Advertisement

Immunological Studies of the Platelet Cytoskeleton

  • J. Michael Wilkinson
Part of the Blood Cell Biochemistry book series (BLBI, volume 2)

Abstract

Resting platelets are small discoid cells that are capable, upon appropriate stimulus, of undergoing remarkable changes in morphology and activity. In vitro, these include an initial shape change to a spherical form, with the extension of pseudopodia in response to low concentrations of activating agents, incubation in the cold, or mechanical activation. This shape change may be reversed by incubation at 37°C, indicating that no major irreversible reorganization has taken place within the cell. Further activation leads to the extension of numerous long pseudopodia, followed by aggregation and the secretion of the physiologically active contents of the granules. Finally, aggregated platelets express contractile activity in causing the retraction of an aggregate or fibrin clot. An alternative method of studying in vitro activation is to allow platelets to attach to surfaces such as glass, where again initially they extend pseudopodia and finally spread to a flattened form resembling a fried egg. There are a wide variety of stimuli that can cause these reactions; these include collagen, thrombin, ADP, serotonin, and the Ca2+ ionophore A23187; their effects have been reviewed extensively by Siess (1989). The physiological counterparts of these in vitro activities are an initial activation by subendothelial collagen, exposed by damage to the endothelium, followed by further activation induced by the formation of thrombin and augmented by positive feedback from the release of ADP and serotonin from platelet degranulation. In physical terms, the platelets attach to the exposed subendothelium, form a hemostatic plug, and finally cause clot retraction to close the lesion.

Keywords

Actin Filament Platelet Activation Human Platelet Blood Platelet Membrane Skeleton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aakhus, A.-M., Wilkinson, M., Pedersen, T. M., and Solum, N. O., 1989, The use of PhastSystem crossed immunoelectrophoresis with immunoblotting to demonstrate a complex between GP Ib and the actin-binding protein (ABP) of human platelets, Electrophoresis 10: 758–761.PubMedGoogle Scholar
  2. Adelstein, R. S., Pollard, T. D., and Kuehl, W. M., 1971, Isolation and characterisation of myosin and two myosin fragments from human blood platelets, Proc. Natl. Acad. Sci. USA 68: 2703–2707.PubMedGoogle Scholar
  3. Alexandrova, A. Y., and Vasiliev, J. M., 1984, Focal contacts of spreading platelets with the substratum, Exp. Cell Res. 153: 254–258.Google Scholar
  4. Argraves, W. S., Dickerson, K., Burgess, W. H. and Ruoslahti, E., 1989, Fibulin, a novel protein that interacts with the fibronectin receptor 13 subunit cytoplasmic domain, Cell 58: 623–629.PubMedGoogle Scholar
  5. Arimura, C., Suzuki, T., Yanagisawa, M., Imamura, M., Hamada, Y. and Masaki, T., 1988, Primary structure of chicken skeletal muscle and fibroblast a-actinins deduced from cDNA sequences, Eur. J. Biochem. 177: 649–655.PubMedGoogle Scholar
  6. Asijee, G. M., Sturk, A., Bruin, T., Wilkinson, J. M. and Ten Cate, J. W., 1990, Vinculin is a permanent component of the membrane skeleton and is incorporated into the (re)organising cytoskeleton upon platelet activation, Eur. J. Biochem. 189: 131–136.PubMedGoogle Scholar
  7. Asyee, G. M., Sturk, A., and Muszbek, L., 1987, Association of vinculin to the platelet cytoskeleton during thrombin-induced aggregation, Exp. Cell Res. 168: 358–364.PubMedGoogle Scholar
  8. Ball, E. H., and Kovala, T., 1988, Mapping of caldesmon: Relationship between the high and low molecular weight forms, Biochemistry 27: 6093–6098.PubMedGoogle Scholar
  9. Baron, M. D., Davison, M. D., Jones, P. and Critchley, D. R., 1987, The sequence of chick a-actinin reveals homologies to spectrin and calmodulin, J. Biol. Chem. 262: 17623–17629.PubMedGoogle Scholar
  10. Beckerle, M. C., O’Halloran, T., and Burridge, K., 1986, Demonstration of a relationship between talin and P235, a major substrate of the calcium-dependent protease in platelets, J. Cell Biochem. 30: 259–270.PubMedGoogle Scholar
  11. Beckerle, M. C., Miller, D. E., Bertagnolli, M. E. and Locke, S. J., 1989, Activation-dependent redistribution of the adhesion plaque protein, talin, in intact human platelets, J. Cell Biol. 109: 3333–3346.PubMedGoogle Scholar
  12. Behnke, O., 1970, Microtubules in disc shaped blood cells, Int. Rev. Exp. Pathol. 9: 1–92.PubMedGoogle Scholar
  13. Behnke, O., and Bray, D., 1988, Surface movements during the spreading of blood platelets, Eur. J. Cell Biol. 46: 207–216.PubMedGoogle Scholar
  14. Belkin, A. M., and Koteliansky, V. E., 1987, Interaction of iodinated vinculin, metavinculin and a-actinin with cytoskeletal proteins, FEBS Lett. 220: 291–294.PubMedGoogle Scholar
  15. Belkin, A. M., Ornatsky, O. I., Kabakov, A. E., Glukhova, M. A., and Koteliansky, V. E., 1988, Diversity of vinculin/meta-vinculin in human tissues and cultivated cells. Expression of muscle specific variants of vinculin in human aorta smooth muscle cells, J. Biol. Chem. 263: 6631–6635.PubMedGoogle Scholar
  16. Bennett, J. P., Zaner, K. S., and Stossel, T. P., 1984, Isolation and some properties of macrophage a-actinin: evidence that it is not an actin gelling protein, Biochemistry 23: 5081–5086.PubMedGoogle Scholar
  17. Bennett, V., 1979, Immunoreactive forms of human erythrocyte ankyrin are present in diverse cells and tissues, Nature (London) 281: 597–599.Google Scholar
  18. Bennett, V., 1985, The membrane skeleton of human erythrocytes and its implications for more complex cells, Annu. Rev. Biochem. 54: 273–304.PubMedGoogle Scholar
  19. Bettex-Galland, M., and Löscher, E. F., 1965, Thrombasthenin, the contractile protein from blood platelets and its relation to other contractile proteins, Adv. Protein Chem. 20: 1–35.PubMedGoogle Scholar
  20. Bienz, D., and Clemetson, K. J., 1989, Human platelet glycoprotein Ia. One component is only expressed on the surface of activated platelets and may be a granule constituent, J. Biol. Chem. 264: 507–514.PubMedGoogle Scholar
