83. Rademacher, T. W., Parekh, R. B., and Dwek, R. A., 1988, Glycobiology, Annu. Rev. Biochem. 57: 785–838.PubMedCrossRefGoogle Scholar
  84. Raz, A., Pazerinin, G., and Carmi, P., 1989, Identification of the metastasis-associated galactoside-binding lectin as a chimeric gene product with homology to an IgE-binding protein, Cancer Res. 49: 3489–3493.PubMedGoogle Scholar
  85. Raz, A., Zhu, D., Hogan, V., Shah, N., Raz, T., Karkash, R., Pazerinin, G., and Carmi, P., 1990, Evidence for the role of 34 kDa galactoside-binding lectin in transformation and metastasis, Int. J. Cancer 46: 871–877.PubMedCrossRefGoogle Scholar
  86. Reid, K. B. M., 1983, Proteins involved in the activation and control of the two pathways of human complement, Biochem. Soc. Trans. 11: 1–12.PubMedGoogle Scholar
  87. Richards, M. L., and Katz, D. H., 1990, The binding of IgE to murine Fc RII is calcium-dependent but not inhibited by carbohydrate, J. Immunol. 144: 2638–2646.PubMedGoogle Scholar
  88. Robertson, M. W., Albrandt, K., Keller, D., and Liu, F. T., 1990, Human IgE-binding protein: A soluble lectin exhibiting a highly conserved interspecies sequence and differential recognition of IgE glycoforms, Biochemistry 29: 8093–8100.PubMedCrossRefGoogle Scholar
  89. Roff, C. F., and Wang, J. L., 1983, Endogenous lectins from cultured cells. Isolation and characterization of carbohydrate-binding proteins from 3T3 fibroblasts, J. Biol. Chem. 258: 10657–10663.PubMedGoogle Scholar
  90. Rosen, S., 1990, The LEC-CAMs: An emerging family of cell-cell adhesion receptors based upon carbohydrate recognition, Am. J. Respir. Cell Mol. Biol. 3: 397–402.PubMedCrossRefGoogle Scholar
  91. Ruoslahti, E., and Pierschbacher, M. D., 1987, New perspectives in cell adhesion: RGD and integrins, Science 238: 491–497.PubMedCrossRefGoogle Scholar
  92. Schlesinger, P., Rodman, J. S., Frey, M., Lang, S., and Stahl, P., 1976, Clearance of lysosomal hydrolases following intravenous infusion. The role of the liver in the clearance of ß-glucuronidase and N-acetylß-D-glucosaminidase, Arch. Biochem. Biophys. 177: 606–614.PubMedCrossRefGoogle Scholar
  93. Schlesinger, P., Doebber, T. W., Mandell, B. F., White, R., DeSchryver, C., Rodman, J. S., Miller, M. J., and Stahl, P., 1978, Plasma clearance of glycoproteins with terminal mannose and N-acetylglucosamine by liver non-parenchymal cells, Biochem. J. 176: 103–109.PubMedGoogle Scholar
  94. Schreiber, S., Blum, J. S., Chappel, J. C., Stenson, W. F., Stahl, P. D., Teitelbaum, S. L., and Perkins, S. L., 1990, Prostaglandin E specifically upregulates the expression of the mannose receptor on bone marrow-derived macrophages, Cell Regul. 1: 403–413.PubMedGoogle Scholar
  95. Sharon, N., and Lis, H., 1989, Lectins as recognition molecules,.Science 246: 9557–9560.Google Scholar
  96. Shepherd, V. L., and Hoidal, J. R., 1990, Clearance of neutrophil-derived myeloperoxidase by the macrophage mannose receptor, Am. J. Respir. Cell Mol. Biol. 2: 335–340.PubMedCrossRefGoogle Scholar
  97. Shepherd, V. L., Cambell, T. J., Senior, R. M., and Stahl, P. D., 1982, Characterization of the mannose/fucose receptor on human mononuclear phagocytes, J. Reticuloendothel. Soc. 32: 423–421.PubMedGoogle Scholar
  98. Shepherd, V. L., Konish, M. G., and Stahl, P., 1985, Dexamethasone increases expression of mannose receptors and decreases extracellular lysosomal enzyme accumulation in macrophages, J. Biol. Chem. 260: 160–164.PubMedGoogle Scholar
