Some High-Molecular-Weight Oligomeric Proteins and Enzymes of Reticulocytes and Erythrocytes

  • J. Robin Harris
Part of the Blood Cell Biochemistry book series (BLBI, volume 1)


The mammalian erythrocyte has occupied a position at the forefront of enzymology since the early days of physiological chemistry. Indeed, the erythrocyte continues to occupy a place of prominence, with respect to the enzymology of both its membranous and cytosolic systems (Beutler, 1975, 1986; Brewer, 1984; Friedman and Rapoport, 1974; Schrier, 1977).


Erythrocyte Membrane Human Erythrocyte Paroxysmal Nocturnal Hemoglobinuria Hereditary Spherocytosis Erythrocyte Ghost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





eukaryotic initiation factor


glyceraldehydes 3-phosphate dehydrogenase


hereditary spherocytosis


relative molecular mass (molecular weight)


polyacrylamide gel electrophoresis


paroxysmal nocturnal hemoglobinuria




small cytoplasmic ribonucleoprotein


sodium dodecyl sulfate polyacrylamide gel electrophoresis


transmission electron microscopy


tripeptidyl peptidase II.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramic, M., Zubanovic, M., and Vitale, L., 1988, Dipeptidyl peptidase III from human erythrocytes, Biol. Chem. Hoppe-Seyler 369: 29–38.PubMedGoogle Scholar
  2. Aebi, H., Wyss, S. R., Scherz, B., and Skvaril, F., 1974, Heterogeneity of erythrocyte catalase. II. Isolation and characterization of normal and variant erythrocyte catalase and their subunits, Eur. J. Biochem. 48: 137–145.PubMedGoogle Scholar
  3. Akhayat, 0., Grossi de Sa, M.-F., and Infante, A. A., 1987a, Sea urchin prosome: Characterization and changes during development, Proc. Natl. Acad. Sci. USA 84: 1595–1599.Google Scholar
  4. Akhayat, O., Infante, A. A., Infante, D., Martins de Sa, C., Grossi de Sa, M.-F., and Scherrer, K., 1987b, A new type of prosome-like particle, composed of small cytoplasmic RNA and multimers of a 21-kDa protein, inhibits protein synthesis in vitro, Eur. J. Biochem. 170: 23–33.PubMedGoogle Scholar
  5. Allen, D. W., and Cadman, S., 1979, Calcium-induced erythrocyte membrane changes, the role of adsorption of cytosol proteins and proteases, Biochim. Biophys. Acta 551: 1–9.PubMedGoogle Scholar
  6. Allen, D. W., Cadman, S., McCann, S. R., and Finkel, B., 1977, Increased membrane binding of erythrocyte catalase in HS and in metabolically stressed normal cells, Blood 49: 113–123.PubMedGoogle Scholar
  7. Allen, D. W., Groat, J. D., Finkel, B., Rank, B. H., Wood, P. A., and Eaton, J. W., 1983, Increased adsorption of cytoplasmic proteins to the erythrocyte membrane in ATP-depleted normal and pyruvate kinase-deficient mature cells and reticulocytes, Am. J. Hematol. 14: 11–25.PubMedGoogle Scholar
  8. Allen, R. W., Trach, K. A., and Hoch, J. A., 1987, Identification of the 37kDa protein displaying a variable interaction with the erythroid membrane as glyceraldehyde-3-phosphate dehydrogenase, J. Biol. Chem. 262: 649–653.PubMedGoogle Scholar
  9. Anderson, D. R., Davis, J. L., and Carraway, K. L., 1977, Ca-promoted changes of the human erythrocyte membrane. Involvement of spectrin, transglutaminase and a membrane-bound protease, J. Biol. Chem. 252: 6617–6623.PubMedGoogle Scholar
  10. Arrigo, A.-P., Tanaka, K., Goldberg, A. L., and Welch, W. J., 1988, Identity of the 19 S `prosome’ particle with the large multifunctional protease complex of mammalian cells (the proteasome), Nature 331: 19 2194.Google Scholar
  11. Aviram, I., and Shaklai, N., 1981, The association of human erythrocyte catalase with the cell membrane, Arch. Biochem. Biophys. 212: 329–337.PubMedGoogle Scholar
  12. Ballas, S. K., 1987, Comparative distribution of glyceraldehyde-3-phosphate dehydrogenase activity in human, guinea pig, rabbit and mouse erythrocytes, Comp. Biochem. Physiol. B 87: 837–842.PubMedGoogle Scholar
  13. Ballas, S. K., and Burka, E. R., 1979, Protease activity in the human erythrocyte—Localization to the cell membrane, Blood 53: 875–882.PubMedGoogle Scholar