  21. Bourguignon, L. Y. W., Field, S., and Bourguignon, G. J., 1985, Phosphorylation of a tropomyosin-like (30kd) protein during platelet activation, J. Cell Biochem. 29: 19–30.PubMedGoogle Scholar
  22. Boyles, J., Fox, J. E. B., Phillips, D. R., and Stemberg, P. E., 1985, Organization of the cytoskeleton in resting, discoid platelets: preservation of actin filaments by a modified fixation that prevents osmium damage, J. Cell Biol. 101: 1463–1472.PubMedGoogle Scholar
  23. Bretscher, A., and Lynch, W., 1985, Identification and localization of immunoreactive forms of caldesmon in smooth and nonmuscle cells: A comparison with the distribution of tropomyosin and a-actinin, J. Cell Biol. 100: 1656–1663.PubMedGoogle Scholar
  24. Bryan, J., and Kurth, M. C., 1984, Actin-gelsolin interactions. Evidence for two actin-binding sites, J. Biol. Chem. 259: 7480–7487.PubMedGoogle Scholar
  25. Buck, C. A., and Horwitz, A. F., 1987a, Cell surface receptors for extracellular matrix molecules, Annu. Rev. Cell Biol. 3: 179–205.PubMedGoogle Scholar
  26. Buck, C. A., and Horwitz, A. F., 1987b, Integrin, a transmembrane glycoprotein complex mediating cell-substratum adhesion, J. Cell Sci. Suppl. 8: 231–250.PubMedGoogle Scholar
  27. Burn, P., 1988a, Reversible association of et-actinin with membranes and the cytoskeleton in relation to transmembrane signals, in Signal Transduction in Cytoplasmic Organization and Cell Motility ( P. Satir, J. S. Condeelis, and E. Lazarides, eds.), pp. 353–363, Alan R. Liss, Inc., New York.Google Scholar
  28. Burn, P., 1988b, Phosphatidylinsositol cycle and its possible involvement in the regulation of cytoskeletonmembrane interactions, J. Cell Biochem. 36: 15–24.PubMedGoogle Scholar
  29. Burn, P., and Burger, M. M., 1987, The cytoskeletal protein vinculin contains transformation-sensitive, covalently bound lipid, Science 235: 476–479.PubMedGoogle Scholar
  30. Burn, P., Rotman, A., Meyer, R. K., and Burger, M. M., 1985, Diacylglycerol in large a-actinin/actin complexes and in the cytoskeleton of activated platelets, Nature (London) 314: 469–472.Google Scholar
  31. Burn, P., Kupfer, A. and Singer, S. J., 1988, Dynamic membrane—cytoskeletal interactions: specific association of integrin and talin arises in vivo after phorbol ester treatment of peripheral blood lymphocytes, Proc. Natl. Acad. Sci. USA 85: 497–501.PubMedGoogle Scholar
  32. Burridge, K., 1986, Substrate adhesions in normal and transformed fibroblasts: Organisation and regulation of cytoskeletal, membrane and extracellular matrix components at focal contacts, Cancer Rev. 4: 18–78.Google Scholar
  33. Burridge, K., and Connell, L., 1983, Talin: A cytoskeletal component concentrated in adhesion plaques and other sites of actin-membrane interaction, Cell Motil. 3: 405–417.PubMedGoogle Scholar
  34. Burridge, K., and Mangeat, P., 1984, An interaction between vinculin and talin, Nature (London) 308:744746.Google Scholar
  35. Burridge, K., Molony, L., and Kelly, T., 1987, Adhesion paques: Sites of transmembrane interaction between the extracellular matrix and the actin cytoskeleton, J. Cell Sci. Suppl. 8: 211–229.PubMedGoogle Scholar
  36. Burridge, K., Fath, K., Kelly, T., Nuckolls, G., and Turner, C., 1988, Focal adhesions: Transmembrane junctions between the extracellular matrix and the cytoskeleton, Annu. Rev. Cell Biol. 4: 487–525.PubMedGoogle Scholar
  37. Carlsson, L., Markey, F., Blikstad, I., Persson, T., and Lindberg, U., 1978, Reorganisation of actin in platelets stimulated by thrombin as measured by the DNAse 1 inhibition assay, Proc. Natl. Acad. Sci. USA 76: 6376–6380.Google Scholar
  38. Carroll, R. C., and Gerrard, J. M., 1982, Phosphorylation of platelet actin-binding protein during platelet activation, Blood 59: 466–471.PubMedGoogle Scholar
  39. Carroll, R. C., Butler, R. G., and Morris, P.A., 1982, Separable assembly of platelet pseudopodal and contractile cytoskeletons, Cell 30: 385–393.PubMedGoogle Scholar
  40. Carron, C. P., Hwo, S., Dingus, J., Benson, D. M., Meza, I., and Bryan, J., 1986, A re-evaluation of cytoplasmic gelsolin localization, J. Cell Biol. 102: 237–245.PubMedGoogle Scholar
  41. Castle, A. G., and Crawford, N., 1979, Platelet microtubule subunit proteins, Thromb. Haemostasis 42: 1630–1633.Google Scholar
  42. Chaponnier, C., Patebex, P., and Gabbiani, G., 1986, Human plasma actin-depolymerizing factor. Purification, biological activity and localization in leukocytes and platelets, Eur. J. Biochem. 146: 267–276.Google Scholar
  43. Chen, M., and Stracher, A., 1989, In situ phosphorylation of platelet actin-binding protein by cAMP-dependent protein kinase stabilizes it against proteolysis by calpain, J. Biol. Chem. 264: 14282–14289.Google Scholar
  44. Clemetson, K. J., and Löscher, E. F., 1988, Membrane glycoprotein abnormalities in pathological platelets, Biochim. Biophys. Acta 947: 53–73.PubMedGoogle Scholar
  45. Coller, B. S., Peerschke, E. I., Scudder, L. E., and Sullivan, C. A., 1983, Studies with a murine monoclonal antibody that abolishes ristocetin-induced binding of von Willebrand factor to platelets: Additional evidence in support of GP Ib as a platelet receptor for von Willebrand factor, Blood 61: 99–110.PubMedGoogle Scholar
  46. Collier, N. C., and Wang, K., 1982a, Purification and properties of human platelet P235. A high molecular weight substrate of endogenous calcium-activated protease(s), J. Biol. Chem. 257: 6937–6943.PubMedGoogle Scholar
  47. Collier, N. C., and Wang, K., 1982b, Human platelet P235: a high Mr protein which restricts the length of actin filaments, FEBS Lett. 143: 205–210.PubMedGoogle Scholar
  48. Cooper, D. R., de Ruiz Galaretta, C. M., Fanjul, L. F., Mojsilovic, L., Standaert, M. L., Pollet, R. J., and Farese, R. V., 1987, Insulin but not phorbol ester treatment increases phosphorylation of vinculin by protein kinase C in BC3H-1 myocytes, FEBS Lett. 214: 122–126.PubMedGoogle Scholar
  49. Côté, G. P., and Smillie, L. B., 1981, The interaction of equine platelet tropomyosin with skeletal muscle actin, J. Biol. Chem. 256: 7257–7261.PubMedGoogle Scholar
