Advertisement

Macrophage Membrane: Structure and Function

  • Yasuko Shibata
  • Yoshimitsu Abiko
  • Hisashi Takiguchi
Part of the Blood Cell Biochemistry book series (BLBI, volume 2)

Abstract

Macrophages from various sites in the body have been found to serve multiple functions. In host defense, the general properties of macrophages, such as endocytosis and cytolysis, antigen presentation, role in immune response, and secretory products, have been extensively reviewed (Zuckerman and Douglas, 1979; Adams and Hamilton, 1984, 1988; Schneider and Dy, 1985; Todd and Liu, 1986; McBride, 1986; Gordon, 1986). These macrophage functions may all be linked to primary recognition that occurs at the plasma membrane, thus demonstrating that the macrophage plasma membrane has major functions. Indeed, many investigators have suggested that the plasma membrane of the activated macrophage plays an important role in the ability of the cell to recognize and destroy foreign materials via cell surface receptors. In this short review, we will concentrate on the structure and composition of the macrophage plasma membrane and its functional components.

Keywords

Peritoneal Macrophage Murine Macrophage Mouse Peritoneal Macrophage Murine Peritoneal Macrophage Murine Macrophage Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, D. O., and Hamilton, T. A., 1984, The cell biology of macrophage activation, Annu. Rev. Immunol. 2: 283–318.PubMedGoogle Scholar
  2. Adams, D. O., and Hamilton, T. A., 1988, Phagocytic cells: Cytotoxic activities of macrophages, in Inflammation: Basic Principles and Clinical Correlates ( J. I. Gallin, I. M. Goldstein, and R. Snyderman, eds.), pp. 471–492, Raven Press, New York.Google Scholar
  3. Aizawa, S., and Tavassoli, M., 1987, Interaction of murine granulocyte-macrophage progenitors and supporting stroma involves a recognition mechanism with galactosyl and mannosyl specificities, J. Clin. Invest. 80: 1698–1705.PubMedGoogle Scholar
  4. Alvarez-Hernandez, X., Felstein, M. V., and Brock, J. H., 1986, The relationship between iron release, ferritin synthesis and intracellular iron distribution in mouse peritoneal macrophages. Evidence for a reduced level of metabolically available iron in elicited macrophages, Biochim. Biophys. Acta 886: 214–222.PubMedGoogle Scholar
  5. Anderson, D. C., and Springer, T. A., 1987, Leukocyte adhesion deficiency: An inherited defect in the Mac-1, LFA-1, and p150,95 glycoproteins, Annu. Rev. Med. 38: 175–194.PubMedGoogle Scholar
  6. Aoki, I., Usui, M., Minami, M., and Dorf, M. E., 1984, A genetically restricted suppressor factor that requires interaction with two distinct targets. J. Immunol. 132: 1735–1740.PubMedGoogle Scholar
  7. Arnaout, M. A., Todd, R. F., III, Dana, N., Melamed, J., Schlossman, S. F., and Colten, H. R., 1983, Inhibition of phagocytosis of complement C3- or immunoglobulin G-coated particles and of C3bi binding by monoclonal antibodies to a monocyte-granulocyte membrane glycoprotein (Mol), J. Clin. Invest. 72: 171–179.PubMedGoogle Scholar
  8. Arvieux, J., Reboul, A., Bensa, J.-C., and Colomb, M. G., 1984, Characterization of the Clq receptor on a human macrophage cell line, U937, Biochem. J. 218: 547–555.PubMedGoogle Scholar
  9. Assoian, R. K., Fleurdelys, B. E., Stevenson, H. C., Miller, P. J., Madtes, D. K., Raines, E. W., Ross, R., and Sporn, M. B., 1987, Expression and secretion of type 13 transforming growth factor by activated human macrophages, Proc. Natl Acad. Sci. USA 84: 6020–6024.PubMedGoogle Scholar
  10. Austyn, J. M., and Gordon, S., 1981, F4/80, a monoclonal antibody directed specifically against the mouse macrophage, Eur. J. Immunol. 11: 805–815.PubMedGoogle Scholar
  11. Babior, B. M., 1984, Oxidants from phagocytes: Agents of defense and destruction, Blood 64:959–966. Badwey, J. A., and Karnovsky, M. L., 1980. Active oxygen species and the functions of phagocytic leukocytes, Annu. Rev. Biochem. 49: 695–726.Google Scholar
  12. Barrett, A. J., Brown, M. A., and Sayers, C. A., 1979, The electrophoretically `slow’ and `fast’ forms of the az-macroglobulin molecule, Biochem. J. 181: 401–418.PubMedGoogle Scholar
  13. Bartocci, A., Mastrogiannis, D. S., Migliorati, G., Stockert, R. J., Wolkoff, A. W., and Stanley, E. R., 1987, Macrophages specifically regulate the concentration of their own growth factor in the circulation, Proc. Natl. Acad. Sci. USA 84: 6179–6183.PubMedGoogle Scholar
  14. Seller, D. I., Springer, T. A., and Schreiber, R. D., 1982, Anti-Mac-1 selectively inhibits the mouse and human type three complement receptor, J. Exp. Med. 156: 1000–1009.Google Scholar
  15. Berridge, M. J., and Irvine, R. F., 1984, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature (London) 312: 315–321.Google Scholar
  16. Beuscher, H. U., Fallon, R. J., and Colten, H. R., 1987, Macrophage membrane interleukin 1 regulates the expression of acute phase proteins in human hepatoma Hep 3B cells, J. Immunol. 139: 1896–1901.PubMedGoogle Scholar
  17. Blackwell, J. M., Ezekowitz, R. A. B., Roberts, M. B., Channon, J. Y., Sim, R. B., and Gordon, S., 1985, Macrophage complement and lectin-like receptors bind Leishmania in the absence of serum, J. Exp. Med. 162: 324–331.PubMedGoogle Scholar
  18. Boltz-Nitulescu, G., Plummer, J. M., and Spiegelberg, H. L., 1982, Fc receptors for IgE on mouse macrophages and macrophage-like cell lines, J. Immunol. 128: 2265–2268.PubMedGoogle Scholar
  19. Bonney, R. J., Naruns, P., and Davies, P., and Humes, J. L., 1979, Antigen-antibody complexes stimulate the synthesis and release of prostaglandins by mouse peritoneal macrophages, Prostaglandins 18: 605–616.PubMedGoogle Scholar
  20. Boraschi, D., Censini, S., Bartalini, M., Scapigliati, G., Barbarulli, G., Vicenzi, E., Donati, M. B., and Tagliabue, A., 1984a, Interferon inhibits prostaglandin biosynthesis in macrophages: Effects on arachidonic acid metabolism, J. Immunol. 132: 1987–1992.PubMedGoogle Scholar
  21. Boraschi, D., Censini, S., and Tagliabue, A., 1984b, Interferon-y reduces macrophage-suppressive activity by inhibiting prostaglandin E2 release and inducing interleukin 1 production, J. Immunol. 133: 764–768.PubMedGoogle Scholar
  22. Bozeman, P. M., Hoidal, J. R., and Shepherd, V. L., 1988, Oxidant-mediated inhibition of ligand uptake by the macrophage mannose receptor, J. Biol. Chem. 263: 1240–1247.PubMedGoogle Scholar
  23. Bromberg, Y., and Pick, E., 1984, Unsaturated fatty acids stimulate NADPH-dependent superoxide production by cell-free system derived from macrophages, Cell. Immunol. 88: 213–221.PubMedGoogle Scholar
  24. Brown, M. S., and Goldstein, J. L., 1983, Lipoprotein metabolism in the macrophage: Implications for cholesterol deposition in atherosclerosis, Annu. Rev. Biochem. 52: 223–261.PubMedGoogle Scholar
  25. Brown, M. S., and Goldstein, J. L., 1986, A receptor-mediated pathway for cholesterol homeostasis, Science 232: 34–47.PubMedGoogle Scholar
  26. Brozna, J. P., Hauff, N. F., Phillips, W. A., and Johnston Jr., R. B., 1988, Activation of the respiratory burst in macrophages. Phosphorylation specifically associated with Fc receptor-mediated stimulation, J. Immunol. 141: 1642–1647.PubMedGoogle Scholar
  27. Burch, R. M., Luini, A., and Axelrod, J., 1986, Phospholipase A2 and phospholipase C are activated by distinct GTP-binding proteins in response to ai-adrenergic stimulation in FRTL5 thyroid cells, Proc. Natl. Acad. Sci. USA 83: 7201–7205.PubMedGoogle Scholar
  28. Burch, R. M., Jelsema, C., and Axelrod, J., 1988, Cholera toxin and pertussis toxin stimulate prostaglandin E2 synthesis in a mutine macrophage cell line, J. Pharmacol. Exp. Ther. 244: 765–773.PubMedGoogle Scholar