  14. B$löw, R.-M., Tomkinson, B., Ragnarsson, U., and Zetterqvist, O., 1986, Purification, substrate specificity and classification of tripeptidylpeptidase II, J. Biol. Chem. 261: 2409–2417.Google Scholar
  15. Baumeister, W., Dahlmann, B., Heegerl, R., Kopp, F., Kuehn, L., and Pfeifer, G., 1988, Electron microscopy and image analysis of the multicatalytic proteinase, FEBS Lett. 241: 239–245.PubMedGoogle Scholar
  16. Becker, M. A., 1976, Patterns of phosphoribosylpyrophosphate and ribose-5-phosphate concentration and generation in fibroblasts from patients with group and purine overproduction, J. Clin. Invest. 56: 308–318.Google Scholar
  17. Becker, M. A., Meyer, L. J., Huisman, W. H., Lazar, C., and Adams, W. B., 1977, Human erythrocyte phosphoribosylpyrophosphate synthetase, J. Biol. Chem. 252: 3911–3918.PubMedGoogle Scholar
  18. Becker, M. A., Raivio, K. O., and Seegmiller, J. E., 1979, Synthesis of phosphoribosylpyrophosphate in mammalian cells, Adv. Enzymol. 49: 281–306.PubMedGoogle Scholar
  19. Bemacki, R. J., and Bosmann, H. B., 1972, Red cell hydrolases. II. Proteinase activities in human erythrocyte plasma membranes, J. Membr. Biol. 7: 1–14.Google Scholar
  20. Bessis, M. C., and Breton-Gorius, J., 1959, Ferritin and ferruginous micelles in normal erythroblasts and hypochromic hyperesideremic anemias, Blood 14: 423–432.PubMedGoogle Scholar
  21. Beutler, E., 1975, Red Cell Metabolism: A Manual of Biochemical Methods, Grune & Stratton, New York.Google Scholar
  22. Beutler, E., 1986, Methods in Hematology, Volume 16, Churchill Livingstone, Edinburgh.Google Scholar
  23. Biagioni, S., Scarsella, G., Settimi, L., and Traîna, M. E., 1982, Acetylcholinesterase molecular forms from rat and human erythrocyte membrane, Mol. Cell. Biochem. 47: 183–190.PubMedGoogle Scholar
  24. Boches, F. S., and Goldberg, A. L., 1982, Role for the adenosine triphosphate-dependent proteolytic pathway in reticulocyte maturation, Science 215: 978–980.PubMedGoogle Scholar
  25. Gommer, U.-A., Lutsch, G., Behlke, J., Stahl, J., Nesytova, N., Henske, A., and Bielka, H., 1988, Shape and location of eukaryotic initiation factor eIF-2 on the 40S ribosomal subunit of rat liver, Eur. J. Biochem. 172: 653–662.Google Scholar
  26. Bonventura, J., Schroeder, W. A., and Fang, S., 1972, Human erythrocyte catalase: An improved method of isolation and a reevaluation of reported properties, Arch. Biochem. Biophys. 150: 606–617.Google Scholar
  27. Boublik, M., Hellman, W., Staehelin, T., and Trachsel, H., 1983, Electron microscopic study of eukaryotic 40S initiation complex in protein synthesis, Eur. J. Cell Biol. 32: 136–142.PubMedGoogle Scholar
  28. Bramley, T. A., Coleman, R., and Finean, J. B., 1971, Chemical, enzymological and permeability properties of human erythrocyte ghosts prepared by hypotonic lysis in media of different osmolarities, Biochim. Biophys. Acta 241: 752–769.PubMedGoogle Scholar
  29. Brewer, G. J., 1984, Red Cell: Progress in Clinical and Biological Research, Volume 165 ( G. J. Brewer, ed.), Liss, New York.Google Scholar
  30. Brimijoin, S., Hammond, P. I., and Petit, R. M., 1986, Paroxysmal nocturnal hemoglobinuria: Erythrocyte deficit analyzed immunoassay and fluorescence-activated sorting, Mayo Clin. Proc. 61: 522–529.PubMedGoogle Scholar
  31. Brockman, S. K., Usiak, M. F., and Younbkin, S. G., 1986, Assembly of monomeric acetylcholinesterase into tetrameric and asymmetric forms, J. Biol. Chem. 261: 1201–1207.PubMedGoogle Scholar
  32. Brodbeck, U., 1986, Amphiphilic acetylcholinesterase: Properties and interactions with lipids and detergents, in: Progress in Protein–Lipid Interactions 2 ( W. Watts and J. J. H. H. M. de Pont, eds.), pp. 303–338, Elsevier, Amsterdam.Google Scholar