  50. Côté, G., Lewis, W. G. and Smillie, L. B., 1978, Non-polymerizability of platelet tropomyosin and its NH2and COOH-terminal sequences, FEBS Lett. 91: 237–241.PubMedGoogle Scholar
  51. Craig, S. W., and Pollard, T. D., 1982, Actin-binding proteins, Trends Biochem. Sci. 7: 88–92.Google Scholar
  52. Daniel, J. L., Molish, I. R., and Holmsen, H., 1981, Myosin phosphorylation in intact platelets, J. Biol. Chem. 256: 7510–7514.PubMedGoogle Scholar
  53. Davies, G. E., and Cohen, C. M., 1985, Platelets contain proteins immunologically related to red cell spectrin and protein 4.1, Blood 65: 52–59.PubMedGoogle Scholar
  54. Debus, E., Weber, K., and Osborn, M., 1981, The cytoskeleton of blood platelets viewed by immunofluorescence microscopy, Eur. J. Cell Biol. 24: 45–52.PubMedGoogle Scholar
  55. Der Terrossian, E., Fuller, S. D., Stewart, M., and Weeds, A. G., 1981, Porcine platelet tropomyosin. Purification, characterization and paracrystal formation, J. Mol. Biol. 153: 147–167.Google Scholar
  56. Dingus, J., Hwo, S., and Bryan, J., 1986, Identification by monoclonal antibodies and characterization of human platelet caldesmon, J. Cell Biol. 102: 1748–1757.PubMedGoogle Scholar
  57. Drenckhahn, D., Beckerle, M., Burridge, K., and Otto, J., 1988, Identification and subcellular location of talin in various cell types and tissues by means of [125I]vinculin overlay, immunoblotting and immunocytochemistry, Eur. J. Cell Biol. 46: 513–522.PubMedGoogle Scholar
  58. Escolar, G., Krumwiede, M., and White, J. G., 1986, Organization of the actin cytoskeleton of resting and activated platelets in suspension, Am. J. Pathol. 123: 86–94.PubMedGoogle Scholar
  59. Escolar, G., Sauk, J., Bravo, M. L., Krumwiede, M., and White, J. G., 1987, Immunogold staining of microtubules in resting and activated platelets, Am. J. Hematol. 24: 177–188.PubMedGoogle Scholar
  60. Ezzell, R. M., Kenney, D. M., Egan, S., Stossel, T. P., and Hartwig, J. H., 1988, Localization of the domain of actin-binding protein that binds to membrane glycoprotein lb and actin in human platelets, J. Biol. Chem. 263: 13303–13309.PubMedGoogle Scholar
  61. Faquin, W. C., Hussain, A., Hung, J., and Branton, D., 1988, An immunoreactive form of erythrocyte protein 4.9 is present in non-erythroid cells, Eur. J. Cell Biol. 46: 168–175.PubMedGoogle Scholar
  62. Fine, R. E., and Blitz, A. L., 1975, A chemical comparison of tropomyosins from muscle and non-muscle tissues, J. Mol. Biol. 95: 447–454.PubMedGoogle Scholar
  63. Fox, J. E. B., 1985a, Linkage of a membrane skeleton to integral membrane glycoproteins in human platelets, J. Clin. Invest. 76: 1673–1683.PubMedGoogle Scholar
  64. Fox, J. E. B., 1985b, Identification of actin-binding protein as the protein linking the membrane skeleton to glycoproteins on platelet plasma membranes, J. Biol. Chem. 260: 11970–11977.PubMedGoogle Scholar
  65. Fox, J. E. B., 1987, The platelet cytoskeleton, in Thrombosis and Haemostasis, 1987 ( M. Verstraete, J. Vermylen, R. Lijnen, and J. Arnout, eds.), pp. 175–225, Leuven University Press, Leuven, Belgium.Google Scholar
  66. Fox, J. E. B., and Berndt, M. C., 1989, Cyclic AMP-dependant phosphorylation of glycoprotein Ib inhibits collagen-induced polymerization of actin in platelets, J. Biol. Chem., 264: 9520–9526.PubMedGoogle Scholar
  67. Fox, J. E. B., and Boyles, J. K., 1988a, Characterization of the platelet membrane cytoskeleton, in Signal Transduction in Cytoplasmic Organization and Cell Mobility ( P. Satir, J. S. Condeelis, and E. Lazarides, eds.), pp. 313–324, Alan R. Liss., Inc., New York.Google Scholar
  68. Fox, J. E. B., and Boyles, J. K., 1988b, The membrane skeleton—A distinct structure that regulates the function of cells, BioEssays 8: 14–18.PubMedGoogle Scholar
  69. Fox, J. E. B., Reynolds, C. C., and Phillips, D. R., 1983, Calcium-dependent proteolysis occurs during platelet aggregation, J. Biol. Chem. 258: 9973–9981.PubMedGoogle Scholar
  70. Fox, J. E. B., Boyles, J. K., Reynolds, C. C., and Phillips, D. R., 1984, Actin filament content and organization in unstimulated platelets, J. Cell Biol. 98: 1985–1991.PubMedGoogle Scholar
  71. Fox, J. E. B., Goll, D. E., Reynolds, C. C., and Phillips, D. R., 1985, Identification of two proteins (actin-binding protein and P235) that are hydrolyzed by endogenous Caz+-dependent protease during platelet aggregation, J. Biol. Chem. 260: 1060–1066.PubMedGoogle Scholar
  72. Fox, J. E. B., Reynolds, C. C., Morrow, J. S., and Phillips, D. R., 1987, Spectrin is associated with membrane-bound actin filaments and is hydrolysed by the Caz+-dependant protease during platelet activation, Blood 69: 537–545.PubMedGoogle Scholar
  73. Fox, J. E. B., Boyles, J. K., Berndt, M. C., Steffen, P. K. and Anderson, L. K., 1988, Identification of a membrane skeleton in platelets, J. Cell Biol. 106: 1525–1538.PubMedGoogle Scholar
  74. Friedrichs, B., Koob, R., Kraemer, D., and Drenckhahn, D., 1989, Demonstration of immunoreactive forms of erythrocyte protein 4.2 in nonerythroid cells and tissues, Eur. J. Cell Biol. 48: 121–127.PubMedGoogle Scholar
  75. Fürst, D. O., Cross, R. A., De Mey, J., and Small, J. V., 1986, Caldesmon is an elongated, flexible molecule localized in the actomyosin domains of smooth muscle, EMBO J. 5: 251–257.PubMedGoogle Scholar
  76. Gache, Y., Landon, F., and Olomucki, A., 1984, Polymorphism of a-actinin from human blood platelets. Homodimeric and heterodimeric forms, Eur. J. Biochem. 141: 57–61.PubMedGoogle Scholar
  77. Geiger, B., 1979, A 130K protein from chicken gizzard: Its localization at the termini of microfilament bundles in cultured chicken cells, Cell 18: 193–205.PubMedGoogle Scholar
  78. Gimona, M., Small, J. V., Moeremans, M., Van Damme, J., Puype, M., and Vandekerckhove, J., 1988, Porcine vinculin and metavinculin differ by a 68-residue insert located close to the carboxy-terminal part of the molecule, EMBO J. 7: 2329–2334.PubMedGoogle Scholar
  79. Giometti, C. S., and Anderson, N. L., 1984, Tropomyosin heterogeneity in human cells, J. Biol. Chem. 259: 14113–14120.PubMedGoogle Scholar