  29. Buys, S. S., Keogh, E. A., and Kaplan, J., 1984, Fusion of intracellular membrane pools with cell surfaces of macrophages stimulated by phorbol esters and calcium ionophores, Cell 38: 569–576.PubMedGoogle Scholar
  30. Byrne, P. V., Guilbert, L. J., and Stanley, E. R., 1981, Distribution of cells bearing receptors for a colony-stimulating factor (CSF-1) in mutine tissues, J. Cell Biol. 91: 848–853.PubMedGoogle Scholar
  31. Celada, A., 1988, Immune-complex inhibition of macrophage activation is not due to an interaction with the binding or processing of IFN-y, Immunology 64: 187–192.PubMedGoogle Scholar
  32. Celada, A., and Schreiber, R. D., 1986, Role of protein kinase C and intracellular calcium mobilization in the induction of macrophage tumoricidal activity by interferon-y, J. Immunol. 137: 2373–2379.PubMedGoogle Scholar
  33. Celada, A., and Schreiber, R. D., 1987, Internalization and degradation of receptor-bound interferon-y by murine macrophages. Demonstration of receptor recycling, J. Immunol. 139: 147–153.PubMedGoogle Scholar
  34. Celada, A., Allen, R., Esparza, I., Gray, P. W., and Schreiber, R. D., 1985, Demonstration and partial characterization of the interferon-gamma receptor on human mononuclear phagocytes, J. Clin. Invest. 76: 2196–2205.PubMedGoogle Scholar
  35. Chen, B. D.-M., Mueller, M., and Chou, T.-H., 1988, Role of granulocyte/macrophage colony-stimulating factor in the regulation of murine alveolar macrophage proliferation and differentiation, J. Immunol. 141: 139–144.PubMedGoogle Scholar
  36. Clohisy, D. R., Bar-Shavit, Z., Chappel, J. C., and Teitelbaum, S. L., 1987, Dihydroxyvitamin D3 modulates bone marrow macrophage precursor proliferation and differentiation. Up-regulation of the man-nose receptor, J. Biol. Chem. 262: 15922–15929.PubMedGoogle Scholar
  37. Conrad, G. W., and Rink, T. J., 1986, Platelet activating factor raises intracellular calcium ion concentration in macrophages, J. Cell Biol. 103: 439–450.PubMedGoogle Scholar
  38. Cornacoff, J. B., Hebert, L. A., Smead, W. L., Vanaman, M. E., Birmingham, D. J., and Waxman, F. J., 1983, Primate erythrocyte-immune complex-clearing mechanism, J. Clin. Invest. 71: 236–247.PubMedGoogle Scholar
  39. Cox, J. A., Jeng, A. Y., Sharkey, N. A., Blumberg, P. M., and Tauber, A. 1., 1985, Activation of the human neutrophil nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase by protein kinase C, J. Clin. Invest. 76: 1932–1938.Google Scholar
  40. Crawford, R. M., Finbloom, D. S., Ohara, J., Paul, W. E., and Meltzer, M. S., 1987, B cell stimulatory factor-1 (interleukin 4) activates macrophages for increased tumoricidal activity and expression of la antigens, J. Immunol. 139: 135–141.PubMedGoogle Scholar
  41. Cristol, J. P., Provencal, B., Borgeat, P., and Sirois, P., 1988, Specific leukotriene D4 receptors on guinea-pig alveolar macrophages, Prostaglandins 35: 747–756.PubMedGoogle Scholar
  42. Czop, J. K., and Austen, K. F., 1985, A (3-glucan inhibitable receptor on human monocytes: Its identity with the phagocytic receptor for particulate activators on the alternative complement pathway, J. Immunol. 134: 2588–2593.PubMedGoogle Scholar
  43. Debanne, M. T., Bell, R., and Dolovich, J., 1975, Uptake of proteinase-a-macroglobulin complexes by macrophages, Biochim. Biophys. Acta 411: 295–304.PubMedGoogle Scholar
  44. DeFreitas, E. C., Chesnut, R. W., Grey, H. M., and Chiller, J. M., 1983, Macrophage-dependent activation of antigen-specific T cells requires antigen and a soluble monokine, J. Immunol. 131: 23–29.PubMedGoogle Scholar
  45. Dewald, B., Baggiolini, M., Curnutte, J. T., and Babior, B. M., 1979, Subcellular localization of the superoxide-forming enzyme in human neutrophils, J. Clin. Invest. 63: 21–29.PubMedGoogle Scholar
  46. Diamond, B., and Scharff, M. D., 1980, IgGI and IgG2b share the Fc receptor on mouse macrophages, J. Immunol. 125: 631–633.PubMedGoogle Scholar
  47. Diamond, B., and Yelton, D. E., 1981, A new Fc receptor on mouse macrophages binding IgG3, J. Exp. Med. 153: 514–519.PubMedGoogle Scholar
  48. Dijkstra, C. D., Döpp, E. A., Joling, P., and Kraal, G., 1985, The heterogeneity of mononuclear phagocytes in lymphoid organs: Distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3, Immunology 54: 589–599.PubMedGoogle Scholar
  49. Diment, S., Leech, M. S., and Stahl, P. D., 1987, Generation of macrophage variants with 5-azacytidine: Selection for mannose receptor expression, J. Leuk. Biol. 42: 485–490.Google Scholar
  50. Dinarello, C. A., 1985, An update on human interleukin-1: From molecular biology to clinical relevance, J. Clin. Immunol. 5: 287–297.PubMedGoogle Scholar
  51. Dower, S. K., Kronheim, S. R., March, C. J., Conlon, P. J., Hopp, T. P., Gillis, S., and Urdal, D. L., 1985, Detection and characterization of high affinity plasma membrane receptors for human interleukin 1, J. Exp. Med. 162: 501–515.PubMedGoogle Scholar
  52. Drickamer, K., Mamon, J. F., Binns, G., and Leung, J. 0., 1984, Primary structure of the rat liver asialoglycoprotein receptor. Structural evidence for multiple polypeptide species, J. Biol. Chem. 259: 770–778.Google Scholar
  53. Dulioust, A., Vivier, E., Salem, P., Benveniste, J., and Thomas, Y., 1988, Immunoregulatory functions of PAF-acether. I. Effect of Paf-acether on CD4+ cell proliferation, J. Immunol. 140: 240–245.PubMedGoogle Scholar
  54. Dumm, S. K., and Gershon, R. K., 1982, Interleukin 1 can replace the requirement for I-A-positive cells in the proliferation of antigen-primed T cells, Proc. Natl. Acad. Sci. USA 79: 4747–4750.Google Scholar
  55. Dykman, T. R., Hatch, J. A., Aqua, M. S., and Atkinson, J. P., 1985, Polymorphism of the C3b/C4b receptor (CR1): Characterization of a fourth allele, J. Immunol. 134: 1787–1789.PubMedGoogle Scholar
  56. Ehlenberger, A. G., and Nussenzweig, V., 1977, The role of membrane receptors for C3b and Cad in phagocytosis, J. Exp. Med. 145: 357–371.PubMedGoogle Scholar
  57. Ellsworth, J. L., Cooper, A. D., and Kraemer, F. B., 1986, Evidence that chylomicron remnants and ß-VLDL are transported by the same receptor pathway in J774 murine macrophage-derived cells, J. Lipid Res. 27: 1062–1072.PubMedGoogle Scholar
  58. Ellsworth, J. L., Kraemer, F. B., and Cooper, A. D., 1987, Transport of 3-very low density lipoproteins and chylomicron remnants by macrophages is mediated by the low density lipoprotein receptor pathway, J. Biol. Chem. 262: 2316–2325.PubMedGoogle Scholar
  59. Fearon, D. T., and Wong, W. W., 1983, Complement ligand-receptor intractions that mediate biological responses, Annu. Rev. Immunol. 1: 243–271.PubMedGoogle Scholar
  60. Fertsch, D., and Vogel, S. N., 1984, Recombinant interferons increase macrophage Fc receptor capacity, J. Immunol. 132: 2436–2439.PubMedGoogle Scholar
  61. Flotte, T. J., Springer, T. A., and Thorbecke, G. J., 1983, Dendritic cell and macrophage staining by monoclonal antibodies in tissue sections and epidermal sheets, Am. J. Pathol. 111: 112–124.PubMedGoogle Scholar
  62. Fogelman, A. M., Shechter, I., Seager, J., Hokom, M., Child, J. S., and Edwards, P. A., 1980, Malondialdehyde alteration of low density lipoproteins leads to cholesteryl ester accumulation in human monocyte-macrophages, Proc. Natl. Acad. Sci. USA 77: 2214–2218.PubMedGoogle Scholar
  63. Foley, J. J., Sarau, H. M., Mong, S., and Crooke, S. T., 1987, Calcium mobilization associated with LTB4 receptors on U937 cells, Fed. Proc. 46: 1314.Google Scholar
  64. Gerrity, R. G., 1981, The role of the monocyte in atherogenesis. I. Transition of blood-borne monocytes into foam cells in fatty lesions, Am. J. Pathol. 103: 181–190.PubMedGoogle Scholar