  99. Shepherd, V. L., Tarnowski, B. l., and McLaughlin, B. J., 1991, Isolation and characterization of a man-nose receptor from human pigment epithelium, Invest. Ophthalmol. Visual Sci. 32: 1779–1784.Google Scholar
  100. Siegelman, M., 1991, Sweetening the selectin pot, Curr. Biol. 1: 125–126.PubMedCrossRefGoogle Scholar
  101. Siegelman, M. H., van de Rijn, M., and Weissman, I. L., 1989, Mouse lymph node receptor cDNA encodes a glycoprotein revealing tandem interaction domains, Science 243: 1165–1172.PubMedCrossRefGoogle Scholar
  102. Smedsrod, B., Melkko, J., Risteli, L., and Risteli, J., 1990, Circulating C-terminal propeptide of type I procollagen is cleared mainly via the mannose receptor in liver endothelial cells, Biochem. J. 271: 345–350.PubMedGoogle Scholar
  103. Speert, D. P., Wright, S. D., Silverstein, S. C., and Mah, B., 1988, Functional characterization of macrophage receptors for in vitro phagocytosis of unopsonized Pseudomonas aeruginosa, J. Clin. Invest. 82: 872–879.PubMedCrossRefGoogle Scholar
  104. Springer, T. A., and Lasky, L. A., 1991, Sticky sugars for selectins, Nature (London) 346: 196–197.CrossRefGoogle Scholar
  105. Stockert, R. J., Morel!, A. G., and Scheinberg, I. H., 1976, The existence of a second route for the transfer of certain glycoproteins from the circulation into the liver, Biochem. Biophys. Res. Commun. 68: 988–993.PubMedCrossRefGoogle Scholar
  106. Sumiya, M., Super, M., Tabona, P., Levinsky, R. J., Takayuki, A., Turner, M. W., and Summerfield, J. A., 1991, Molecular basis of opsonic defect in immunodeficient children, Lancet 337: 1569–1570.PubMedCrossRefGoogle Scholar
  107. Summerfield, J. A., and Taylor, M. E., 1986, Mannose-binding proteins in human serum: Identification of a mannose-specific immunoglobulin and a calcium-dependent lectin, of broader carbohydrate specificity, secreted by hepatocytes, Biochim. Biophys. Acta 883: 197–206.PubMedCrossRefGoogle Scholar
  108. Summerfield, J. A., Vergalla, J., and Jones, E. A., 1982, Modulation of a glycoprotein recognition system on rat hepatic endothelial cells by glucose and diabetes mellitus, J. Clin. Invest. 69: 1337–1347.PubMedCrossRefGoogle Scholar
  109. Sung, S. J., Nelson, R. S., and Silverstein, S. C., 1983, Yeast mannans inhibit binding and phagocytosis of zymosan by mouse peritoneal macrophages, J. Cell Biol. 96: 160–166.PubMedCrossRefGoogle Scholar
  110. Super, M., Thiel, S., Lu, J., Levinsky, R. J., and Turner, M. W., 1989, Association of low levels of mannan-binding protein with a common defect of opsonization, Lancet 11: 1236–1239.CrossRefGoogle Scholar
  111. Tarnowski, B. I., Shepherd, V. L., and Mclaughlin, B. J., 1988, Expression of mannose receptors for pinocytosis and phagocytosis on rat retinal pigment epithelium, Invest. Ophthalmol. Visual Sci. 29: 742–748.Google Scholar
  112. Taylor, M. E., Brickell, P. M., Craig, R. K., and Summerfield, J. A., 1989, Structure and evolutionary origin of the gene encoding a human serum mannose-binding protein, Biochem. J. 262: 763–771.PubMedGoogle Scholar
  113. Taylor, M. E., Conary, J. T., Lennartz, M. R., Stahl, P. D., and Drickamer, K., 1990, Primary structure of the mannose receptor contains multiple motifs resembling carbohydrate-recognition domains, J. Biol. Chem. 265: 12156–12162.PubMedGoogle Scholar