  80. Golden, A., Nemeth, S. P., and Brugge, J. S., 1986, Blood platelets express high levels of the pp60c–srcspecific tyrosine kinase activity, Proc. Natl. Acad. Sci. USA 83: 852–856.PubMedGoogle Scholar
  81. Gonnella, P. A., and Nachmias, V. T., 1981, Platelet activation and microfilament bundling, J. Cell Biol. 89: 146–151.PubMedGoogle Scholar
  82. Hack, N., and Crawford, N., 1984, Two-dimensional polyacrylamide gel electrophoresis of the proteins and glycoproteins of purified human platelet surface and intracellular membranes, Biochem. J 222: 235.PubMedGoogle Scholar
  83. Harris, H. E., and Weeds, A. G., 1978, Platelet actin: sub-cellular distribution and association with profilin, FEBS Lett. 90: 84–88.PubMedGoogle Scholar
  84. Hartwig, J. H., Chambers, K. A., Hopcia, K. L., and Kwiatkowski, D. J., 1989a, Association of profilin with filament-free regions of human leukocyte and platelet membranes and reversible membrane binding during platelet activation, J. Cell Biol. 109: 1571–1579.PubMedGoogle Scholar
  85. Hartwig, J. H., Chambers, K. A., and Stossel, T. P., 1989b, Association of gelsolin with actin filaments and cell membranes of macrophages and platelets, J. Cell Biol. 108: 467–479.PubMedGoogle Scholar
  86. Hemler, M. E., Crouse, C., Takada, Y., and Sonnenberg, A., 1988, Multiple very late antigen (VLA) and heterodimers on platelets. Evidence for distinct VLA-2, VLA-5 (fibronectin receptor), and VLA-6 structures, J. Biol. Chem. 263: 7660–7665.PubMedGoogle Scholar
  87. Horwitz, A., Duggan, K., Buck, C., Beckerle, M. C., and Burridge, K., 1986, Interaction of plasma membrane fibronectin receptor with talin—a transmembrane linkage, Nature (London) 320: 531–533.Google Scholar
  88. Hunter, T., Sefton, B. M., Ball, E. H., and Singer, S. J., 1981, Vinculin: A cytoskeletal target of the transforming protein of Rous sarcoma virus, Cell 24: 165–174.PubMedGoogle Scholar
  89. Isenberg, W. M., McEver, R. P., Phillips, D. R., Shuman, M. A., and Bainton, D. F., 1987, The platelet fibrinogen receptor: An immunogold-surface replica study of agonist-induced ligand binding and receptor clustering, J. Cell Biol. 104: 1655–1663.PubMedGoogle Scholar
  90. Ito, S., Werth, D. K., Richert, N. D., and Pastan, I., 1983, Vinculin phosphorylation by the src kinase. Interaction of vinculin with phospholipid vesicles, J. Biol. Chem. 258: 14626–14631.PubMedGoogle Scholar
  91. Janmey, P. A., and Stossel, T. P., 1987, Modulation of gelsolin function by phosphatidylinositol 4,5-biphosphate, Nature (London) 325: 362–364.Google Scholar
  92. Jennings, L. K., Fox, J. E. B., Edwards, H. H., and Phillips, D. R., 1981, Changes in the cytoskeletal structure of human platelets following thrombin activation, J. Biol. Chem. 256: 6927–6932.PubMedGoogle Scholar
  93. Kakiuchi, R., Inui, M., Morimoto, K., Kanda, K., Sobue, K., and Kakiuchi, S., 1983, Caldesmon, a calmodulin-binding, F actin-interacting protein, is present in aorta, uterus and platelets, FEBS Lett. 154: 351–356.PubMedGoogle Scholar
  94. Karlsson, R., Lassing, I., Hoglund, A. S., and Lindberg, U., 1984, The organization of microfilaments in spreading platelets: A comparison with fibroblasts and glial cells, J. Cell Physiol. 121: 96–113.PubMedGoogle Scholar
  95. Kellie, S., and Wigglesworth, N. M., 1987, The cytoskeletal protein vinculin is acylated by myristic acid, FEBS Lett. 213: 428–432.PubMedGoogle Scholar
  96. Kellie, S., Patel, B., Wigglesworth, N. M., Critchley, D. R., and Wyke, J. A., 1986, The use of Rous sarcoma virus transformation mutants to study the relationships between vinculin phosphorylation, pp60 location and adhesion plaque integrity, Exp. Cell Res. 165: 216–228.PubMedGoogle Scholar
  97. Kenney, D. M., and Chao, F. C., 1980, Jonophore-induced disassembly of blood platelet microtubules: Effect of cyclic AMP and indomethacin, J. Cell Physiol. 103: 289–298.PubMedGoogle Scholar
  98. Kenney, D. M., and Linck, R. W., 1985, The cytoskeleton of unstimulated platelets: Structure and composition of the isolated marginal microtubule band. J. Cell Sci. 78: 1–22.PubMedGoogle Scholar
  99. Kenney, D. M., Weiss, L. D., and Linck, R. W., 1988, A novel microtubule protein in the marginal band of human blood platelets, J. Biol. Chem. 263: 1432–1438.PubMedGoogle Scholar
  100. Korn, E. D., and Hammer, J. A., III, 1988, Myosins of nonmuscle cells, Annu. Rev. Biophys. Biophys. Chem. 17: 23–45.PubMedGoogle Scholar
  101. Koteliansky, V. E., Gneushev, G. N., Glukhova, M. A., Venyaminov, S. Y., and Muszbek, L., 1984, Identification and isolation of vinculin from platelets, FEBS Lett. 165: 26–30.PubMedGoogle Scholar
  102. Kunicki, T. J., Nugent, D. J., Staats, S. J., Orchekowski, R. P., Wayner, E. A., and Carter, W. G., 1988, The human fibroblast class II extracellular matrix receptor mediates platelet adhesion to collagen and is identical to the platelet glycoprotein Ia-lla complex, J. Biol. Chem. 263: 4516–4519.PubMedGoogle Scholar
  103. Kupfer, A., Singer, S. J., and Dennert, G., 1986, On the mechanism of uni-directional killing in mixtures of two cytotoxic T-lymphocytes, J. Exp. Med. 163: 489–498.PubMedGoogle Scholar
  104. Kurth, M. C., and Bryan, J., 1984, Platelet activation induces the formation of a stable gelsolin-actin complex from monomeric gelsolin, J. Biol. Chem. 259: 7473–7479.PubMedGoogle Scholar
  105. Kwiatkowski, D. J., and Bruns, G. A. P., 1988, Human profilin. Molecular cloning, sequence comparison and chromosomal analysis, J. Biol. Chem. 263: 5910–5915.PubMedGoogle Scholar
  106. Kwiatkowski, D. J., Janmey, P. A., and Yin, H. L., 1989, Identification of critical functional and regulatory domains in gelsolin, J. Cell Biol. 108: 1717–1726.PubMedGoogle Scholar
  107. Lam, S. C.-T., Plow, E. F., D’Souza, S. E., Cheresh, D. A., Frelinger, A. L., and Ginsberg, M. H., 1989, Isolation and characterization of a platelet membrane protein related to the vitronectin receptor, J. Biol. Chem. 264: 3742–3749.PubMedGoogle Scholar
  108. Landon, F., and Olomucki, A., 1983, Isolation and physico-chemical properties of blood platelet a-actinin, Biochim. Biophys. Acta 742: 129–134.PubMedGoogle Scholar