  65. Gilman, A. G., 1984, G proteins and dual control of adenylate cyclase, Cell 36: 577–579.PubMedGoogle Scholar
  66. Goldman, R., 1988, Characteristics of the ß-glucan receptor of murine macrophages, Exp. Cell Res. 174: 481–490.PubMedGoogle Scholar
  67. Goldstein, J. L., Ho, Y. K., Basu, S. K., and Brown, M. S., 1979, Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition, Proc. Natl. Acad. Sci. USA 76: 333–337.PubMedGoogle Scholar
  68. Gordon, S., 1986, Biology of the macrophage, J. Cell Sci. 4 (Suppl.): 267–286.Google Scholar
  69. Goyert, S. M., Ferrero, E. M., Seremetis, S. V., Winchester, R. J., Silver, J., and Mattison, A. C., 1986, Biochemistry and expression of myelomonocytic antigens, J. Immunol. 137: 3909–3914.PubMedGoogle Scholar
  70. Goyert, S. M., Ferrero, E., Rettig, W. J., Yenamandra, A. K., Obata, F., and Le Beau, M. M., 1988, The CD14 monocyte differentiation antigen maps to a region encoding growth factors and receptors, Science 239: 497–500.PubMedGoogle Scholar
  71. Grabstein, K. H., Urdal, D. L., Tushinski, R. J., Mochizuki, D. Y., Price, V. L., Cantrell, M. A., Gillis, S., and Conlon, P. J., 1986, Induction of macrophage tumoricidal activity by granulocyte-macrophage colony-stimulating factor, Science 232: 506–508.PubMedGoogle Scholar
  72. Green S. A., Plutner, H., and Mellman, I., 1985, Biosynthesis and intracellular transport of the mouse macrophage Fc receptor, J. Biol. Chem. 260: 9867–9874.PubMedGoogle Scholar
  73. Greenberg, S., Di Virgilio, F., Steinberg, T. H., and Silverstein, S. C., 1988, Extracellular nucleotides mediate Cat+ fluxes in J774 macrophages by two distinct mechanisms, J. Biol. Chem. 263: 10337–10343.PubMedGoogle Scholar
  74. Guilbert, L. J., and Stanley, E. R., 1980, Specific interaction of murine colony-stimulating factor with mononuclear phagocytic cells, J. Cell Biol. 85: 153–159.PubMedGoogle Scholar
  75. Haidaris, C. G., and Bonventre, P. F., 1982, A role for oxygen-dependent mechanisms in killing of Leishmania donovani tissue forms by activated macrophages, J. Immunol. 129: 850–855.PubMedGoogle Scholar
  76. Haltiwanger, R. S., Lehrman, M. A., Eckhardt, A. E., and Hill, R. L., 1986, The distribution and localization of the fucose-binding lectin in rat tissues and the identification of a high affinity form of the mannose/Nacetylglucosamine-binding lectin in rat liver, J. Biol. Chem. 261: 7433–7439.PubMedGoogle Scholar
  77. Hamilton, T. A., Weiel, J. E., and Adams, D. O., 1984a, Expression of the transferrin receptor in murine peritoneal macrophages is modulated in the different stages of activation, J. Immunol. 132: 2285–2290.PubMedGoogle Scholar
  78. Hamilton, T. A., Gray, P. W., and Adams, D. O., 1984b, Expression of the transferrin receptor on murine peritoneal macrophages is modulated by in vitro treatment with interferon gamma, Cell Immunol. 89: 478–488.PubMedGoogle Scholar
  79. Hamilton, T. A., Becton, D. L., Somers, S. D., Gray, P. W., and Adams, D 0., 1985, Interferon-y modulates protein kinase C activity in murine peritoneal macrophages, J. Biol. Chem. 260: 1378–1381.PubMedGoogle Scholar
  80. Hanahan, D. J., 1986, Platelet activating factor: A biologically active phosphoglyceride, Annu. Rev. Biochem. 55: 483–509.PubMedGoogle Scholar
  81. Hanaumi, K., Gray, P., and Suzuki, T., 1984, Fc-y receptor-mediated suppression of -y-interferon-induced la antigen expression on a murine macrophage-like cell line (P388131), J. Immunol. 133: 2852–2856.PubMedGoogle Scholar
  82. Hancock, W. W., Muller, W. A., and Cotran, R. S., 1987, Interleukin 2 receptors are expressed by alveolar macrophages during pulmonary sarcoidosis and are inducible by lymphokine treatment of normal human lung macrophages, blood monocytes, and monocyte cell lines, J. Immunol. 138: 185–191.PubMedGoogle Scholar
  83. Hancock, W. W., Pleau, M. E., and Kobzik, L., 1988, Recombinant granulocyte-macrophage colony-stimulating factor down-regulates expression of IL-2 receptor on human mononuclear phagocytes by induction of prostaglandine, J. Immunol. 140: 3021–3025.PubMedGoogle Scholar
  84. Hartung, H.-P., 1983, Acetyl glycerly ether phosphorylcholine (platelet-activating factor) mediates heightened metabolic activity in macrophages. Studies on PGE, TXB2 and 02— production, spreading, and the influence of calmodulin-inhibitor W-7, FEBS Lett. 160: 209–212.PubMedGoogle Scholar
  85. Hayashi, H., Kudo, I., Inoue, K., Onozaki, K., Tsushima, S., Nomura, H., and Nojima, S., 1985, Activation of guinea pig peritoneal macrophages by platelet activating factor (PAF) and its agonists, J. Biochem. 97: 1737–1745.PubMedGoogle Scholar
  86. Henriksen, T., Mahoney, E. M., and Steinberg, D., 1981, Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: Recognition by receptors for acetylated low density lipoproteins, Proc. Natl. Acad. Sci. USA 78: 6499–6503.PubMedGoogle Scholar
  87. Herrmann, F., Cannistra, S. A., Levine, H., Griffin, J. D., 1985, Expression of interleukin 2 receptors and binding of interleukin 2 by gamma interferon-induced human leukemic and normal monocytic cells, J. Exp. Med. 162: 1111–1116.PubMedGoogle Scholar
  88. Heusser, C. H., Anderson, C. L., and Grey, H. M., 1977, Receptors for IgG: Subclass specificity of receptors on different mouse cell types and the definition of two distinct receptors on a macrophage cell line, J. Exp. Med. 145: 1316–1327.PubMedGoogle Scholar
  89. Hirata, T., Bitterman, P. B., Momex, J.-F., and Crystal, R. G., 1986, Expression of the transferrin receptor gene during the process of mononuclear phagocyte maturation. J. Immunol. 136: 1339–1345.PubMedGoogle Scholar
  90. Hirsch, S., Austyn, J. M., and Gordon, S., 1981, Expression of the macrophage-specific antigen F4/80 during differentiation of mouse bone marrow cells in culture, J. Exp. Med. 154: 713–725.PubMedGoogle Scholar
  91. Ho, M.-K., and Springer, T. A., 1982a, Mac-1 antigen: Quantitative expression in macrophage populations and tissues, and immuno-fluorescent localization in spleen, J. Immunol. 128: 2281–2286.PubMedGoogle Scholar
  92. Ho, M.-K., and Springer, T. A., 1982b, Mac-2, a novel 32,000 Mr mouse macrophage subpopulation-specific antigen defined by monoclonal antibodies, J. Immunol. 128: 1221–1228.PubMedGoogle Scholar
  93. Ho, M.-K., and Springer, T. A., 1983, Tissue distribution, structural characterization, and biosynthesis of Mac-3, a macrophage surface glycoprotein exhibiting molecular weight heterogeneity, J. Biol. Chem. 258: 636–642.PubMedGoogle Scholar
  94. Hoffman, M. R., Feldman, S. R., and Pizzo, S. V., 1983, a2-Macroglobulin `fast’ forms inhibit superoxide production by activated macrophages, Biochim. Biophys. Acta 760: 421–423.Google Scholar
  95. Hoffman, M. R., Pizzo, S. V., and Weinberg, J. B., 1987, Modulation of mouse peritoneal macrophage Ia and human peritoneal macrophage HLA-DR expression by a2-macroglobulin “fast” forms, J. Immunol. 139: 1885–1890.PubMedGoogle Scholar
  96. Hogg, N., and Horton, M. A., 1987, Myeloid antigens: New and previously defined clusters, in Leukocyte Typing III ( A. McMichael, ed.), pp. 576–602, Oxford University Press, Oxford.Google Scholar
  97. Holter, W., Grunow, R., Stockinger, H., and Knapp, W., 1986, Recombinant interferon-y induces interleukin 2 receptors on human peripheral blood monocytes, J. Immunol. 136: 2171–2175.PubMedGoogle Scholar
  98. Hood, L., Steinmetz, M., and Malissen, B., 1983, Genes of the major histocompatibility complex of the mouse, Annu. Rev. Immunol. 1: 529–568.PubMedGoogle Scholar
  99. Hosein, B., and Bianco, C., 1985, Monocyte receptors for fibronectin characterized by a monoclonal antibody that interferes with receptor activity, J. Exp. Med. 162: 157–170.PubMedGoogle Scholar