  33. Brodbeck, U., Ott, P., and Wiedmer, T., 1975, Comparative studies on the molecular properties of purified acetylcholinesterase from human erythrocytes and the electric organ of Electrophorus electricus, Croat. Chem. Acta 47: 201–210.Google Scholar
  34. Brown, J. N., and Harris, J. R., 1970, The entry of ferritin into hemoglobin-free human erythrocyte ghosts prepared under different conditions, J. Ultrastruct. Res. 32: 405–416.PubMedGoogle Scholar
  35. Brown-Luedi, M. L., Meyer, L. J., Milburn, S. C., Yau, P. M.-P., Corbet, S., and Hershey, J. W. B., 1982, Protein synthesis initiation factors from human HeLa cells and rabbit reticulocytes are similar, Biochemistry 21: 4202–4206.PubMedGoogle Scholar
  36. Burapakulsolsri, N., Yuthavong, Y., and Wilairat, P., 1979, An examination of complement proteins on membranes of paroxysmal nocturnal haemoglobinuria (PNH) and PNH-like red cells, Br. J. Haematol. 41: 393–398.PubMedGoogle Scholar
  37. Burkholder, D. E., and Brecher, A. S., 1972, Interaction between proteases and bovine erythrocyte membranes, Biochim. Biophys. Acta 282: 135–145.PubMedGoogle Scholar
  38. Carraway, K. L., Kobylka, D., and Triplett, R. B., 1971, Surface proteins of erythrocyte membrane, Biochim. Biophys. Acta 241: 934–940.PubMedGoogle Scholar
  39. Castano, J. G., Ornberg, R., Koster, J. G., Tobian, J. A., and Zasloff, M., 1986, Eukaryotic pre-tRNA 5’ processing nuclease: Copurification with a complex cylindrical particle, Cell 46: 377–387.PubMedGoogle Scholar
  40. Chow, F.-L., Telen, M. J., and Rosse, W. F., 1985, The acetylcholinesterase deficit in paroxysmal nocturnal hemoglobinuria. Evidence that the enzyme is absent from the cell membrane, Blood 66: 940–945.PubMedGoogle Scholar
  41. Ciechanover, A., Ferber, S., Ganoth, D., Elias, S., Hershko, A., and Arfin, S., 1988, Purification and characterization of arginyl-tRNA protein transferase from rabbit reticulocytes, J. Biol. Chem. 263: 11155–11167.PubMedGoogle Scholar
  42. Ciliv, G., and Özand, P. T., 1972, Human erythrocyte acetylcholinesterase purification, properties and kinetic behavior, Biochim. Biophys. Acta 284: 136–156.PubMedGoogle Scholar
  43. Contz, M., Mörkorfer-Zwez, S., Bossi, E., Kaufmann, H., van Wartburg, J. P., and Aebi, H., 1968, Alternative molecular forms of erythrocyte catalase, Experientia 24: 119–121.Google Scholar
  44. Dahlman, B., Rutschmann, M., Kuehn, L., and Reinauer, H., 1985, Biochem. J. 228: 171–177.Google Scholar
  45. Deas, J. E., Lea, L. T., and Howe, C., 1978, Peripheral proteins of human erythrocytes, Biochem. Biophys. Res. Commun. 82: 296–304.PubMedGoogle Scholar
  46. Deisseroth, A., and Dounce, A. L., 1969, Purification and crystallization of beef erythrocyte catalase, Arch. Biochem. Biophys. 131: 18–29.PubMedGoogle Scholar
  47. Deisseroth, A., and Dounce, A. L., 1970, Catalase: Physical and chemical properties, Physiol. Rev. 50: 315375.Google Scholar
  48. Dickey-Dunkirk, S., and Killilea, S. D., 1985, Purification of bovine heart glycogen synthase, Anal. Biochem. 146: 199–205.PubMedGoogle Scholar
  49. Dockter, M. E., and Morrison, M., 1986, Paroxysmal nocturnal hemoglobinuria erythrocytes are of two distinct types: Positive or negative for acetylcholinesterase, Blood 67: 540–543.PubMedGoogle Scholar
  50. Dodge, J. T., Mitchell, C., and Hanahan, D. J., 1963, The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes, Arch Biochem. Biophys. 100:119–130.Google Scholar
  51. Domae, N., Harmon, F. R., Busch, R. K., Spohn, W., Subrahmanyam, C. S., and Busch, H., 1982, Donut-shaped “miniparticles” in nuclei of human and rat cells, Life Sci. 30: 469–477.PubMedGoogle Scholar
  52. Dutta-Choudhury, T. A., and Rosenberry, T. L., 1984, Human erythrocyte acetylcholinesterase is an amphipathic protein whose short membrane-binding domain is removed by papain digestion, J. Biol. Chem. 259: 5653–5660.PubMedGoogle Scholar
  53. Eisinger, J., Flores, J., and Salhany, J. M., 1982, Association of cytosol hemoglobin with the membrane in intact erythrocytes, Proc. Natl. Acad. Sci. USA 79: 408–412.PubMedGoogle Scholar