  109. Landon, F., Hue, C., Thorne, F., Oriol, C., and Olomucki, A., 1977, Human platelet actin. Evidence of 13 and y forms and similarity of properties with sarcoplasmic actin, Eur. J. Biochem. 81: 571–577.PubMedGoogle Scholar
  110. Landon, F., Gache, Y., Touitou, H., and Olomucki, A., 1985, Properties of two isoforms of human blood platelet a-actinin, Eur. J. Biochem. 153: 231–237.PubMedGoogle Scholar
  111. Langanger, G., De Mey, J., Moermans, M., Daneels, G., De Brabander, M., and Small, J. V., 1984, Ultrastructural localization of a-actinin and Eilamin in cultured cells with the immunogold staining (IGS) method, J. Cell Biol. 99: 1324–1334.PubMedGoogle Scholar
  112. Langer, B. G., Gonnella, P. A., and Nachmias, V. T., 1984, a-Actinin and vinculin in normal and thrombasthenic platelets, Blood 63: 606–614.Google Scholar
  113. Lassing, I., and Lindberg, U., 1985, Specific interaction between phosphatidyl 4,5-bisphosphate and profilactin, Nature (London) 314: 472–474.Google Scholar
  114. Lassing, I., and Lindberg, U., 1988a, Specificity of the interaction between phosphatidylinositol 4,5-bisphosphate and the profilin: actin complex, J. Cell Biochem. 37: 255–267.PubMedGoogle Scholar
  115. Lassing, I., and Lindberg, U., 1988b, Evidence that the phosphatidylinositol cycle is linked to cell motility, Exp. Cell Res. 174: 1–15.PubMedGoogle Scholar
  116. Lin, J. J.-C., Lin, L.-C., Davis-Nanthakumar, E. J., and Lourim, D., 1988, Monoclonal antibodies against caldesmon, a Ca+ + /calmodulin-and actin-binding protein of smooth muscle and nonmuscle cells, Hybridoma 7: 273–288.PubMedGoogle Scholar
  117. Lind, S. E., Jamey, P. A., Chaponnier, C., Herbert, T.-J., and Stossel, T. P., 1987, Reversible binding of actin to gelsolin and profilin in human platelet extracts, J. Cell Biol. 105: 833–842.PubMedGoogle Scholar
  118. Livne, A., Packham, M. A., Guccione, M. A., and Mustard, J. F., 1988, Aggregation-related association of lipid with the cytoskeleton of rabbit and human platelets prelabeled with [3H]palmitic acid. Similar effects of adenosine diphosphate-and thrombin-induced aggregation, J. Clin. Invest. 81: 288–299.PubMedGoogle Scholar
  119. Loftus, J. C., and Albrecht, R. M., 1984, Redistribution of the fibrinogen receptor of human platelets after surface activation, J. Cell Biol. 99: 822–829.PubMedGoogle Scholar
  120. Loftus, J. C., Choate, J., and Albrecht, R. M., 1984, Platelet activation and cytoskeletal reorganization: High voltage electron microscopic examination of intact and triton-extracted whole mounts, J. Cell Biol. 98: 2019–2025.PubMedGoogle Scholar
  121. Lopez, J. A., Chung, D. W., Fujikawa, K., Hagen, F. S., Papayannopoulou, T., and Roth, G. J., 1987, Cloning of the a chain of human platelet glycoprotein Ib: A transmembrane protein with homology to leucine-rich a2-glycoprotein, Proc. Natl. Acad. Sci. USA 84: 5615–5619.PubMedGoogle Scholar
  122. MacLeod, A. R., and Gooding, C., 1988, Human hTMet gene: Expression in smooth muscle and nonmuscle tissue, Mol. Cell. Biol. 8: 433–440.PubMedGoogle Scholar
  123. Mangeat, P., and Burridge, K., 1984, Actin-membrane interaction in fibroblasts: What proteins are involved in this association?, J. Cell Biol. 99: 95s - 103s.PubMedGoogle Scholar
  124. Markey, F., Lindberg, U., and Eriksson, L., 1978, Human platelets contain profilin, a potential regulator of actin polymerisability, FEBS Lett. 88: 75–79.PubMedGoogle Scholar
  125. Markey, F., Persson, T., and Lindberg, U., 1981, Characterisation of platelet extracts before and after stimulation with respect to the possible role of profilactin as microfilament precursor, Cell 23: 145–153.PubMedGoogle Scholar
  126. Marston, S. B., and Smith, C. W. J., 1985, The thin filaments of smooth muscles, J. Muscle Res. Cell Motil. 6: 669–708.PubMedGoogle Scholar
  127. Menashi, S., Weintroub, H., and Crawford, N., 1981, Characterization of human platelet surface and intracellular membranes isolated by free flow electrophoresis, J. Biol. Chem. 256: 4095–4101.PubMedGoogle Scholar
  128. Meyer, R. K., Schindler, H., and Burger, M. M., 1982, a-Actinin interacts specifically with model membranes containing glycerides and fatty acids, Proc. Natl. Acad. Sci. USA 79: 4280–4284.Google Scholar
  129. Mueller, S. C., Kelly, T., Dai, M., Dai, H. and Chen, W.-T., 1989, Dynamic cytoskeleton—integrin associations induced by cell binding to immobilized fibronectin, J. Cell Biol. 109: 3455–3464.PubMedGoogle Scholar
  130. Muszbek, L., Adany, R., Glukhova, M. A., Frid, M. G., Kabakov, A. E., and Koteliansky, V. E., 1987, The identification of vimentin, an intermediate filament subunit protein in human platelets, Thromb. Haemostasis 58: 301.Google Scholar
  131. Nakajima-Iijima, S., Hamada, H., Reddy, P., and Kakunaga, T., 1985, Molecular structure of the human cytoplasmic f3-actin gene: Interspecies homology of sequences in the introns, Proc. Natl. Acad. Sci. USA 82: 6133–6137.PubMedGoogle Scholar
  132. Nakata, T., and Hirokawa, N., 1987, Cytoskeletal reorganization of human platelets after stimulation revealed by the quick-freeze deep-etch technique, J. Cell Biol. 105: 1771–1780.PubMedGoogle Scholar
  133. Ngai, P. K., and Walsh, M. P., 1984, Inhibition of smooth muscle actin-activated myosin Mgt+-ATPase activity by caldesmon, J. Biol. Chem. 259: 13656–13659.PubMedGoogle Scholar
  134. Nieuwenhuis, H. K., Sakariassen, K. S., Houdijk, W. P. M., Nievelstein, P. F. E. M., and Sixma, J. J., 1986, Deficiency of platelet membrane glycoprotein Ia associated with a decreased platelet adhesion to subendothelium: A defect in platelet spreading, Blood 68: 692–695.PubMedGoogle Scholar
  135. Nurden, A. T., George, J. N., and Phillips, D. R., 1986, Platelet membrane glycoproteins: Their structure, function and modification in disease, in Biochemistry of Platelets ( D. R. Phillips, and M. A. Shuman, eds.), pp. 160–224, Academic Press, London.Google Scholar
  136. O’Halloran, T., Beckerle, M. C., and Burridge, K., 1985, Identification of talin as a major protein implicated in platelet activation, Nature (London) 317: 449–451.Google Scholar