  100. Hoyle, G. W., and Hill, R. L., 1988, Molecular cloning and sequencing of a cDNA for a carbohydrate binding receptor unique to rat Kupffer cells, J. Biol. Chem. 263: 7487–7492.PubMedGoogle Scholar
  101. Huebers, H. A., and Finch, C. A., 1984, Transferrin: Physiologic behavior and clinical implications, Blood 64: 763–767.PubMedGoogle Scholar
  102. Hume, D. A., Robinson, A. P., Macpherson, G. G., and Gordon, S., 1983, The mononuclear phagocyte system of the mouse defined by inununo-histochemical localization of antigen F4/80. Relationship between macrophages, langerhans cells, reticular cells, and dendritic cells in lymphoid and hematopoietic organs, J. Exp. Med. 158: 1522–1536.PubMedGoogle Scholar
  103. Humphrey, D. M., McManus, L. M., Hanahan, D. J., and Pinckard, R. N., 1984, Morphologic basis of increased vascular permeability induced by acetyl glyceryl ether phosphorylcholine, Lab. Invest. 50: 1625.Google Scholar
  104. Imber, M. J., and Pizzo, S. V., 1981, Clearance and binding of two electrophoretic “fast” forms of human a2macroglobulin, J. Biol. Chem. 256: 8134–8139.PubMedGoogle Scholar
  105. Irvine, R. F., 1982, How is the level of free arachidonic acid controlled in mammalian cells?, Biochem. J. 204: 3–16.PubMedGoogle Scholar
  106. Ishimatsu, T., Kimura, Y., Ikebe, T., Yamaguchi, K., Koga, T., and Hirata, M., 1988, Possible binding sites for inositol 1,4,5-trisphosphate in macrophages, Biochem. Biophys. Res. Commun. 155: 1173–1180.PubMedGoogle Scholar
  107. Johnson, W. J., Pizzo, S. V., Imber, M. J., and Adams, D. 0., 1982, Receptors for maleylated proteins regulate secretion of neutral proteases by murine macrophages, Science 218: 574–576.Google Scholar
  108. Johnston, P. A., Adams, D. O., and Hamilton, T. A., 1984, Fc-receptor mediated protein phosphorylation in marine peritoneal macrophages, Biochem. Biophys. Res. Commun. 124: 197–202.PubMedGoogle Scholar
  109. Joseph, S. K., 1984, Inositol trisphosphate: An intracellular messenger produced by Cat+ mobilizing hormones, Trends Biochem. Sci. 11: 420–421.Google Scholar
  110. Kaneda, M., Kakinuma, K., Yamaguchi, T., and Shimada, K., 1980, Comparative studies on alveolar macrophages and polymorphonuclear leukocytes. II. The ability of guinea pig alveolar macrophages to produce H2O2, J. Biochem. 88: 1159–1165.PubMedGoogle Scholar
  111. Kaufman, J. F., Auffray, C., Korman, A. J., Shackelford, D. A., and Strominger, J., 1984, The class II molecules of the human and murine major histocompatibility complex, Cell 36: 1–13.PubMedGoogle Scholar
  112. Kaye, J., Gillis, S., Mize, S. B., Shevach, E. M., Malek, T. R., Dinarello, C. A., Lachman, L. B., and Janeway, C. A., Jr., 1984, Growth of a cloned helper T cell line induced by a monoclonal antibody specific for the antigen receptor: Interleukin 1 is required for the expression of receptors for interleukin 2, J. Immunol. 133: 1339–1345.PubMedGoogle Scholar
  113. King, D. P., and Jones, P. P., 1983, Induction of la and H-2 antigens on a macrophage cell line by immune interferon, J. Immunol. 131: 315–318.PubMedGoogle Scholar
  114. Kitagawa, S., and Johnston, R. B., Jr., 1985, Relationship between membrane potential changes and superoxide-releasing capacity in resident and activated mouse peritoneal macrophages, J. Immunol. 135: 3417–3423.PubMedGoogle Scholar
  115. Kiyotaki, C., and Bloom, B. R., 1984, Activation of murine macrophage cell lines. Possible involvement of protein kinases in stimulation of superoxide production, J. Immunol. 133: 923–931.PubMedGoogle Scholar
  116. Klempner, M. S., Mikkelsen, R. B., Corfman, D. H., and André-Schwartz, J., 1980, Neutrophil plasma membranes. I. High-yield purification of human neutrophil plasma membrane vesicles by nitrogen cavitation and differential centrifugation, J. Cell Biol. 86: 21–28.PubMedGoogle Scholar
  117. Koo, C., Lefkowitz, R. J., and Snyderman, R., 1983, Guanine nucleotides modulate the binding affinity of the oligopeptide chemoattractant receptor on human polymorphonuclear leukocytes, J. Clin. Invest. 72: 748–753.PubMedGoogle Scholar
  118. Koo, C., Wemette-Hammond, M. E., and Innerarity, T. L., 1986, Uptake of canine 0-very low density lipoproteins by mouse peritoneal macrophages is mediated by a low density lipoprotein receptor, J. Biol. Chem. 261: 11194–11201.PubMedGoogle Scholar
  119. Koo, C., Wemette-Hammond, M. E., Garcia, Z., Malloy, M. J., Uauy, R., East, C., Bilheimer, D. W., Mahley, R. W., and Innerarity, T. L., 1988, Uptake of cholesterol-rich remnant lipoproteins by human monocyte-derived macrophages is mediated by low density lipoprotein receptors, J. Clin. Invest. 81: 1332–1340.PubMedGoogle Scholar
  120. Krensky, A. M., Robbins, E., Springer, T. A., and Burakoff, S. J., 1984, LFA-1, LFA-2, and LFA-3 antigens are involved in CTL-target conjugation, J. Immunol. 132: 2180–2182.PubMedGoogle Scholar
  121. Kurt-Jones, E. A., Kiely, J.-M., and Unanue, E. R., 1985a, Conditions required for expression of membrane IL 1 on B cells, J. Immunol. 135: 1548–1550.PubMedGoogle Scholar
  122. Kurt-Jones, E. A., Beller, D. I., Mizel, S. B., and Unanue, E. R., 1985b, Identification of a membrane-associated interleukin 1 in macrophages, Proc. Natl. Acad. Sci. USA 82: 1204–1208.PubMedGoogle Scholar
  123. Kurt-Jones, E. A., Virgin, H. W., IV, and Unanue, E. R., 1985c, Relationship of macrophage la and membrane IL 1 expression to antigen presentation, J. Immunol. 135: 3652–3654.PubMedGoogle Scholar
  124. Lala, P. K., and Parhar, R. S., 1986, Mode of PGE2-mediated T lymphocyte inactivation at the fetomaternal interface, Fed. Proc. 45: 499.Google Scholar
  125. Lands, W. E. M., 1979, The biosynthesis and metabolism of prostaglandins, Annu. Rev. Physiol. 41: 633–652.PubMedGoogle Scholar
  126. Lange-Wantzin, G., Rothlein, R., Kahn, J., and Faanes, R. B., 1987, Effect of UV irradiation on expression of membrane IL 1 by rat macrophages, J. Immunol. 138: 3803–3807.PubMedGoogle Scholar
  127. Lehrman, M. A., and Hill, R. L., 1986, The binding of fucose-containing glycoproteins by hepatic lectins. Purification of a fucose-binding lectin from rat liver, J. Biol. Chem. 261: 7419–7425.PubMedGoogle Scholar
  128. Lennartz, M. R., Wileman, T. E., and Stahl, P. D., 1987, Isolation and characterization of a mannose-specific endocytosis receptor from rabbit alveolar macrophages, Biochem. J. 245: 705–711.PubMedGoogle Scholar
  129. Lepoivre, M., Tenu, J.-P., Lemaire, G., and Petit, J.-F., 1982, Antitumor activity and hydrogen peroxide release by macrophages elicited by trehalose diesters, J. Immunol. 129: 860–866.PubMedGoogle Scholar
  130. Lewis, V. A., Koch, T., Plutner, H., and Mellman, I., 1986, A complementary DNA clone for a macrophage-lymphocyte Fc receptor, Nature (London) 324: 372–375.Google Scholar
  131. Ling, P. D., Warren, M. K., and Vogel, S. N., 1985, Antagonistic effect of interferon-0 on the interferon-y-induced expression of la antigen in murine macrophages, J. Immunol. 135: 1857–1863.PubMedGoogle Scholar
  132. Loos, M., 1983, Biosynthesis of the collagen-like Clq molecule and its receptor functions for Fc and polyanionic molecules on macrophages, Curr. Top. Microbiol. Immunol. 102: 1–56.PubMedGoogle Scholar
  133. Madtes, D. K., Raines, E. W., Sakariassen, K. S., Assoian, R. K., Sporn, M. B., Bell, G. I., and Ross, R., 1988, Induction of transforming growth factor-a in activated human alveolar macrophages, Cell 53: 285–293.PubMedGoogle Scholar
  134. Martinet, Y., Bitterman, P. B., Mornex, J.-F., Grotendorst, G. R., Martin, G. R., and Crystal, R. G., 1986, Activated human monocytes express the c-sis proto-oncogene and release a mediator showing PDGF-like activity, Nature (London) 319: 158–160.Google Scholar
