Molecular Basis for Leukocyte Adhesion Molecule Deficiency

  • M. Amin Arnaout
Part of the Blood Cell Biochemistry book series (BLBI, volume 5)


Adhesion of leukocytes to other cells and to the extracellular matrix has now been established as a critical component in acute and chronic inflammatory reactions (Moller, 1990). This process involves a number of adhesion molecules belonging to several gene families, including the selectins, integrins, and immunoglobulins. The biologic importance of this process has been established in part through an understanding of the pathogenesis of a rare disease, Leu-CAM deficiency. In this disease, leukocytes from affected individuals have lost either partially or completely their ability to adhere to and migrate across endothelium and subendothelial matrix at inflammatory sites and to phagocytose invading bacteria. Affected individuals consequently suffer from recurrent and often fatal bacterial infections despite the presence of neutrophilia. Biopsies of infected tissues often reveal numerous bacteria, lymphocytes, and plasma cells, with very few neutrophils. Blood vessels at the inflammatory sites, however, often are congested and dilated and contain numerous neutrophils. The defects in extravasation and ingestion were traced through a series of studies in the early 1980s to defective expression of three surface glycoprotein heterodimers, Leu-CAMs (CD 11/CD 18, β 2 integrins), now known to be members of the large integrin family (Hynes, 1987; Ruoslahti, 1991). The same disease was subsequently identified in dogs (Giger et al., 1987) and in cattle (Kehrli et al., 1990). In the latter case, the disease is also known as the granulocytopathy syndrome and is an important cause of mortality in young Holstein cattle.


Chronic Myelogenous Leukemia Leukocyte Adhesion Leukocyte Adhesion Deficiency Recurrent Bacterial Infection Cell BioI 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D. C., and Springer, T. A., 1987, Leukocyte adhesion deficiency: An inherited defect in the Mac-1, LFA-1, p150,95 glycoproteins, Annu. Rev. Med. 38: 175–194.PubMedCrossRefGoogle Scholar
  2. Arnaout, M. A., 1990a, Leukocyte adhesion molecules deficiency: Its structural basis, pathophysiology and implications for modulating the inflammatory response, Immunol. Rev. 114: 145–180.PubMedCrossRefGoogle Scholar
  3. Arnaout, M. A., 1990b, Structure and function of the leukocyte adhesion molecules CD11/CD18, Blood 75: 1037–1050.PubMedGoogle Scholar
  4. Arnaout, M. A., Pitt, J., Cohen, H. J., Melamed, J., Rosen, F. S., and Colten, H. R., 1982, Deficiency of a granulocyte-membrane glycoprotein (gp 150) in a boy with recurrent bacterial infections, N. Engl. J. Med. 306: 693–699.PubMedCrossRefGoogle Scholar
  5. Arnaout, M. A., Spits, H., Terhorst, C., Pitt, J., and Todd, R. F., III, 1984, Deficiency of a leukocyte surface glycoprotein (LFA-1) in two patients with Mol deficiency: Effects of cell activation on Mol/LFA-1 surface expression in normal and deficient leukocytes, J. Clin. Invest. 74: 1291–1300.PubMedCrossRefGoogle Scholar
  6. Arnaout, M. A., Remold-O’Donnell, E., Pierce, M. W., Harris, P., and Tenen, D. G., 1988, Molecular cloning of the human and guinea pig alpha subunit of leukocyte adhesion glycoprotein, Mo 1. Chromosomal localization and homology to the alpha subunits of integrins, Proc. Natl. Acad. Sci. USA 85: 2776–2780.PubMedCrossRefGoogle Scholar
  7. Arnaout, M. A., Dana, N., Gupta, S. K., Tenen, D. G., and Fathallah, D. F., 1990, Point mutations impairing cell surface expression of the common ß subunit (CD18) in a patient with Leu-CAM deficiency, J. Clin. Invest. 85: 977–981.PubMedCrossRefGoogle Scholar