  54. Emanuilov, I., Sabatini, D. D., Lake, J. A., and Freienstein, C., 1978, Localization of eukaryotic initiation factor 3 on native small ribosomal subunits, Proc. Natl. Acad. Sci. USA 75: 1389–1393.PubMedGoogle Scholar
  55. Etlinger, J. D., and Goldberg, A. L., 1977, A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes, Proc. Natl. Acad. Sci. USA 74: 54–58.PubMedGoogle Scholar
  56. Fagan, J. M., Waxman, L., and Goldberg, A. L., 1987, Skeletal muscle and liver contain a soluble ATP+ubi- quitin-dependent proteolytic system, Biochem. J. 243: 335–343.PubMedGoogle Scholar
  57. Falkenburg, P.-E., Haass, C., Kloetzel, P.-M., Niedel, B., Kopp, F., Kuehn, L., and Dahlmann, B., 1988, Drosophila small cytoplasmic 19S ribonucleoprotein is homologous to the rat multicatalytic proteinase, Nature 331: 190–192.Google Scholar
  58. Firkin, R. G., Beal, R. W., and Mitchell, G., 1963, The effects of trypsin and chymotrypsin on the acetyl-cholinesterase content of human erythrocytes, Aust. Ann. Med. 12: 26–29.PubMedGoogle Scholar
  59. Fox, I. H., and Kelley, W. N., 1971, Human phosphoribosylpyrophosphate synthetase, J. Biol. Chem. 246: 5739–5748.PubMedGoogle Scholar
  60. Friedman, H., and Rapoport, S. M., 1974, Enzymes of the red cell; A critical catalogue in: Cellular and Molecular Biology of the Erythrocyte (H. Yoshikawa and S. M. Rapoport, eds.), pp. 181–259, University Park Press, Baltimore.Google Scholar
  61. Godar, D. E., Godar, D. E., Garcia, V., Jacob, A., Aebi, U., and Yang, D. C. H., 1988, Structural organization of the multienzyme complex of mammalian aminoacyl-tRNA synthetases, Biochemistry 27: 6921–6928.PubMedGoogle Scholar
  62. Granboulan, N., Spohr, G., Kayibanda, B., and Scherrer, K., 1970, Examen au microscope electronique de complexes RNA messager-proteins, 7th International Congress on Electron Microscopy, Grenoble, pp. 591–592, Societé Français de Microscopie Electronique, Paris.Google Scholar
  63. Gulik, A., and Orsini, G., 1984, Electron microscopy of the aminoacyl-tRNA synthetase multienzyme complex purified from rabbit reticulocytes, Mol. Biol. Rep. 10: 23–30.PubMedGoogle Scholar
  64. Harmon, F. R., Spohn, W. H., Domae, N., Ha, C. S., and Busch, H., 1983, Purification and partial characterization of ring-shaped miniparticles, Cell Biol. Int. Rep. 7: 333–343.PubMedGoogle Scholar
  65. Harris, J. R., 1968, Release of a macromolecular protein component from human erythrocyte ghosts, Biochim. Biophys. Acta 150: 534–537.PubMedGoogle Scholar
  66. Harris, J. R., 1969a, Some negative contrast staining features of a protein from erythrocyte ghosts, J. Mol. Biol. 46: 329–335.PubMedGoogle Scholar
  67. Harris, J. R., 1969b, The isolation and purification of a macromolecular protein component from the human erythrocyte ghost, Biochim. Biophys. Acta 188: 31–42.PubMedGoogle Scholar
  68. Harris, J. R., 1971, Further studies on the proteins released from haemoglobin-free erythrocyte ghosts at low ionic strength, Biochim. Biophys. Acta 229: 761–770.PubMedGoogle Scholar
  69. Harris, J. R., 1974, The purification of some membrane-associated proteins from erythrocyte ghosts, in: Methodological Developments in Biochemistry, Volume 4 ( E. Reid, ed.), pp. 395–404, Longman Group, London.Google Scholar
  70. Harris, J. R., 1980, Torin and cylindrin, two extrinsic proteins of the erythrocyte membrane: A review, Nouv. Rev. Fr. Hematol. 22: 411–448.PubMedGoogle Scholar
  71. Harris, J. R., 1982a, Some negative staining electron microscopic and biochemical studies on apoferritin and its oligomers, Micron 13: 169–184.Google Scholar
  72. Harris, J. R., 1982b, Nonenzymic proteins, in: Electron Microscopy of Proteins, Volume 2 ( J. R. Harris, ed.), pp. 49–103, Academic Press, New York.Google Scholar
  73. Harris, J. R., 1983, Comparative studies on cylindrin: Identity with aminoacyl-tRNA synthetase, Microsc. Acta 14: 193–205.Google Scholar