  135. Mason, R. J., Stossel, T. P., and Vaughan, M., 1972, Lipids of alveolar macrophages, polymorphonuclear leukocytes, and their phagocytic vesicles, J. Clin. Invest. 51: 2399–2407.PubMedGoogle Scholar
  136. McBride, W. H., 1986, Phenotype and functions of intratumoral macrophages, Biochim. Biophys. Acta 865: 27–41.PubMedGoogle Scholar
  137. McGowan, S. E., Murray, J. J., and Parrish, M. G., 1986, Iron binding, internalization, and fate in human alveolar macrophages, J. Lab. Clin. Med. 108: 587–595.PubMedGoogle Scholar
  138. McNeil, P. L., Swanson, J. A., Wright, S. D., Silverstein, S. C., and Taylor, D. L., 1986, Fc-receptor-mediated phagocytosis occurs in macrophages without an increase in average [Ca ++]i, J. Cell Biol. 102: 1586–1592.PubMedGoogle Scholar
  139. Mentzer, S. J., Faller, D. V., and Burakoff, S. J., 1986, Interferon-y induction of LFA-1-mediated homotypic adhesion of human monocytes, J. Immunol. 137: 108–113.PubMedGoogle Scholar
  140. Mentzer, S. J., Smith, B. R., Barbosa, J. A., Crimmins, M. A. V., Herrmann, S. H., and Burakoff, S. J., 1987, CTL adhesion and antigen recognition are discrete steps in the human CTL-target cell interaction, J. Immunol. 138: 1325–1330.PubMedGoogle Scholar
  141. Mentzer, S. J., Herrmann, S. H., Crimmins, M. A. V., Burakoff, S. J., and Faller, D. V., 1988, The role of CD18 in phorbol ester-induced human monocyte-mediated cytotoxicity, Cell. Immunol. 115: 66–77.PubMedGoogle Scholar
  142. Merluzzi, V. J., Faanes, R. B., Czajkowski, M., Last-Barney, K., Harrison, P. C., Kahn, J., and Rothlein, R., 1987, Membrane-associated interleukin 1 activity on human U937 tumor cells: Stimulation of PGE2 production by human chondrosarcoma cells, J. Immunol. 139: 166–168.PubMedGoogle Scholar
  143. Metcalf, D., 1985, The granulocyte-macrophage colony stimulating factors, Cell 43: 5–6.PubMedGoogle Scholar
  144. Micklem, K. J., and Sim, R. B., 1985, Isolation of complement-fragment-iC3b-binding proteins by affinity chromatography. The identification of p150,95 as an iC3b-binding protein, Biochem. J. 231: 233–236.PubMedGoogle Scholar
  145. Mokoena, T., and Gordon, S., 1985, Human macrophage activation. Modulation of mannosyl, fucosyl receptor activity in vitro by lymphokines, gamma and alpha interferons, and dexamethasone, J. Clin. Invest. 75: 624–631.PubMedGoogle Scholar
  146. Molnar, J., Hoekstra, S., Ku, C. S.-L., and Van Alten, P., 1987, Evidence for the recycling nature of the fibronectin receptor of macrophages, J. Cell. Physiol. 131: 374–383.PubMedGoogle Scholar
  147. Moore, R. N., Oppenheim, J. J., Farrar, J. J., Carter, C. S., Jr., Waheed, A., and Shadduck, R. K., 1980, Production of lymphocyte-activating factor (interleukin 1) by macrophages activated with colony-stimulating factors, J. Immunol. 125: 1302–1305.PubMedGoogle Scholar
  148. Morahan, P. S., 1980, Macrophage nomenclature: Where are we going?, J. Reticuloendothel. Soc. 27: 223–231.PubMedGoogle Scholar
  149. Momex, J.-F., Martinet, Y., Yamauchi, K., Bitterman, P. B., Grotendorst, G. R., Chytil-Weir, A., Martin, G. R., and Crystal, R. G., 1986, Spontaneous expression of the c-sis gene and release of platelet-derived growth factorlike molecule by human alveolar macrophages, J. Clin. Invest. 78: 61–66.Google Scholar
  150. Myers, M. A., McPhail, L. C., and Snyderman, R., 1985, Redistribution of protein kinase C activity in human monocytes: Correlation with activation of the respiratory burst, J. Immunol. 135: 3411–3416.PubMedGoogle Scholar
  151. Myones, B. L., Dalzell, J. G., Hogg, N., and Ross, G. D., 1988, Neutrophil and monocyte cell surface p150,95 has iC3b-receptor (CR4) activity resembling CR3, J. Clin. Invest. 82: 640–651.PubMedGoogle Scholar
  152. Nakamura, T., and Ui, M., 1985, Simultaneous inhibitions of inositol phospholipid breakdown, arachidonic acid release, and histamine secretion in mast cells by islet-activating protein, pertussis toxin. A possible involvement of the toxin-specific substrate in the Cat+-mobilizing receptor-mediated biosignaling system, J. Biol. Chem. 260: 3584–3593.PubMedGoogle Scholar
  153. Nâray-Fejes-Tóth, A., and Guyre, P. M., 1984, Recombinant human immune interferon induces increased IgE receptor expression on the human monocyte cell line U-937, J. Immunol. 133: 1914–1919.PubMedGoogle Scholar
  154. Nathan, C. F., Murray, H. W., Wiebe, M. E., and Rubin, B. Y., 1983, Identification of interferony as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity, J. Exp Med. 158: 670–689.Google Scholar
  155. Nishizuka, Y., 1984, The role of protein kinase C in cell surface signal transduction and tumour promotion, Nature (London) 308: 693–698.Google Scholar
  156. Nitta, T., and Suzuki, T., 1982, Fcy2b receptor-mediated prostaglandin synthesis by a murine macrophage cell line (P388D1), J. Immunol. 128: 2527–2532.PubMedGoogle Scholar
  157. Noma, T., Usui, M., and Dorf, M. E., 1985, Characterization of the accessory cells involved in suppressor T cell induction, J. Immunol. 134: 1374–1380.PubMedGoogle Scholar
  158. O’Flaherty, J. T., Wykle, R. L., Miller, C. H., Lewis, J. C., Waite, M., Bass, D. A., McCall, C. E., and DeChatelet, L. R., 1981, 1-O-alkyl-sn-glyceryl-3-phosphorylcholines. A novel class of neutrophil stimulants, Am. J. Pathol. 103: 70–79.Google Scholar
  159. Ohara, J., and Paul, W. E., 1987, Receptors for B-cell stimulatory factor-1 expressed on cells of haematopoietic lineage, Nature (London) 325: 537–540.Google Scholar
  160. Ohkuma, Y., Komano, H., and Natori, S., 1988, Identification and characterization of Sarcophaga lectin receptor on the surface of murine macrophages by use of monoclonal antibodies, J. Biochem. 103: 402–407.PubMedGoogle Scholar
  161. Ohlsson, K., 1971, Interactions in vitro and in vivo between dog trypsin and dog plasma protease inhibitors, Scand. J. Clin. Lab. Invest. 28: 219–223.Google Scholar
  162. Opmeer, F. A., and Hoogsteden, H. C., 1984, Characterization of specific receptors for leukotriene D4 on human alveolar macrophages, Prostaglandins 28: 183–194.PubMedGoogle Scholar
  163. Papini, E., Grzeskowiak, M., Bellavite, P., and Rossi, F., 1985, Protein kinase C phosphorylates a component of NADPH oxidase of neutrophils, FEBS Lett. 190: 204–208.PubMedGoogle Scholar
  164. Parthasarathy, S., Fong, L. G., Otero, D., and Steinberg, D., 1987, Recognition of solubilized apoproteins from delipidated, oxidized low density lipoprotein (LDL) by the acetyl-LDL receptor, Proc. Natl. Acad. Sci. USA 84: 537–540.PubMedGoogle Scholar
  165. Pick, E., Bromberg, Y., Shpungin, S., and Gadba, R., 1987, Activation of the superoxide forming NADPH oxdase in a cell-free system by sodium dodecyl sulfate. Characterization of the membrane-associated component, J. Biol. Chem. 262: 16476–16483.PubMedGoogle Scholar
  166. Pinckard, R. N., Ludwig, J. C., and McManus, L. M., 1988, Platelet-activating factors, in Inflammation: Basic Principles and Clinical Correlates ( J. I. Gallin, I. M., Goldstein, and R. Snyderman, eds.), pp. 139–167, Raven Press, New York.Google Scholar
  167. Prpic, V., Uhing, R. J., Weiel, J. E., Jakoi, L., Gawdi, G., Herman, B., and Adams, D. O., 1988, Biochemical and functional responses stimulated by platelet-activating factor in murine peritoneal macrophages, J. Cell Biol. 107: 363–372.PubMedGoogle Scholar
  168. Puré, E., Witmer, M. D., Lum, J. B., Mellman, I., and Unkeless, J. C., 1987, Properties of a second epitope of the murine Fc receptor for aggregated IgG, J. Immunol. 139: 4152–4158.PubMedGoogle Scholar