  8. Bonaldo, P., Russo, V., Bucciotti, F., Bressan, G. M., and Colombatti, A., 1989, Alpha-1 chain of chick type VI collagen, J. Biol. Chem. 264: 5575–5580.PubMedGoogle Scholar
  9. Burmeister, M., Price, E. R., de Lange, T., Tantravahi, U., Myers, R. M., and Cox, D. R., 1991, A map of the distal region of the long arm of human chromosome 21 constructed by radiation hybrid mapping and pulsed-field gel electrophoresis, Genomics 9: 19–30.PubMedCrossRefGoogle Scholar
  10. Calvete, J. J., Henschen, A., and Gonzalez-Rodriguez, J., 1991, Assignment of disulphide bonds in human platelet GPIIIa: A disulphide pattern for the ß-subunits of the integrin family, Biochem. J. 274: 63–71.PubMedGoogle Scholar
  11. Carlos, T. M., and Harlan, J. M., 1990, Membrane proteins involved in phagocyte adherence to endothelium, Immunol. Rev. 114: 5–28.PubMedCrossRefGoogle Scholar
  12. Chatila, T., Geha, R. S., and Arnaout, M. A., 1989, Constitutive and stimulus-induced phosphorylation of CD!1 /CD 18 leukocyte adhesion molecules, J. Cell Biol. 109: 3435–3444.PubMedCrossRefGoogle Scholar
  13. Colombatti, A., and Bonaldo, P., 1991, The superfamily of proteins with von Willebrand factor type A-like domains: One theme common to components of extracellular matrix, hemostasis, cellular adhesion, and defense mechanisms, Blood 77: 2305–2315.PubMedGoogle Scholar
  14. Corbi, A. L., Larson, R. S., Kishimoto, T. K., Springer, T. A., and Morton, C. C., 1988, Chromosomal location of the genes encoding the leukocyte adhesion receptors LFA-1, Mac-1 and p150,95. Identification of a gene cluster involved in cell adhesion, J. Exp. Med. 167: 1597–1607.PubMedCrossRefGoogle Scholar
  15. Crowley, C. A., Curnette, J. T., Rosin, R. E., Andre-Schwartz, J., Klempner, M., Snyderman, R., Southwick, F. S., Stossel, T. P., and Babior, B. M., 1980, An inherited abnormality of neutrophil adhesion. Its genetic transmission and its association with a missing protein, N. Engl. J. Med. 302: 1163–1168.PubMedCrossRefGoogle Scholar
  16. Dahms, N. M., and Hart, G. W., 1985, Lymphocyte-function-associated-antigen 1 (LFA-1) contains sulfated N-linked oligosacharides, J. Immunol. 134: 3978–3986.PubMedGoogle Scholar
  17. Dahms, N., and Hart, G. W., 1986, Influence of quaternary structure on glycosylation: Differential subunit association affects the site-specific glycosylation of the common ß chain from Mac-1 and LFA- 1, J. Biol. Chem. 261: 13186–13196.PubMedGoogle Scholar
  18. Dana, N., and Arnaout, M. A., 1988, Leukocyte adhesion molecule deficiency, in Complement and Immunologic disease, Baillere’s Clinical Immunology and Allergy Vol. 2 (M. Kazatchkine, ed.), pp. 453–476, W.B. Saunders Co., London.Google Scholar
  19. Dana, N., Tennen, D., Clayton, L., Pierce, M., Lachmann, P., and Arnaout, M. A., 1987, Leukocytes from four patients with complete or partial Leu-CAM deficiency contain the common beta subunit precursor and beta subunit messenger RNA, J. Clin. Invest. 79: 1010–1015.PubMedCrossRefGoogle Scholar
  20. D’Souza, S. E., Ginsberg, M. H., Burke, T. A., Lam, S. C.-T., and Plow, E. F., 1988, Localization of an Arg-Gly-Asp recognition site within an integrin adhesion receptor, Science 242: 91–93.PubMedCrossRefGoogle Scholar
  21. Dimanche-Boitrel, M.-T., Guyot, A., De Saint-Basile, G., Fischer, A., Griscelli, C., Lisowska-Grospierre, B., 1988, Heterogeneity in the molecular defect leading to the leukocyte adhesion deficiency, Eur. J. Immunol. 18: 1575–1579.PubMedCrossRefGoogle Scholar
  22. Erle, D. J., Ruegg, C., Sheppard, D., and Pytela, R., 1991, Complete amino acid sequence of an integrin ß subunit (ß7) identified in leukocytes, J. Biol. Chem. 266: 11009–11016.PubMedGoogle Scholar
  23. Fischer, A., Lisowska-Grospierre, B., Anderson, D. C., and Springer, T. A., 1988, Leukocyte adhesion deficiency: Molecular basis and functional consequences, Immunodeficiency Rev. 1: 39–54.Google Scholar