  74. Harris, J. R., 1984, Biochemical and ultrastructural characterization of a high molecular soluble Mgt±-ATPase from human erythrocytes, J. Mol. Biol. 174: 705–721.PubMedGoogle Scholar
  75. Harris, J. R., 1988a, Release of acetylcholinesterase by limited papain digestion of red blood cells, Proc. ISBT/BBTS Meet., London, p. 157.Google Scholar
  76. Harris, J. R., 1988b, Erythrocyte cylindrin: Possible identity with the ubiquitous 20S high molecular weight protease complex and the prosome particle, Ind. J. Biochem. Biophys. 25: 459–466.Google Scholar
  77. Harris, J. R., and Holzenburg, A., 1989, Transmission electron microscopic studies on the quaternary structure of human erythrocyte catalase, Micron Microsc. Acta, In press.Google Scholar
  78. Harris, J. R., and Naeem, I., 1978, The subunit composition of two high molecular weight extrinsic proteins from human erythrocyte membranes, Biochim. Biophys. Acta 537: 495–500.PubMedGoogle Scholar
  79. Harris, J. R., and Naeem, I., 1981, Further studies on the characterization of cylindrin and torin, two extrinsic proteins of the erythrocyte membrane, Biochim. Biophys. Acta 670: 285–290.PubMedGoogle Scholar
  80. Harris, J. R., and Tomkinson, B., 1990, Electron microscopical and biochemical studies on the oligomeric states of human erythrocyte tripeptidyl peptidase-II, Micron Microsc. Acta, In press.Google Scholar
  81. Hauri, H.-P., 1988, Biogenesis and intracellular transport of intestinal brush border membrane hydrolases: Use of antibody probes and tissue culture, in: Subcellular Biochemistry, Volume 12 (J. R. Harris, ed.), pp. 155219, Plenum Press, New York.Google Scholar
  82. Herz, F., and Kaplan, E., 1974, In vitro modifications of red cell acetylcholinesterase activity, Br. J. Haematol. 26: 165–178.PubMedGoogle Scholar
  83. Herz, F., Kaplan, E., and Stevenson, J. H., Jr., 1963, Acetylcholinesterase inactivation of enzyme-treated erythrocytes, Nature 200: 901–902.PubMedGoogle Scholar
  84. Hollan, S. R., Szelenyi, J. G., Hasitz, M., Szasa, I., and Gardos, G., 1977, Haemoglobin and the red cell membrane, Physiol. Bohemoslov. 26: 219–224.PubMedGoogle Scholar
  85. Hoogeveen, J. T., Juliano, R., Coleman, J., and Rothstein, A., 1970, Water-soluble proteins of the human red cell membrane, J. Membr. Biol. 3: 156–172.Google Scholar
  86. Horne, R. W., and Pasquali-Ronchetti, I., 1974, A negative staining-carbon film technique for studying viruses. I. Preparative procedure for studying icosahedral and filamentous viruses, J. Ultrastruct. Res. 47: 361–383.PubMedGoogle Scholar
  87. Hough, R., Pratt, G., and Rechsteiner, M., 1987, Purification of two high molecular weight proteases from rabbit reticulocyte lysate, J. Biol. Chem. 262: 8303–8313.PubMedGoogle Scholar
  88. Howe, C., and Bächi, T., 1973, Localization of erythrocyte membrane antigens by immune electron microscopy, Exp. Cell Res. 76: 321–332.PubMedGoogle Scholar
  89. Hradec, J., 1980, Incorporation of labelled amino acids into proteins, from rabbit reticulocytes, retained on heparin—Sepharose, Biochim. Biophys. Acta 610: 285–296.PubMedGoogle Scholar
  90. Issa, H. U., and Mendicino, J., 1973, Role of enzyme—enzyme interactions in the regulation of glycolysis and gluconeogenesis, J. Biol. Chem. 248: 685–696.PubMedGoogle Scholar
  91. Izak, G., Wilner, T., and Mager, J., 1960, Amino acid activating enzymes in red blood cells of normal, anemic and polycythemic subjects, J. Clin. Invest. 39: 1763–1770.PubMedGoogle Scholar
  92. Kant, J. A., and Steck, T. L., 1973, Specificity in the association of glyceraldehyde-3-phosphate dehydrogenase with isolated human erythrocyte membrane, J. Biol. Chem. 248: 8457–8464.PubMedGoogle Scholar
  93. Kellerman, O., Tonetti, H., Brevet, A., Mirande, M., Pailliez, J.-P., and Waller, J.-P., 1982, Macromolecular complexes from sheep and rabbit containing seven aminoacyl-tRNA synthetases, J. Biol. Chem. 257: 110411 1048.Google Scholar