  137. Ohtake, N., 1986, Attachment of cytoskeletons to cell membranes in human blood platelets as revealed by the quick-freezing and deep-etching replica method, J. Ultrastruct. Mol. Struct. Res. 95: 84–95.PubMedGoogle Scholar
  138. Okita, J. R., Pidard, D., Newman, P. J., Montgomery, R. R., and Kunicki, T. R., 1985, On the association of glycoprotein Ib and actin-binding protein in human platelets, J. Cell Biol. 100: 317–321.PubMedGoogle Scholar
  139. Onji, T., Tagaki, M., and Shibata, N., 1987, Caldesmon specifically inhibits the effect of tropomyosin on actomyosin system in platelet, Biochem. Biophys. Res. Commun. 143: 475–481.PubMedGoogle Scholar
  140. Oster, G. F., and Perelson, A. S., 1987, The physics of cell motility, J. Cell Sci. Suppl. 8: 35–54.PubMedGoogle Scholar
  141. Owada, M. K., Hakura, A., Iida, K., Yahara, I., Sobue, K., and Kakuichi, S., 1984, Occurrence of caldesmon (a calmodulin-binding protein) in cultured cells: Comparison of normal and transformed cells, Proc. Natl. Acad. Sci. USA 81: 3133–3137.PubMedGoogle Scholar
  142. Painter, R. G., and Ginsberg, M., 1984. Centripetal myosin redistribution in thrombin-stimulated platelets, Exp. Cell Res. 155: 198–212.PubMedGoogle Scholar
  143. Painter, R. G., Ginsberg, M., and Jacques, B., 1982, Concanavalin A induces interactions between surface glycoproteins and the platelet cytoskeleton, J. Cell Biol. 92: 565–573.PubMedGoogle Scholar
  144. Painter, R. G., Gaarde, W., and Ginsberg, M. H., 1985, Direct evidence for the interaction of platelet surface membrane proteins gpllb and III with cytoskeletal components: Protein crosslinking studies, J. Cell Biochem. 27: 277–290.PubMedGoogle Scholar
  145. Parise, L. V., 1989, The structure and function of platelet integrins, Curr. Opinion Cell Biol. 1: 947–952.PubMedGoogle Scholar
  146. Peleg, I., Kahane, I., Eldor, A., Groschel-Stewart, U., Mestan, J., and Muhlrad, A., 1983, Structural properties of myosin from the particulate fraction of human blood platelets, J. Biol. Chem. 258: 9290–9295.PubMedGoogle Scholar
  147. Peleg, I., Muhlrad, A., Eldor, A., Groschel-Stewart, U., and Kahane, I., 1984, Characterization of the ATPase activities of myosins isolated from the membrane and the cytoplasmic fractions of human platelets, Arch. Biochem. Biophys. 243: 442–453.Google Scholar
  148. Phillips, D. R., and Agin, P. P., 1977, Platelet plasma membrane glycoproteins. Evidence for the presence of nonequivalent disulphide bonds using nonreduced-reduced two-dimensional gel electrophoresis, J. Biol. Chem. 252: 2121–2126.PubMedGoogle Scholar
  149. Phillips, D. R., Jennings, L. K., and Edwards, H. H., 1980, Identification of membrane proteins mediating the interaction of human platelets, J. Cell Biol. 86: 77–86.PubMedGoogle Scholar
  150. Phillips, D. R., Charo, I. F., Parise, L. V., and Fitzgerald, L. A., 1988, The platelet membrane glycoprotein IIb-IIIa complex, Blood 71: 831–843.PubMedGoogle Scholar
  151. Pho, D. B., Vasseur, C., Desbruyeres, E., and Olomucki, A., 1984, Evidence for the presence of tropomyosin in the cytoskeleton of ADP- and thrombin-stimulated blood platelets, FEBS Lett. 173: 164–168.PubMedGoogle Scholar
  152. Pho, D. B., Desbruyères, E., Der Terrossian, E., and Olomucki, A., 1986, Cytoskeletons of ADP- and thrombin-stimulated blood platelets. Presence of a caldesmon-like protein, a-actinin and gelsolin at different steps of the stimulation, FEBS Lett. 202: 117–121.PubMedGoogle Scholar
  153. Piotrowicz, R. S., Orchekowski, R. P., Nugent, D. J., Yamada, K. Y., and Kunicki, T. J., 1988, Glycoprotein le-IIa functions as an activation-independent fibronectin receptor on human platelets, J. Cell Biol. 106: 1359–1364.PubMedGoogle Scholar
  154. Pischel, K. D., Hemler, M. E., Huang, C., Bluestein, H. G., and Woods, V. L., 1987, Use of the monoclonal antibody 12F1 to characterize the differentiation antigen VLA-2, J. Immunol. 138: 226–233.PubMedGoogle Scholar
  155. Pischel, K. D., Bluestein, H. G., and Woods, V. L., 1988, Platelet glycoproteins la, Ic and IIa are physicochemically indistinguishable from the very late activation antigens adhesion-related proteins of lymphocytes and other cell types, J. Clin. Invest. 81: 505–513.PubMedGoogle Scholar
  156. Pollard, T. D., and Cooper, J. A. 1986, Actin and actin-binding proteins. A critical evaluation of mechanisms and functions, Annu. Rev. Biochem. 55: 987–1035.PubMedGoogle Scholar
  157. Pollard, T. D., Thomas, S. M., and Niederman, R., 1974, Human platelet myosin. I. Purification by a rapid method applicable to other nonmuscle cells, Anal. Biochem. 60: 258–266.PubMedGoogle Scholar
  158. Pribluda, V., and Rotman, A., 1982, Dynamics of membrane-cytoskeleton interactions in activated blood platelets, Biochemistry 21: 2825–2832.PubMedGoogle Scholar
  159. Prulière, G., d’Albis, A. and Der Terrossian, E., 1986, Effect of tropomyosin in the interactions of actin with actin-binding proteins isolated from pig platelets, Eur. J. Biochem. 159: 535–547.PubMedGoogle Scholar
  160. Puszkin, E. G., Jenkins, C. S. P., Ores-Carton, C., and Zucker, M. B., 1985, Platelet cytoskeleton a-actinin in normal and thrombasthenic platelets: distribution and immunologic characterization, J. Lab. Clin. Med. 105: 52–62.PubMedGoogle Scholar
  161. Reeber, M. J., Tablin, F., Bulinski, J. C., and Nachmias, V. T., 1984, 210k MAP, microtubules and the cytoskeleton of bovine and human platelets, J. Cell Biol. 99: 193a.Google Scholar
  162. Rosenberg, S., Stracher, A., and Lucas, R. C., 1981a, Isolation and characterization of actin and actin-binding protein from human platelets, J. Cell Biol. 91: 201–211.PubMedGoogle Scholar
  163. Rosenberg, S., Stracher, A., and Burridge, K., 1981b, Isolation and characterization of a calcium-sensitive aactinin-like protein from human platelet cytoskeletons, J. Biol. Chem. 256: 12986–12991.PubMedGoogle Scholar
  164. Rosenfeld, G. C., Hou, D. C., Dingus, J., Meza, I., and Bryan, J., 1985, Isolation and partial characterization of human platelet vinculin, J. Cell Biol. 100: 669–676.PubMedGoogle Scholar