  24. Giger, U., Boxer, L. A., Simpson, P. J., Lucchesi, B. R., and Todd, R. F., III, 1987, Deficiency of leukocyte surface glycoproteins Mol, LFA-1, and Leu-M5 in a dog with recurrent bacterial infections: An animal model, Blood 69: 1622–1630.PubMedGoogle Scholar
  25. Hemler, M. E., 1990, VLA proteins in the integrin family: Structures, functions, and their role on leukocytes, Annu. Rev. Immunol. 8: 365–400.PubMedCrossRefGoogle Scholar
  26. Henson, P. M., and Johnston, R. B., Jr., 1987, Tissue injury in inflammation: Oxidants, proteinases and cationic proteins, J. Clin. Invest. 79: 669–674.PubMedCrossRefGoogle Scholar
  27. Hibbs, M. L., Wardlaw, A. J., Stacker, S. A., Anderson, D. C., Lee, A., Roberts, T. M., and Springer, T. A., 1990, Transfection of cells from patients with leukocyte adhesion deficiency with an integrin beta subunit (CD18) restores LFA-1 expression and function, J. Clin. Invest. 85: 674–681.PubMedCrossRefGoogle Scholar
  28. Hynes, R. O., 1987, Integrins: A family of cell surface receptors, Cell 48: 549–554.PubMedCrossRefGoogle Scholar
  29. Ignatius, M. J., Large, T. H., Houde, M., Tawil, J. W., Burton, A., Esch, F., Carbonetto, S., and Reichardt, F., 1990, Molecular cloning of the rat integrin al-subunit: a receptor for laminin and collagen, J. Cell Biol. 111: 709–720.PubMedCrossRefGoogle Scholar
  30. Kajiji, S., Tamura, R. N., and Quaranta, V., 1989, A novel integrin («E-04) from human epithelial cells suggests a fourth family of integrin adhesion receptors, EMBO J. 8: 673–680.PubMedGoogle Scholar
  31. Kehrli, M. E., Schmalsteig, F. C., Anderson, D. C., Van Der Maaten, M. J., Hughes, B. J., Ackermann, M. R., Wilhelmsen, C. L., Brown, G. B., Stevens, M. G., and Whetstone, C. A., 1990, Molecular definition of the bovine granulocytopathy syndrome: Identification of deficiency of the Mac-1 (CD1 lb/CD18) glycoprotein, Am. J. Vet. Res. 51: 1826–1836.PubMedGoogle Scholar
  32. Kelly, T., Molony, L., and Burridge, K., 1987, Purification of two smooth muscle glycoproteins related to integrin, J. Biol. Chem. 262: 17189–17199PubMedGoogle Scholar
  33. Kieffer, N., and Phillips, D. R., 1990, Platelet membrane glycoproteins: Functions in cellular interactions, Ann. Rev. Cell Biol. 6: 329–357.PubMedCrossRefGoogle Scholar
  34. Kishimoto, T. K., Hollander, N., Roberts, T. M., Anderson, D. C., and Springer, T. A., 1987, Heterogenous mutations in the beta subunit common to the LFA-1, Mac-1, and p150,95 glycoproteins cause leukocyte adhesion deficiency, Cell 50: 193–202.PubMedCrossRefGoogle Scholar
  35. Law, S. K. A., and Taylor, G. M., 1991, Restriction fragment length polymorphism of the gene of the human leukocyte integrin 0-subunit (CD18), Immunogenetics, 34: 341–345.PubMedCrossRefGoogle Scholar
  36. MacKrell, A. J., Blumberg, B., Haynes, S. R., and Fessier, J. H., 1988, The lethal myospheroid gene of Drosophila encodes a membrane protein homologous to vertebrate integrin ß subunits, Proc. Natl. Acad. Sci. (USA) 85: 2633–2637.CrossRefGoogle Scholar
  37. Loftus, J. C., O’Toole, T. E., Plow, E. F., Glass, A., Frelinger, A. L., III, and Ginsberg, M. H., 1990, A ß3 integrin mutation abolishes ligand binding and alters divalent cation-dependent conformation, Science 249: 915–918.PubMedCrossRefGoogle Scholar
  38. Moller, G., 1990, Adhesion molecules, Immunol. Rev. 114: 5–217.CrossRefGoogle Scholar
  39. Nelson, C., Rabb, H., and Arnaout, M. A., 1992, Genetic cause of leukocyte adhesion molecule deficiency: Abnormal splicing and a missense mutation in a conserved region of CD 18 impair cell surface expression of ß2 integrins, J. Biol. Chem., 267: 3351–3357.PubMedGoogle Scholar