  94. Kirkpatrick, F. H., Woods, G. M., LaCelle, P. L., and Weed, R. I., 1975, Calcium and magnesium ATPases of the spectrin fraction of human erythrocytes, J. Supramol. Struct. 3: 415–425.PubMedGoogle Scholar
  95. Kirkpatrick, F. H., Woods, G. M., LaCelle, P. L., and Weed, R. I., 1976, Calcium and Mg-ATPases of the spectrin fraction of human erythrocytes, J. Supramol. Struct. 3: 415–425.Google Scholar
  96. Kiselev, N. A., Sphitzberg, C. L., and Vainshtein, B. K., 1967, Crystallization of catalase in the form of tubes with monomolecular walls, J. Mol. Biol. 25: 433–441.PubMedGoogle Scholar
  97. Kleinschmidt, J. A., Hügle, B., Grund, C., and Franke, W. W., 1983, The 22S cylinder particles of Xenopus laevis. I. Biochemical and electron microscopic characterization, Eur. J. Cell Biol. 32: 143–156.PubMedGoogle Scholar
  98. Kloetzel, P.-M., Falkenburg, P.-E., Hössl, P., and Glätzer, K. H., 1987, The 19S ring-type particles of Drosophila, Exp. Cell Res. 170: 204–213.PubMedGoogle Scholar
  99. Kremp, A., Schliephacke, M., Kull, U., and Schmid, H.-P., 1986, Prosomes exist in plant cells too, Exp. Cell Res. 166: 553–557.PubMedGoogle Scholar
  100. Krisman, C. R., and Blumenfeld, M. L., 1986, A method for the direct measurement of glycogen synthase activity in gels after polyacrylamide gel electrophoresis, Anal. Biochem. 154: 409–413.PubMedGoogle Scholar
  101. Lande, W. M., Thjiemann, P. W., Fiosher, K. A., and Mentzer, W. C., 1984, Two-dimensional electrophoretic analysis of human erythrocyte cylindrin, Biochim. Biophys. Acta 778: 105–111.PubMedGoogle Scholar
  102. Lawson, A. A., and Barr, R. D., 1987, Acetylcholinesterase in red blood cells, Am. J. Hematol. 26:101–112. Lieber, M. R., and Steck, T. L., 1982a, A description of the holes in human erythrocyte membrane ghosts, J. Biol. Chem. 257: 11651–11659.Google Scholar
  103. Lieber, M. R., and Steck, T. L., 1982b, Dynamics of the holes in human erythrocyte membrane ghosts, J. Biol. Chem. 257: 11660–11666.PubMedGoogle Scholar
  104. Lilley, G. E., and Fung, C. W.-M., 1987, Hemoglobin—membrane interaction at physiological ionic strength and temperature, Life Sci. 41: 2429–2444.PubMedGoogle Scholar
  105. Lin, T., and Allen, R. W., 1986, Isolation and characterization of a 37,000-dalton protein associated with the erythrocyte membrane, J. Biol. Chem. 261: 4594–4599.PubMedGoogle Scholar
  106. Low, M. G., Ferguson, M. A. J., Futerman, A. H., and Silman, I., 1986, Covalently attached phosphatidylinositol as a hydrophobic anchor for membrane proteins, Trends Biochem. Sci. 11: 212–215.Google Scholar
  107. McDaniel, C. F., Kirtley, M. E., and Tanner, M. J. A., 1974, The Interaction of glyceraldehyde-3-phosphate dehydrogenase with human erythrocyte membranes, J. Biol. Chem. 249: 6478–6485.PubMedGoogle Scholar
  108. MacGregor, R. D., and Tobias, C. A., 1972, Molecular sieving of red cell membranes during gradual osmotic hemolysis, J. Membr. Biol. 10: 345–356.PubMedGoogle Scholar
  109. McGuire, M. J., and DeMartino, G. N., 1986, Purification and characterization of a high molecular weight proteinase (macropain) from human erythrocytes, Biochim. Biophys. Acta 873: 279–289.PubMedGoogle Scholar
  110. Macpherson, E., Tomkinson, B., Bälöw, Höglund, S., and Zetterqvist, O., 1987, Supramolecular structure of tripeptidyl peptidase II from human erythrocytes as studied by electron microscopy, and its correlation to enzyme activity, Biochem. J. 248: 259–263.Google Scholar
  111. Malech, H. L., and Marchesi, V.T., 1981, Hollow cylinder protein in the cytoplasm of human erythrocytes, Biochim. Biophys. Acta 554: 469–478.Google Scholar
  112. Markham, R., Frey, S., and Hills, G. J., 1963, Method for enhancement of image detail and accentuation of structure in electron microscopy, Virology 22: 88–102.Google Scholar
  113. Martins de Sa, C., Grossi, de Sa, M. -F., Akhayat, O., Broders, F., Scherrer, K., Horsch, A., and Schmid, H.-P., 1986, Prosomes ubiquity and inter-species structural variation, J. Mol. Biol. 187: 479–493.PubMedGoogle Scholar