  165. Rotman, A., 1984, Receptor and non receptor-mediated activation of blood platelets. Effect on membranecytoskeleton interaction, Biochem. Biophys. Res. Commun. 120: 898–906.PubMedGoogle Scholar
  166. Rotman, A., Heldman, J., and Linder, S., 1982, Association of membrane and cytoplasmic proteins with the cytoskeleton in blood platelets, Biochemistry 21: 1713–1719.PubMedGoogle Scholar
  167. Ruhnau, K., and Wegner, A., 1988, Evidence for direct binding of vinculin to actin filaments, FEBS Lett. 228: 105–108.PubMedGoogle Scholar
  168. Sakariassen, K. S., Nievelstein, P. F. E. M., Coller, B. S., and Sixma, J. J., 1986, The role of platelet membrane glycoproteins Ib and IIb-IIIa in platelet adherence to human artery subendothelium, Br. J. Haematol. 63: 681–691.PubMedGoogle Scholar
  169. Santoro, S. A., 1986, Identification of a 160,000 dalton platelet membrane protein that mediates the initial divalent cation-dependent adhesion of platelets to collagen, Cell 48: 913–920.Google Scholar
  170. Santoro, S. A., Rajpara, S. M., Staatz, W. D., and Woods, V. L., Jr., 1988, Isolation and characterization of a platelet surface collagen binding complex related to VLA-2, Biochem. Biophys. Res. Commun. 153: 217–223.PubMedGoogle Scholar
  171. Santoso, S., Zimmerman, U., Neppert, J., and Mueller-Eckhardt, C., 1986, Receptor patching and capping of platelet membranes induced by monoclonal antibodies, Blood 67: 343–349.PubMedGoogle Scholar
  172. Schliwa, M., 1981, Proteins associated with cytoplasmic actin, Cell 25: 587–590.PubMedGoogle Scholar
  173. Schollmeyer, J. V., Rao, G. H. R., and White, J. G., 1978, An actin-binding protein in human platelets, Am. J. Pathol. 93: 433–445.PubMedGoogle Scholar
  174. Siess, W., 1989, Molecular mechanisms of platelet activation, Physiol. Rev. 69: 58–178.PubMedGoogle Scholar
  175. Singer, I. I., and Paradiso, P. R., 1981, A transmembrane relationship between fibronectin and vinculin (130K protein): Serum modulation in normal and transformed hamster fibroblasts, Cell 24: 481–492.PubMedGoogle Scholar
  176. Sixma, J. J., Van den Berg, A., Jockusch, B. M., and Hartwig, J., 1989, Immunoelectron microscopic localization of actin, a-actinin, actin-binding protein and myosin in resting and activated human blood platelets, Eur. J. Cell Biol. 48: 271–281.PubMedGoogle Scholar
  177. Small, J. V., 1985, Geometry of actin-membrane attachments in the smooth muscle cell: The localisations of vinculin and a-actinin, EMBO J. 4: 45–49.PubMedGoogle Scholar
  178. Small, J. V., 1989, Microfilament-based motility in non-muscle cells, Curr. Opin. Cell Biol. 1: 75–79.PubMedGoogle Scholar
  179. Small, J. V., Fürst, D. O., and De Mey, J., 1986, Localization of filamin in smooth muscle, J. Cell Biol. 102: 210–220.PubMedGoogle Scholar
  180. Sobue, K., Muramoto, Y., Fujita, M., and Kakiuchi, S., 1981, Purification of a calmodulin-binding protein from chicken gizzard that interacts with F-actin, Proc. Natl. Acad. Sci. USA 78: 5652–5655.PubMedGoogle Scholar
  181. Sobue, K., Morimoto, K., Inui, M., Kanda, K., and Kakiuchi, S., 1982, Control of actin-myosin interaction of gizzard smooth muscle by calmodulin-and caldesmon-linked flip-flop mechanism, Biomed. Res. 3: 188–196.Google Scholar
  182. Sobue, K., Kanda, K., Tanaka, T., and Ueki, N., 1988, Caldesmon: A common actin-linked regulatory protein in the smooth muscle and nonmuscle contractile system, J. Cell Biochem. 37: 317–325.PubMedGoogle Scholar
  183. Solum, N. O., 1985, Platelet membrane proteins, Semin. Hematol. 22: 289–302.PubMedGoogle Scholar
  184. Solum, N. O., and Olsen, T. M., 1984, Glycoprotein Ib in the triton-insoluble (cytoskeletal) fraction of blood platelets, Biochim. Biophys. Acta 799: 209–220.PubMedGoogle Scholar
  185. Solum, N. O., and Olsen, T. M., 1985, Effects of diamide and dibucane on platelet glycoprotein Ib, actin-binding protein and cytoskeleton, Biochim. Biophys. Acta 817: 249–260.PubMedGoogle Scholar
  186. Solum, N. O., Hagen, I., Filion-Myklebust, C., and Stabaek, T., 1980, Platelet glycocalicin: Its membrane association and solubilization in aqueous media, Biochim, Biophys. Acta 597: 235–246.Google Scholar
  187. Solum, N. O., Olsen, T. M., Gogstad, G. O., Hagen, I., and Brosstad, F., 1983, Demonstration of a new glycoprotein lb-related component in platelet extracts prepared in the presence of leupeptin, Biochim. Biophys. Acta 729: 53–61.PubMedGoogle Scholar
  188. Sonnenberg, A., Modderman, P. W., and Hogervorst, F., 1988, Laminin receptor on platelets is the integrin VLA-6 Nature (London) 336: 487–489.Google Scholar
  189. Spiegel, J. E., Beardsley, D. S., Southwick, F. S., and Lux, S. E., 1984, An analouge of the erythrocyte membrane skeletal protein 4.1 in nonerythroid cells, J. Cell Biol. 99: 886–893.PubMedGoogle Scholar
  190. Staatz, W. D., Rajpara, S. M., Wayner, E. A., Carter, W. G., and Santoro, S. A., 1989, The membrane glycoprotein la-IIa (VLA-2) complex mediates the Mg + + -dependent adhesion of platelets to collagen, J. Cell Biol. 108: 1917–1924.PubMedGoogle Scholar
  191. Steiner, M., and Ikeda, Y., 1979, Quantitative assessment of polymerized and depolymerized platelet micro-tubules: Changes caused by aggregating agents, J. Clin. Invest. 63: 443–448.PubMedGoogle Scholar
  192. Stossel, T. P., Chaponnier, R. M., Ezzell, R. M., Hartwig, J. H., Janmey,-P. A., Kwiatkowski, D. J., Lind, S. E., Smith, D. B., Southwick, F. S., Yin, H. L., and Zaner, K. S., 1985, Nonmuscle actin-binding proteins, Annu. Rev. Cell Biol. 1: 353–402.PubMedGoogle Scholar
  193. Tablin, F., and Taube, D., 1986, Association of intermediate filaments and microtubules in human and bovine platelets, J. Cell Biol. 103: 562a.Google Scholar
  194. Tablin, F., and Taube, D., 1987, Platelet intermediate filaments: Detection of a vimentinlike protein in human and bovine platelets, Cell Motil. 8: 61–67.Google Scholar
  195. Takamatsu, J., Horne, M. K., and Gralnick, H. R. 1986, Identification of the thrombin receptor on human platelets by chemical crosslinking, J. Clin. Invest. 77: 362–368.PubMedGoogle Scholar
  196. Takashima, T., Matsumura, S., Kariya, T., Sunaga, T., and Kumon, A., 1988, Studies on the physical states of human platelet myosin in crude extracts, J. Biochem. (Tokyo) 104: 1027–1035.Google Scholar