  114. Taylor, M. E., Bezouska, K., and Drickamer, K., 1992, Contribution to ligand binding by multiple carbohydrate-recognition domains in the macrophage mannose receptor, J. Biol. Chem. 267: 1719–1726.PubMedGoogle Scholar
  115. Townsend, R., and Stahl, P., 1981, Isolation and characterization of a mannose/N-acetylglucosamine/fucose-binding protein from rat liver, Biochem. J. 194: 209–214.PubMedGoogle Scholar
  116. Vavasseur, F., Berrada, A., Heuze, F., Jotereau, F., and Meflah, K., 1990, Fucose and galactose receptor and liver recognition by lymphoma cells, Int. J. Cancer, 248: 744–751.CrossRefGoogle Scholar
  117. Vercelli, D., Helm, B., Marsh, P., Padlan, E., Geha, R. S., and Gould, H., 1989, The B-cell binding site on human immunoglobulin E, Nature (London) 338: 649–651.CrossRefGoogle Scholar
  118. Wang, J. L., Laing, J. G., and Anderson, R. L., 1991, Lectins in the cell nucleus, Glycobiology 1 Google Scholar
  119. Warr, S. A., 1980, A macrophage receptor for (mannose/glucosamine)-glycoproteins of potential importance in phagocytic activity, Biochem. Biophys. Res. Commun. 93: 737–745.PubMedCrossRefGoogle Scholar
  120. Weis, W. I., Kahn, R., Fourme, R., Drickamer, K., and Hendrickson, W. A., 1991, Structure of the C-type lectin domain from a rat mannose-binding protein determined by MAD phasing, Science 254: 1608–1615.PubMedCrossRefGoogle Scholar
  121. Wild, J., Robinson, D., and Winchester, B., 1983, Isolation of mannose-binding protein from human and rat liver, Biochem. J. 210: 167–174.PubMedGoogle Scholar
  122. Wileman, T., Boshans, R., and Stahl, P. D., 1985, Uptake and transport of mannosylated ligands by alveolar macrophages. Studies on ATP-dependent receptor ligand dissociation, J. Biol. Chem. 260: 7387–7393.PubMedGoogle Scholar
  123. Wileman, T., Lennartz, M. R., and Stahl, P. D., 1986, Identification of the macrophage mannose receptor as a 175 kD membrane protein, Proc. Natl. Acad. Sci. USA 83: 2501–2505.PubMedCrossRefGoogle Scholar
  124. Wilson, M. E., and Pearson, R. D., 1986, Evidence that Leishmania donovani utilizes a mannose receptor on human mononuclear phagocytes to establish intracellular parasitism, J. Immunol. 136: 4681–4688.PubMedGoogle Scholar
  125. Woo, H.-J., Shaw, L. M., Messier, J. M., and Mercurio, A. M., 1990, The major nonintegrin laminin binding protein of macrophages is identical to carbohydrate binding protein 35 (Mac-2), J. Biol. Chem. 265: 7097–7099.PubMedGoogle Scholar
  126. Woo, H.-J., Lotz, M., Jung, J. U., and Mercurio, A. M., 1991, Carbohydrate-binding protein 35 (Mac-2), a laminin-binding lectin, forms functional dimers using cysteine 186, J. Biol. Chem. 266: 18419–18422.PubMedGoogle Scholar
  127. Yamada, K. M., 1983, Cell surface interactions with extracellular materials, Annu. Rev. Biochem. 52: 761–799.PubMedCrossRefGoogle Scholar
  128. Yednock, T. A., and Rosen, S. D., Lymphocyte homing, Adv. Immunol. 44: 313–378.Google Scholar
  129. Yukawa, K., Kikutani, H., Owaki, H., Yamasaki, K., Yokota, A., Nakamura, H., Basumian, E. L., Hardy, R. R., Suemura, M., and Kishimoto, T., 1987, A B cell-specific differentiation antigen, CD23, is a receptor for IgE (Fc(R) on lymphocytes, J. Immunol. 138: 2576–2580.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Maureen E. Taylor
    • 1
  1. 1.Glycobiology Institute, Department of BiochemistryUniversity of OxfordOxfordUK

Personalised recommendations