  169. Radoff, S., Vlassara, H., and Cerami, A., 1988, Characterization of a solubilized cell surface binding protein on macrophages specific for proteins modified nonenzymatically by advanced glycosylated end products, Arch. Biochem. Biophys. 263: 418–423.PubMedGoogle Scholar
  170. Ravetch, J. V., Luster, A. D., Weinshank, R., Kochan, J., Pavlovec, A., Portnoy, D. A., Hulmes, J., Pan, Y.-C. E., and Unkeless, J. C., 1986, Structural heterogeneity and functional domains of murine immunoglobulin G Fc receptors, Science 234: 718–725.PubMedGoogle Scholar
  171. Record, M., Laharrague, P., Fillola, G., Thomas, J., Ribes, G., Fontan, P., Chap, H., Corberand, J., and Douste-Blazy, L., 1985, A rapid isolation procedure of plasma membranes from human neutrophils using self-generating Percoll gradients. Importance of pH in avoiding contamination by intracellular membranes, Biochim. Biophys. Acta 819: 1–9.PubMedGoogle Scholar
  172. Reiner, N. E., Ng, W., Ma, T., and McMaster, M. R., 1988, Kinetics of y interferon binding and induction of major histocompatibility complex class II mRNA in Leishmania-infected macrophages, Proc. Natl. Acad. Sci. USA 85: 4330–4334.PubMedGoogle Scholar
  173. Rhodes, J., 1973, Receptor for monomeric IgM on guinea-pig splenic macrophages, Nature (London) 243: 527–528.Google Scholar
  174. Robb, R. J., Munck, A., and Smith, K. A., 1981, T cell growth factor receptors. Quantitation, specificity, and biological relevance. J. Exp. Med. 154: 1455–1474.PubMedGoogle Scholar
  175. Rola-Pleszczynski, M., Pouliot, C., Turcotte, S., Pignol, B., Braquet, P., and Bouvrette, L., 1988, Immune regulation by platelet-activating factor. I. Induction of suppressor cell activity in human monocytes and CD8± T cells and of helper cell activity in CD4 + T cells, J. Immunol. 140: 3547–3552.PubMedGoogle Scholar
  176. Ross, G. D., and Lambris, J. D., 1982, Identification of a C3bi-specific membrane complement receptor that is expressed on lymphocytes, monocytes, neutrophils, and erythrocytes, J. Exp. Med. 155: 96–110.PubMedGoogle Scholar
  177. Ross, M. I., Deems, R. A., Jesaitis, A. J., Dennis, E. A., and Ulevitch, R. J., 1985, Phospholipase activities of the P388D1 macrophage-like cell line, Arch. Biochem. Biophys. 238: 247–258.PubMedGoogle Scholar
  178. Rothlein, R., and Springer, T. A., 1986, The requirement for lymphocyte function-associated antigen 1 in homotypic leukocyte adhesion stimulated by phorbol ester, J. Exp. Med. 163: 1132–1149.PubMedGoogle Scholar
  179. Rubin, R. P., 1982, Calcium and cellular secretion. Plenum Press, New York.Google Scholar
  180. Rumpold, H., Förster, O., Böck, G., Swetly, P., and Riedl, M., 1982, Antigenic heterogeneity of rat macrophages. A monoclonal antibody reacting only with alveolar but not with other types of macrophages, Immunology 45: 637–643.PubMedGoogle Scholar
  181. Russell, D. W., Schneider, W. J., Yamamoto, T., Luskey, K. L., Brown, M. S., and Goldstein, J. L., 1984, Domain map of the LDL receptor: Sequence homology with the epidermal growth factor precursor, Cell 37: 577–585.PubMedGoogle Scholar
  182. Sacca, R., Stanley, E. R., Sherr, C. J., and Rettenmier, C. W., 1986, Specific binding of the mononuclear phagocyte colony-stimulating factor CSF-1 to the product of the v-fins oncogene, Proc. Natl. Acad. Sci. USA 83: 3331–3335.PubMedGoogle Scholar
  183. Schneider, E., and Dy, M., 1985, Activation of macrophages, Comp. Immun. Microbiol. Infect. Dis. 8: 135–146.Google Scholar
  184. Schreiber, R. D., Hicks, L. J., Celada, A., Buchmeier, N. A., and Gray, P. W., 1985, Monoclonal antibodies to murine -y-interferon which differentially modulate macrophage activation and antiviral activity, J. Immunol. 134: 1609–1618.PubMedGoogle Scholar
  185. Scott, W. A., Zrike, J. M., Hamill, A. L., Kempe, J., and Cohn, Z. A., 1980, Regulation of arachidonic acid metabolites in macrophages, J. Exp. Med. 152: 324–335.PubMedGoogle Scholar
  186. Scott, W. A., Pawlowski, N. A., Murray, H. W., Andreach, M., Zrike, J., and Cohn, Z. A., 1982, Regulation of arachidonic acid metabolism by macrophage activation, J. Exp. Med. 155: 1148–1160.PubMedGoogle Scholar
  187. Sharpe, P. T., 1988, Methods of cell separation, in Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 18 ( R. H. Burdon and P. H. Van Knippenberg, eds.), pp. 18–69, Elsevier, Amsterdam.Google Scholar
  188. Shaw, J. O., Pinckard, R. N., Ferrigni, K. S., McManus, L. M., and Hanahan, D. J., 1981, Activation of human neutrophils with 1-O-hexadecyl/octadecyl-2-acetyl-sn-glyceryl-3-phosphorylcholine (platelet activating factor), J. Immunol. 127: 1250–1255.PubMedGoogle Scholar
  189. Shepherd, V. L., Konish, M. G., and Stahl, P., 1985, Dexamethasone increases expression of mannose receptors and decreases extracellular lysosomal enzyme accumulation in macrophages, J. Biol. Chem. 260: 160–164.PubMedGoogle Scholar
  190. Sherr, C. J., Rettenmier, C. W., Sacca, R., Roussel, M. F., Look, A. T., and Stanley, E. R., 1985, The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1, Cell 41: 665–676.PubMedGoogle Scholar
  191. Shibata, Y., Abiko, Y., Arii, H., Sone, M., and Takiguchi, H., 1987, Rapid procedure for preparation of macrophage plasma membrane, Int. J. Biochem. 19: 489–493.PubMedGoogle Scholar
  192. Shibata, Y., Abiko, Y., Ohno, H., Araki, T., and Takiguchi, H., 1988a, Recognition of acidic phospholipase A2 activity in plasma membranes of resident peritoneal macrophages, Life Sci. 43: 889–896.PubMedGoogle Scholar
  193. Shibata, Y., Abiko, Y., and Takiguchi, H., 1988b, Phospholipase A2 in macrophage plasma membrane releases arachidonic acid from phosphatidylinositol, Biochim. Biophys. Acta 971: 121–126.PubMedGoogle Scholar
  194. Shimokado, K., Raines, E. W., Madtes, D. K., Barrett, T. B., Benditt, E. P., and Ross, R., 1985, A significant part of macrophage-derived growth factor consists of at least two forms of PDGF, Cell 43: 277–286PubMedGoogle Scholar
  195. Siraganian, R. P., and Osler, A. G., 1971, Destruction of rabbit platelets in the allergic response of sensitized leukocytes. I. Demonstration of a fluid phase intermediate, J. Immunol. 106: 1244–1251.PubMedGoogle Scholar
  196. Snyder, D. S., Beller, D. I., and Unanue, E. R., 1982, Prostaglandins modulate macrophage la expression, Nature (London) 299: 163–165.Google Scholar
  197. Snyderman, R., and Fudman, E. J., 1980, Demonstration of a chemotactic factor receptor on macrophages, J. Immunol. 124: 2754–2757.PubMedGoogle Scholar
  198. Snyderman, R., Pike, M. C., Edge, S., and Lane, B., 1984, A chemoattractant receptor on macrophages exists in two affinity states regulated by guanine nucleotides, J. Cell Biol. 98: 444–448.PubMedGoogle Scholar
  199. Somers, S. D., Weiel, J. E., Hamilton, T. A., and Adams, D. O., 1986, Phorbol esters and calcium ionophore can prime murine peritoneal macrophages for tumor cell destruction, J. Immunol. 136: 4199–4205.PubMedGoogle Scholar
  200. Soutar, A. K., and Knight, B. L., 1982, Degradation by cultured monocyte-derived macrophages from normal and familial hypercholesterolaemic subjects of modified and unmodified low-density lipoproteins, Biochem. J. 204: 549–556.PubMedGoogle Scholar
  201. Spiess, M., Schwartz, A. L., and Lodish, H. F., 1985, Sequence of human asialoglycoprotein receptor cDNA. An internal signal sequence for membrane insertion, J. Biol. Chem. 260: 1979–1982.PubMedGoogle Scholar
  202. Springer, T., Galfré, G., Secher, D. S., and Milstein, C., 1978, Monoclonal xenogeneic antibodies to murine cell surface antigens: Identification of novel leukocyte differentiation antigens, Eur. J. Immunol. 8: 539–551.PubMedGoogle Scholar