  40. Nermut, M. V., Green, N. M., Eason, P., Yamada, S. S., and Yamada, K. M., 1988, Electron microscopy and structural model of human fibronectin receptor, EMBO J. 7: 4093–4099.PubMedGoogle Scholar
  41. Newman, P. J., Seligsohn, U., Lyman, S., and Coller, B. S., 1991, The molecular genetic basis of Glanzmann thrombasthenia in the Iraqi-Jewish and Arab populations in Israel, Proc. Natl. Acad. Sci. (USA), 88: 3160–3164.CrossRefGoogle Scholar
  42. Philips, D. R., Charo, I. F., and Scarborough, R. M., GPIIb-IIIa: The responsive integrin, Cell, 65: 359–362.Google Scholar
  43. Remold-O’Donnell, E., 1982, Biosynthesis of gp160, the major trypsin-sensitive surface glycoprotein of macrophages, J. Biol. Chem. 257: 6600–6604.PubMedGoogle Scholar
  44. Remold-O’Donnell, E., 1988, Regulation of synthesis of macrophage adhesion molecule, a heterodimeric membrane glycoprotein, J. Immunol., 140: 1244–1249.PubMedGoogle Scholar
  45. Rubin, C. M., Larson, R. A., Bitter, M. A., Carrino, J. J., Le Beau, M. M., Diaz, M. O., and Rowley, J. D., 1987, Association of a chromosomal 3;21 translocation with the blast phase of chronic myelogenous leukemia, Blood 70: 1338–1342.PubMedGoogle Scholar
  46. Ruoslahti, E., 1991, Integrins, J. Clin. Invest. 87: 1–5.PubMedCrossRefGoogle Scholar
  47. Shesely, E. G., Kim, H.-S., Shehee, W. R., Papayannopoulou, T., Smithies, O., and Popovich, B. W., 1991, Correction of a human ßs-globin gene by gene targetting, Proc. Natl. Acad. Sci. USA 88: 4294–4298.PubMedCrossRefGoogle Scholar
  48. Springer, T. A., Thompson, W. S., Miller, L. J., Schmalstieg, F. C., and Anderson, D. C., 1984, Inherited deficiency of the Mac-1, LFA-1, p150,95 glycoprotein family and its molecular basis, J. Exp. Med. 160: 1901–1918.PubMedCrossRefGoogle Scholar
  49. Takeda, A., 1987, Sialylation patterns of lymphocyte-function-associated antigen 1 (LFA-1) differ between T and B cells, Eur. J. Immunol. 17: 281–286.PubMedCrossRefGoogle Scholar
  50. Todd, R. F., III, and Freyer, D. R., 1988, The CD11/CD18 leukocyte glycoprotein deficiency, Hematol. Oncol. Clin. North Am. 2: 13–31.PubMedGoogle Scholar
  51. Todd, R. F., III, Arnaout, M. A., Rosin, R. E., Crowley, C. A., Peters, W. A., Curnuttee, J. T., and Babior, B. M., 1984, Subcellular localization of the a subunit of Mo 1 (Mo 1 alpha; formerly gp 110), a surface glycoprotein associated with neutrophil adhesion, J. Clin. Invest. 74: 1280–1290.PubMedCrossRefGoogle Scholar
  52. Vyas, N. K., Vyas, M. N., and Quiocho, F. A., 1987, A novel calcium-binding site in the galactose-binding protein of bacterial transport and chemotaxis, Nature (London) 327: 635–638.Google Scholar
  53. Wardlaw, A. J., Hibbs, M. L., Stacker, S. A., and Springer, T. A., 1990, Distinct mutations in two patients with leukocyte adhesion deficiency and their functional correlates, J. Exp. Med. 172: 335–345.PubMedCrossRefGoogle Scholar
  54. Wilson, J. M., Ping, A. J., Krauss, J. C., Mayo-Bond, L., Rogers, C. E., Anderson, D. C., and Todd, R. F., 1990, Correction of CD18-deficient lymphocytes by retrovirus-mediated gene transfer, Science 248: 1413–1416.PubMedCrossRefGoogle Scholar
  55. Yamagata, M., Yamada, K. M., Yamada, S. S., Shinomura, T., Tanaka, H., Nishida, Y., Obara, M., and Kimata, K., 1991, The complete primary structure of type XII collagen shows a chimeric molecule with reiterated fibronectin type III motifs, von Willebrand factor A motifs, a domain homologous to a noncollagenous region of type IX collagen, and short collagenous domains with an Arg-Gly-Asp site, J. Cell Biol. 115: 209–221.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • M. Amin Arnaout
    • 1
  1. 1.Leukocyte Biology and Inflamation Program, Renal Unit and Department of MedicineHarvard Medical School, and Massachusetts General Hospital-EastCharlestownUSA

Personalised recommendations