  197. Tanaka, K., Onji, T., Okamoto, K., Matsusaka, T., Taniguchi, H., and Shibata, N., 1984, Reorganisation of contractile elements in the platelet during clot retraction, J. Ultrastruct. Res. 89: 98–109.PubMedGoogle Scholar
  198. Tanaka, K., Shibata, N., Okamoto, K., Matsusaka, T. Fukuda, H., Takagi, M., Fujii, N., and Onji, T., 1986, Reorganisation of myosin in surface-activated spreading platelets, J. Ultrastruct. Mol. Struct. Res. 97: 165–186.Google Scholar
  199. Thomas, A., Lindsay, J., Wilkinson, M., and Bodmer. J., 1988, HLA-D region a-chain monoclonal antibodies Cross-reaction between an anti-DP a-chain antibody and smooth muscle, J. Pathol. 154: 353–363.PubMedGoogle Scholar
  200. Turner, C. E. and Burridge, K., 1989, Detection of metavinculin in human platelets using a modified talin overlay assay, Eur. J. Cell Biol. 49: 202–206.PubMedGoogle Scholar
  201. Vandekerckhove, J., and Weber, K., 1979, The complete amino acid sequence of actins from bovine aorta, bovine heart, bovine fast skeletal muscle, and rabbit slow skeletal muscle, Differentiation 14: 123–133.PubMedGoogle Scholar
  202. Wachsstock, D. H., Wilkins, J. A., and Lin, S., 1987, Specific interaction of vinculin with a-actinin, Biochem. Biophys. Res. Commun. 146: 554–560.PubMedGoogle Scholar
  203. Wallach, D., Davies, P. J. A., and Pastan, I., 1978, Purification of mammalian filamin. Similarity to high molecular weight actin-binding protein in macrophages, platelets, fibroblasts and other tissues, J. Biol. Chem. 253: 3328–3335.Google Scholar
  204. Wang, L.-L., and Bryan, J., 1981, Isolation of calcium-dependent platelet proteins that interact with actin, Cell 25: 637–649.PubMedGoogle Scholar
  205. Warrick, H. M., and Spudich, J. A., 1987, Myosin structure and function in cell motility, Annu. Rev. Cell Biol. 3: 379–421.PubMedGoogle Scholar
  206. Weeds, A. G., 1982, Actin-binding proteins—regulators of cell architecture and motility, Nature (London) 296: 811–816.Google Scholar
  207. Weihing, R. R., 1985, The filamins: Properties and functions, Can. J. Biochem. Cell Biol. 63: 397–413.PubMedGoogle Scholar
  208. Werth, D. K., Niedel, J. E., and Pastan, I., 1983, Vinculin, a cytoskeletal substrate of protein kinase C, J. Biol. Chem. 258: 11423–11426.PubMedGoogle Scholar
  209. Wheeler, M. E., Cox, A. C., and Carroll, R. C., 1984, Retention of the glycoprotein IIb-IIIa complex in the isolated platelet cytoskeleton. Effects of separable assembly of platelet pseudopodal and contractile cytoskeletons, J. Clin. Invest. 74: 1080–1089.PubMedGoogle Scholar
  210. Wheeler, M. E., Gerrard, J. M., and Carroll, R. C., 1985, Reciprocal transmembrane receptor-cytoskeleton interactions in concanavalin A-activated platelets, J. Cell Biol. 101: 993–1000.PubMedGoogle Scholar
  211. White, J. G., 1984, Arrangement of actin filaments in the cytoskeleton of human platelets, Am. J. Pathol. 117: 207–217.PubMedGoogle Scholar
  212. White, J. G., I987a, An overview of platelet structural physiology, Scanning Microsc. 1: 1677–1700.Google Scholar
  213. White, J. G., 1987b, Views of the platelet cytoskeleton at rest and at work, Ann. N.Y. Acad. Sci. 509: 156–176.PubMedGoogle Scholar
  214. White, J. G., and Sauk, J. J., 1984, Microtubule coils in spread blood platelets, Blood 64: 470–478.PubMedGoogle Scholar
  215. White, J. G., Krumwiede, M., Burris, S. M., Heagan, B., 1986a, Isolation of microtubule coils from platelets after exposure to aggregating agents, Am. J. Pathol. 125: 319–326.PubMedGoogle Scholar
  216. White, J. G., Radha, E., and Krumwiede, M., 1986b, Isolation of circumferential microtubules from platelets without simultaneous fixation, Blood 67: 873–877.PubMedGoogle Scholar
  217. Wicki, A. N., and Clemetson, K. J., 1985, Structure and function of platelet membrane glycoproteins Ib and V. Effects of leukocyte elastase and other proteases on platelets response to von Willebrand factor and thrombin, Eur. J. Biochem. 153: 1–11.PubMedGoogle Scholar
  218. Wilkins, J. A., and Lin, S., 1986, A re-examination of the interaction of vinculin with actin filaments in vitro, J. Cell Biol. 102: 1085–1092.PubMedGoogle Scholar
  219. Yamashiro-Matsumura, S., and Matsumura, F. 1988, Characterization of 83-kilodalton nonmuscle caldesmon from cultured rat cells: Stimulation of actin binding of nonmuscle tropomyosin and periodic localization along microfilaments like tropomyosin, J. Cell Biol. 106: 1973–1983.PubMedGoogle Scholar
  220. Yin, H. L., and Hartwig, J. H., 1988, The structure of the macrophage actin skeleton, J. Cell Sci. Suppl. 9: 169–184.PubMedGoogle Scholar
  221. Yin, H. L., and Stossel, T. P., 1979, Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependant regulatory protein, Nature (London) 281: 583–586.Google Scholar
  222. Ylanne, J., Hormia, M., Jarvinen, M., Vartio, T., and Virtanen, I., 1988, Platelet glycoprotein IIb/IIIa complex in cultured cells. Localization in focal adhesion sites in spreading HEL cells, Blood 72: 1478–1486.PubMedGoogle Scholar
  223. Zhang, Z., Lawrence, J., and Stracher, A., 1988, Phosphorylation of platelet actin binding protein protects against proteolysis by calcium dependent sulfhydryl proteases, Biochem. Biophys. Res. Commun. 151: 355–360.PubMedGoogle Scholar
  224. Zhuang, Q.-Q., Rosenberg, S., Lawrence, J., and Stracher, A., 1984, Role of actin binding protein phosphorylation in platelet cytoskeleton assembly, Biochem. Biophys. Res. Commun. 118: 508–513.PubMedGoogle Scholar
  225. Zobel, C. R., 1988, The platelet cytoskeleton: Evidence for its structure from interactions with ZnC12, J Submicrosc. Cytol. Pathol. 20: 269–275.PubMedGoogle Scholar
  226. Zobel, C. R., and Woods, A., 1983, Effect of calcium on the morphology of human platelets spread on glass substrates, Eur. J. Cell Biol. 30: 83–92.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • J. Michael Wilkinson
    • 1
  1. 1.Department of Biochemistry and Cell Biology, Hunterian InstituteRoyal College of SurgeonsLincoln’s Inn Fields, LondonEngland

Personalised recommendations