  203. Springer, T., Galfré, G., Secher, D. S., and Milstein, C., 1979, Mac-1: A macrophage differentiation antigen identified by monoclonal antibody, Eur. J. Immunol. 9: 301–306.PubMedGoogle Scholar
  204. Springer, T. A., Miller, L. J., and Anderson, D. C., 1986, Third member of the Mac-1, LFA-1 human leukocyte adhesion glycoprotein family, J. Immunol. 136: 240–245.PubMedGoogle Scholar
  205. Stanley, E. R., 1981, Colony stimulating factors, in The Lymphokines ( W. E. Stewart II and J. W. Hadden, eds.), pp. 101–132, Humana Press, Clifton, N.J.Google Scholar
  206. Steinberg, T. H., Newman, A. S., Swanson, J. A., and Silverstein, S. C., 1987, ATP4-permeabilizes the plasma membrane of mouse macrophages to fluorescent dyes, J. Biol. Chem. 262: 8884–8888.PubMedGoogle Scholar
  207. Steinbrecher, U. P., Parthasarathy, S., Leake, D. S., Witztum, J. L., and Steinberg, D., 1984, Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phopholipids, Proc. Natl. Acad. Sci. USA 81: 3883–3887.PubMedGoogle Scholar
  208. Stenson, W. F., and Parker, C. W., 1980, Prostaglandins, macrophages, and immunity, J. Immunol. 125: 1–5.PubMedGoogle Scholar
  209. Stephenson, J. D., and Shepherd, V. L., 1987, Purification of the human alveolar macrophage marnose receptor, Biochem. Biophys. Res. Commun. 148: 883–889.PubMedGoogle Scholar
  210. Strassmann, G., Springer, T. A., Somers, S. D., and Adams, D. O., 1986, Mechanisms of tumor cell capture by activated macrophages: Evidence for involvement of lymphocyte function-associated (LFA)-1 antigen, J. Immunol. 136: 4328–4333.PubMedGoogle Scholar
  211. Sullivan, K. A., Liao, Y.-C., Alborzi, A., Beiderman, B., Chang, F.-H., Masters, S. B., Levinson, A. D., and Bourne, H. R., 1986, Inhibitory and stimulatory G proteins of adenylate cyclase: cDNA and amino acid sequences of the a chains, Proc. Natl. Acad. Sci. USA 83: 6687–6691.PubMedGoogle Scholar
  212. Sullivan, R., Griffin, J. D., Simons, E. R., Schafer, A. I., 1VIeshulam, T., Fredette, J. P., Maas, A. K., Gadenne, A.-S., Leavitt, J. L., and Melnick, D. A., 1987, Effects of recombinant human granulocyte and macrophage colony-stimulating factors on signal transduction pathways in human granulocytes, J. Immunol. 139: 3422–3430.PubMedGoogle Scholar
  213. Sullivan, G. W., Carper, H. T., Novick, W. J., Jr., and Mandell, G. L., 1988, Inhibition of the inflammatory action of interleukin-1 and tumor necrosis factor (alpha) on neutrophil function by pentoxifylline, Infect. Immun. 56: 1722–1729.PubMedGoogle Scholar
  214. Sung. S.-S. J., Young, J. D.-E., Origlio, A. M., Heiple, J. M., Kaback, H. R., and Silverstein, S. C., 1985, Extracellular ATP perturbs transmembrane ion fluxes, elevates cytosolic [Ca2+], and inhibits phagocytosis in mouse macrophages, J. Biol. Chem. 260: 13442–13449.Google Scholar
  215. Suzuki, T., Saito-Taki, T., Sadasivan, R., and Nitta, T., 1982, Biochemical signal transmitted by Fe-y receptors: Phospholipase A2 activity of Fcy2b receptor of murine macrophage cell line p388D1, Proc. Natl. Acad. Sci. USA 79: 591–595.PubMedGoogle Scholar
  216. Swenson, R. P., and Howard, J. B., 1979a, Structural characterization of human a2-macroglobulin subunits, J. Biol. Chem. 254: 4452–4456.PubMedGoogle Scholar
  217. Swenson, R. P., and Howard, J. B., 1979b, Characterization of alkylamine-sensitive site in a2-macroglobulin, Proc. Natl. Acad. Sci. USA 76: 4313–4316.PubMedGoogle Scholar
  218. Tabas, I., and Boykow, G. C., 1987, Protein synthesis inhibition in mouse peritoneal macrophages results in increased acyl coenzyme A: Cholesterol acyl transferase activity and cholesteryl ester accumulation in the presence of native low density lipoprotein, J. Biol. Chem. 262: 12175–12181.PubMedGoogle Scholar
  219. Tabas, I., Weiland, D. A., and Tall, A. R., 1985, Unmodified low density lipoprotein causes cholesteryl ester accumulation in J774 macrophages, Proc. Natl. Acad. Sci. USA 82: 416–420.PubMedGoogle Scholar
  220. Tabas, I., Boykow, G. C., and Tall, A. R., 1987, Foam cell-forming J774 macrophages have markedly elevated acyl coenzyme A: Cholesterol acyl transferase activity compared with mouse peritoneal macrophages in the presence of low density lipoprotein (LDL) despite similar LDL receptor activity, J. Clin. Invest. 79: 418–426.PubMedGoogle Scholar
  221. Taetle, R., and Honeysett, J. M., 1988, -y-Interferon modulates human monocyte/macrophage transferrin receptor expression, Blood 71: 1590–1595.Google Scholar
  222. Taffet, S. M., and Russell, S. W., 1981, Macrophage-mediated tumor cell killing: Regulation of expression of cytolytic activity by prostaglandin E, J. Immunol. 126: 424–427.PubMedGoogle Scholar
  223. Takeya, M., Hsiao, L., and Takahashi, K., 1987, A new monoclonal antibody, TRPM-3, binds specifically to certain rat macrophage populations: Immunohistochemical and immunoelectron microscopic analysis, J. Leuk. Biol. 41: 187–195.Google Scholar
  224. Taniyama, T., and Watanabe, T., 1982, Establishment of a hybridoma secreting a monoclonal antibody specific for activated tumoricidal macrophages, J. Exp. Med. 156: 1286–1291.PubMedGoogle Scholar
  225. Tavassoli, M., and Crosby, W. H., 1968, Transplantation of marrow to extramedullary sites, Science 161: 5456.Google Scholar
  226. Tenner, A. J., and Cooper, N. R., 1980, Analysis of receptor-mediated Clq binding to human peripheral blood mononuclear cells, J. Immunol. 125: 1658–1664.PubMedGoogle Scholar
  227. Todd, R. F., III, and Liu, D. Y., 1986, Mononuclear phagocyte activation: Activation-associated antigens, Fed. Proc. 45: 2829–2836.PubMedGoogle Scholar
  228. Todd, R. F., III, Nadler, L. M., and Schlossman, S. F., 1981, Antigens on human monocytes identified by monoclonal antibodies, J. Immunol. 126: 1435–1442.PubMedGoogle Scholar
  229. Tripp, C. S., Wyche, A., Unanue, E. R., and Needleman, P., 1986, The functional significance of the regulation of macrophage la expression by endogenous arachidonate metabolites in vitro, J. Immunol. 137: 3915–3920.PubMedGoogle Scholar
  230. Ulevitch, R. J., Watanabe, Y., Sano, M., Lister, M. D., Deems, R. A., and Dennis, E. A., 1988, Solubilization, purification, and characterization of a membrane-bound phospholipase A2 from the P388D, macrophage-like cell line, J. Biol. Chem. 263: 3079–3085.PubMedGoogle Scholar
  231. Unanue, E. R., Beller, D. I., Lu, C. Y., and Allen, P. M., 1984, Antigen presentation: Comments on its regulation and mechanism, J. Immunol. 132: 1–5.PubMedGoogle Scholar
  232. Unkeless, J. C., 1979, Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors, J. Exp. Med. 150: 580–596.PubMedGoogle Scholar
  233. Usui, M., Aoki, I., Sunshine, G. H., and Dorf, M. E., 1984, A role for macrophages in suppressor cell induction, J. Immunol. 132: 1728–1734.PubMedGoogle Scholar
  234. Vairo, G., and Hamilton, J. A., 1988, Activation and proliferation signals in murine macrophages: Stimulation of Na+, K + -ATPase activity by hemopoietic growth factors and other agents, J. Cell. Physiol. 134: 13–24.PubMedGoogle Scholar
  235. Valone, F. H., 1988, Identification of platelet-activating factor receptors in P388D1 murine macrophages, J. Immunol. 140: 2389–2394.PubMedGoogle Scholar
  236. Van De Water, L., III, 1985, Phagocytosis, In Plasma Fibronectin: Structure and Function ( J. McDonagh, eds.), pp. 175–196, Marcel Dekker, New York.Google Scholar
  237. Van Leuven, F., Cassiman, J.-J., and Van den Berghe, H., 1981, Functional modifications of a2-macroglobulin by primary amines. I. Characterization of a2M after derivatization by methylamine and by factor XIII, J. Biol. Chem. 256: 9016–9022.PubMedGoogle Scholar