  114. Mayer, L. J., and Becker, M. A., 1977, Human erythrocyte phosphoribosylpyrophosphate synthetase, J. Mol. Biol. 252: 3919–3925.Google Scholar
  115. Medof, M. E., Gottlieb, A., Kinoshita, T., Hall, S., Silber, R., Nussenzweig, V., and Rosse, W. F., 1987, Relationship between decay accelerating factor deficiency, diminished acetylcholinesterase activity, and defective terminal complement pathway restriction in paroxysmal nocturnal hemoglobinuria erythrocytes, J. Clin. Invest. 80: 165–174.PubMedGoogle Scholar
  116. Melloni, E., Sparatore, B., Salamino, F., Michetti, M., and Pontremoli, S., 1982, Proteolysis on human reticulocyte membrane proteins: Evidence for a physiological role of the acid endopeptidase, Arch. Biochem. Biophys. 218: 579–584.PubMedGoogle Scholar
  117. Mirande, M., Gache, Y., Le Corre, D., and Waller, J.-P., 1982, Seven mammalian aminoacyl-tRNA synthetases co-purified as high molecular weight entities are associated within the same complex, EMBO J. 1: 733–736.PubMedGoogle Scholar
  118. Mitchell, C. D., Mitchell, W. B., and Hanahan, D. J., 1965, Enzyme and hemoglobin retention in human erythrocyte stroma, Biochim. Biophys. Acta 104: 348–358.PubMedGoogle Scholar
  119. Moses, S. W., Bashan, N., and Gutman, A., 1972a, Glycogen metabolism in the normal red blood cell, Blood 40: 836–843.PubMedGoogle Scholar
  120. Moses, S. W., Bashan, N., and Gutman, A., 1972b, Properties of glycogen synthetase in erythrocytes, Eur. J. Biochem. 30: 205–210.PubMedGoogle Scholar
  121. Mostafa, M. A., and Hanahan, D. J., 1984, Partial purification of a novel Mgt±-ATPase from human erythrocytes, Biochim. Biophys. Acta 802: 490–500.PubMedGoogle Scholar
  122. Muller, M., Dubiel, W., Rathmann, J., and Rapoport, S., 1980, Determination and characteristics of energy-dependent proteolysis in rabbit reticulocytes, Eur. J. Biochem. 109: 405–410.PubMedGoogle Scholar
  123. Murakami, T., Suzuki, Y., and Murachi, T., 1979, An acid protease in human erythrocytes and its localization in the inner membrane, Eur. J. Biochem. 96: 221–227.PubMedGoogle Scholar
  124. Narayan, K. S., and Rounds, D. E., 1973, Minute ring-shaped particles in cultured cells of malignant origin, Nature New Biol. 243: 146–150.PubMedGoogle Scholar
  125. Nimmo, H. G., Proud, C. G., and Cohen, P., 1986, The purification and properties of rabbit skeletal muscle glycogen synthase, Eur. J. Biochem. 68: 21–30.Google Scholar
  126. Norcum, M. T., 1989, Isolation and electron microscopic characterization of the high molecular mass aminoacyl tRNA synthetase complex from murine erythroleukemia cells, J. Biol. Chem. 264: 15043–15051.PubMedGoogle Scholar
  127. Ohkubo, I., Namikawa, C., and Sasaki, M., 1988, Purification and characterization of HMW proteinase from human erythrocytes, Proc. Int. Symp. Intracellular Protein Catabolism, Shimoda, Japan, P-5.Google Scholar
  128. Oliver, R., 1973, Negative stain electron microscopy, Methods Enzymol. 27: 616–672.PubMedGoogle Scholar
  129. Ott, P., and Brodbeck, U., 1978, Multiple forms of acetylcholinesterase from human erythrocyte membranes, Eur. J. Biochem. 88: 119–125.PubMedGoogle Scholar
  130. Ott, P., Jenny, B., and Brodbeck, U., 1975, Multiple molecular forms of purified human erythrocyte acetyl-cholinesterase, Eur. J. Biochem. 57: 469–480.PubMedGoogle Scholar
  131. Ott, P., Lustig, A., Brodbeck, U., and Rosenbusch, J. P., 1982, Acetylcholinesterase from human erythrocyte membranes: Dimers as functional units, FEBS Lett. 138: 187–189.PubMedGoogle Scholar
  132. Paniker, N. V., Arnold, A. B., and Hartmann, R. C., 1973, Solubilization and purification of human erythrocyte membrane acetylcholinesterase, Proc. Soc. Exp. Biol. Med. 144: 492–497.PubMedGoogle Scholar
  133. Pendergast, A. M., Venema, R. C., and Traugh, J. A., 1987, Regulation of phosphorylation of aminoacyl-Trna synthetases in the high molecular weight core complex in reticulocytes, J. Biol. Chem. 262: 5939–5942.PubMedGoogle Scholar