  238. Via, D. P., Dresel, H. A., Cheng, S.-L., and Gotto Jr., A. M., 1985, Murine macrophage tumors are a source of a 260,000-dalton acetyl-low density lipoprotein receptor, J. Biol. Chem. 260: 7379–7386.PubMedGoogle Scholar
  239. Virgin, H. W., IV, Kurt-Jones, E. A., Wittenberg, G. F., and Unanue, E. R., 1985a, Immune complex effects on murine macrophages. II. Immune complex effects on activated macrophages cytotoxicity, membrane IL 1, and antigen presentation, J. Immunol. 135: 3744–3749.PubMedGoogle Scholar
  240. Virgin, H. W., IV, Wittenberg, G. F., and Unanue, E. R., 1985b, Immune complex effects on murine macrophages. I. Immune complexes suppress interferon-y induction of la expression, J. Immunol. 135: 3735–3743.PubMedGoogle Scholar
  241. Vivier, E., Salem, P., Dulioust, A., Praseuth, D., Metezeau, P., Benveniste, J., and Thomas, Y., 1988, Immunoregulatory functions of paf-acether. II. Decrease of CD2 and CD3 antigen expression, Eur. J. Immunol. 18: 425–430.PubMedGoogle Scholar
  242. Vlassara, H., Brownlee, M., and Cerami, A., 1984, Accumulation of diabetic rat peripheral nerve myelin by macrophages increases with the presence of advanced glycosylation endproducts, J. Exp. Med. 160: 197–207.PubMedGoogle Scholar
  243. Vlassara, H., Brownlee, M., and Cerami, A., 1985, High-affinity-receptor-mediated uptake and degradation of glucose-modified proteins: A potential mechanism for the removal of senescent macromolecules, Proc. Natl. Acad. Sci. USA 82: 5588–5592.PubMedGoogle Scholar
  244. Vogel, S. N., Finbloom, D. S., English, K. E., Rosenstreich, D. L. and Langreth, S. G., 1983, Interferon-induced enhancement of macrophage Fc receptor expression: 3-Interferon treatment of C3H/HeJ macrophages results in increased numbers and density of Fc receptors, J. Immunol. 130: 1210–1214.PubMedGoogle Scholar
  245. Wacker, H.-H., Radzun, H. J., and Parwaresch, M. R., 1985, Ki-M2R, a new specific monoclonal antibody, discriminates tissue macrophages from reticulum cells and monocytes in vivo and in vitro, J. Leuk. Biol. 38: 509–520.Google Scholar
  246. Wahl, S. M., McCartney-Francis, N., Hunt, D. A., Smith, P. D., Wahl, L. M., and Katona, I. M., 1987, Monocyte interleukin 2 receptor gene expression and interleukin 2 augmentation of microbicidal activity, J. Immunol. 139: 1342–1347.PubMedGoogle Scholar
  247. Waldmann, T. A., Goldman, C. K., Robb, R. J., Depper, J. M., Leonard, W. J., Sharrow, S. O., Bongiovanni, K. F., Korsmeyer, S. J., and Greene, W. C., 1984, Expression of interleukin 2 receptors on activated human B cells, J. Exp. Med. 160: 1450–1466.PubMedGoogle Scholar
  248. Walker, W. S., 1976, Functional heterogeneity of macrophages in the induction and expression of acquired immunity, J. Reticuloendothel. Soc. 20: 57–65.PubMedGoogle Scholar
  249. Warren, M. K., and Ralph, P., 1986, Macrophage growth factor CSF-1 stimulates human monocyte production of interferon, tumor necrosis factor, and colony stimulating activity, J. Immunol. 137: 2281–2285.PubMedGoogle Scholar
  250. Weinshank, R. L., Luster, A. D., and Ravetch, J. V., 1988, Function and regulation of a murine macrophagespecific IgG Fc receptor, FcyR-a, J. Exp. Med. 167: 1909–1925.PubMedGoogle Scholar
  251. Wightman, P. D., Humes, J. L., Davies, P., and Bonney, R. J., 1981, Identification and characterization of two phospholipase A2 activities in resident mouse peritoneal macrophages, Biochem. J. 195: 427–433.PubMedGoogle Scholar
  252. Wijelath, E. S., Kardasz, A. M., Drummond, R., and Watson, J., 1988, Interleukin-one induced inositol phospholipid breakdown in murine macrophages: Possible mechanism of receptor activation, Biochem. Biophys. Res. Commun. 152: 392–397.PubMedGoogle Scholar
  253. Wileman, T., Harding, C., and Stahl, P., 1985, Receptor-mediated endocytosis, Biochem. J. 232: 1–14.PubMedGoogle Scholar
  254. Wileman, T. E., Lennartz, M. R., and Stahl, P. D., 1986, Identification of the macrophage mannose receptor as a 175-kDa membrane protein, Proc. Natl. Acad. Sci. USA 83: 2501–2505.PubMedGoogle Scholar
  255. Williams, D. E., Bicknell, D. C., Park, L. S., Straneva, J. E., Cooper, S., and Broxmeyer, H. F., 1988, Purified murine granulocyte/macrophage progenitor cells express a high-affinity receptor for recombinant murine granulocyte/macrophage colony-stimulating factor, Proc. Natl. Acad. Sci. USA 85: 487–491.PubMedGoogle Scholar
  256. Wilson, M. E., and Pearson, R. D., 1988, Roles of CR3 and mannose receptors in the attachment and ingestion of Leishmania donovani by human mononuclear phagocytes, Infect. Immun. 56: 363–369.PubMedGoogle Scholar
  257. Wing, E. J., Ampel, N. M., Waheed, A., and Shadduck, R. K., 1985, Macrophage colony-stimulating factor (M-CSF) enhances the capacity of murine macrophages to secrete oxygen reduction products, J. Immunol. 135: 2052–2056.PubMedGoogle Scholar
  258. Winkler, J. D., Sarau, H. M., Foley, J. J., Mong, S., and Crooke, S. T., 1988, Leukotriene B4-induced homologous desensitization of calcium mobilization and phosphoinositide metabolism in U-937 cells, J. Pharmacol. Exp. Ther. 246: 204–210.PubMedGoogle Scholar
  259. Wood, D. D., 1979, Mechanism of action of human B cell-activating factor. I. Comparison of the plaque-stimulating activity with thymocyte-stimulating activity, J. Immunol. 123: 2400–2407.PubMedGoogle Scholar
  260. Wright, S. D., Craigmyle, L. S., and Silverstein, S. C., 1983a, Fibronectin and serum amyloid P component stimulate C3b-and C3bi-mediated phagocytosis in cultured human monocytes, J. Exp. Med. 158: 1338–1343.PubMedGoogle Scholar
  261. Wright, S. D., Rao, P. E., Van Voorhis, W. C., Craigmyle, L. S., Iida, K., Talle, M. A., Westberg, E. F., Goldstein, G., and Silverstein, S. C., 1983b, Identification of the C3bi receptor of human monocytes and macrophages by using monoclonal antibodies, Proc. Natl. Acad. Sci. USA 80: 5699–5703.PubMedGoogle Scholar
  262. Yamaguchi, T., and Kaneda, M., 1988, Presence of cytochrome b-558 in guinea-pig alveolar macrophagessubcellular localization and relationship with NADPH oxidase, Biochim. Biophys. Acta 933: 450–459.PubMedGoogle Scholar
  263. Yeung, Y. G., Jubinsky, P. T., Sengupta, A., Yeung, D. C. Y., and Stanley, E. R., 1987, Purification of the colony-stimulating factor 1 receptor and demonstration of its tyrosine kinase activity, Proc. Natl. Acad. Sci. USA 84: 1268–1271.PubMedGoogle Scholar
  264. Yoshimura, A., Seguchi, T., Yoshida, T., Shite, S., Waki, M., and Kuwano, M., 1988, Novel feature of metabolism of low density lipoprotein receptor in a mouse macrophage-like cell line, J774.1, J. Biol. Chem. 263: 11935–11942.PubMedGoogle Scholar
  265. Young, J. D.-E., Unkeless, J. C., Kaback, H. R., and Cohn, Z. A., 1983, Macrophage membrane potential changes associated with y2b/y1 Fc receptor-ligand binding. Proc. Natl. Acad. Sci. USA 80: 1357–1361.PubMedGoogle Scholar
  266. Young, J. D.-E., Ko, S. S., and Cohn, Z. A., 1984, The increase in intracellular free calcium associated with IgGy2b/yl Fc receptor-ligand interactions: Role in phagocytosis, Proc. Natl. Acad. Sci. USA 81: 5430–5434.PubMedGoogle Scholar
  267. Zoeller, R. A., Wightman, P. D., Anderson, M. S., and Raetz, C. R. H., 1987, Accumulation of lysophosphatidylinositol in RAW 264.7 macrophage tumor cells stimulated by lipid A precursors, J. Biol. Chem. 262: 17212–17220.PubMedGoogle Scholar
  268. Zuckerman, S. H., and Douglas, S. D., 1979, Dynamics of the macrophage plasma membrane, Annu. Rev. Microbiol. 33: 267–307.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Yasuko Shibata
    • 1
  • Yoshimitsu Abiko
    • 1
  • Hisashi Takiguchi
    • 1
  1. 1.Department of BiochemistryNihon University School of Dentistry at MatsudoMatsudo, Chiba 271Japan

Personalised recommendations