  134. Pontremoli, S., Sparatore, B., Melloni, E., Morelli, A., Benatti, U., and De Flora, A., 1979, Isolation and partial characterization of three acidic proteinases in erythrocyte membranes, Biochem. J. 181: 559–568.PubMedGoogle Scholar
  135. Rakomczay, Z. and Brimijain, S., 1988, Biochemistry and pathophysiology of the molecular forms of cholinesterases in Subcellular Biochemistry, Volume 12 (Harris, J. R., ed.) pp. 335–378, Plenum, New York.Google Scholar
  136. Rapoport, S. M., and Müller, M., 1974, Catalase and glutathione peroxidase, in: Cellular and Molecular Biology of Erythrocytes ( H. Yoshikawa and S. M. Rapoport, eds.), pp. 167–179, University Park Press, Baltimore.Google Scholar
  137. Rebhun, L. I., Smith, C., and Larner, J., 1973, Electron microscope studies on glycogen synthase, Mol. Cell. Biochem. 1: 55–61.PubMedGoogle Scholar
  138. Roberts, W. L., and Rosenberry, T. L., 1985, Identification of covalently attached fatty acids in the hydrophobic membrane-binding domain of human erythrocyte acetylchoinesterase. Biochem. Biophys. Res. Commun. 133: 621–627.PubMedGoogle Scholar
  139. Roberts, W. L., and Rosenberry, T. L., 1986, Selective radiolabeling and isolation of the hydrophobic membrane-binding domain of human erythrocyte acetylcholinesterase, Biochemistry 25: 3091–3098.PubMedGoogle Scholar
  140. Roberts, W. L., Kim, B. H., and Rosenberry, T. L., 1987, Differences in the glycolipid membrane anchors of bovine and human erythrocyte acetylcholinesterase, Proc. Natl. Acad. Sci. USA 84: 7817–7821.PubMedGoogle Scholar
  141. Rogalski, A. A., Steck, T. L., and Waseem, A., 1979. Association of glyceraldehyde-3-phosphate dehydrogenase with the plasma membrane of the intact human red blood cell, J. Biol. Chem. 264: 6438–6446.Google Scholar
  142. Römer-Lüthi, C. R., Hajdu-, J., and Brodbeck, U., 1979, Molecular forms of purified human erythrocyte acetylcholinesterase investigated by crosslinking with diimidates, Hoppe-Seyler’s Z. Physiol. Chem. 360: 929–934.PubMedGoogle Scholar
  143. Römer-Lüthi, C: R., Ott, P., and Brodbeck, U., 1980, Reconstitution of human erythrocyte membrane acetyl-cholinesterase in phospholipid vesicles, Biochim. Biophys. Acta 601: 123–133.Google Scholar
  144. Rosenberry, T. C., and Scroggin, D. M., 1984, Structure of human erythrocyte acetylcholinesterase, J. Biol. Chem. 259: 5643–5652.PubMedGoogle Scholar
  145. Roth, D. G., Shelton, E., and Deuel, T. F., 1974, Purification and properties of phosphoribosyl pyrophosphate synthetase from rat liver, J. Biol. Chem. 249: 291–296.PubMedGoogle Scholar
  146. Ryazanov, A. G., Ashmarina, L. I., and Muronetz, V. I., 1988, Association of glyceraldehyde-3-phosphate dehydrogenase with mono-and polyribosomes of rabbit reticulocytes, Eur. J. Biochem. 171: 301–305.PubMedGoogle Scholar
  147. Salhany, J. M., 1983, Binding of cytosolic proteins to the erythrocyte membrane, J. Cell. Biochem. 23: 211–222.PubMedGoogle Scholar
  148. Schmid, H. P., Akhayat, O., Martins de Sa, C., Puvion, F., Koehler, K., and Scherrer, K., 1984, The prosome: An ubiquitous morphologically distinct RNP particle associated with repressed mRNPs and containing specific ScRNA and a characteristic set of proteins, EMBO J. 3: 29–34.PubMedGoogle Scholar
  149. Schreier, M. H., Erni, B., and Staehelin, T., 1977, Initiation of mammalian protein synthesis: The importance of ribosome and initiation factor quality for the efficiency of in vitro systems, J. Mol. Biol. 73: 329–349.Google Scholar
  150. Schrier, S. L., 1977, Human erythrocyte membrane enzymes: Current status and clinical correlates, Blood 50: 227–237.PubMedGoogle Scholar
  151. Scott, G. K., and Kee, T. B., 1979, Neutral protease from human and ovine erythrocyte membranes, /nt. J. Biochem. 10:1039–1044. -Google Scholar
  152. Seeman, P., 1967, Transient holes in the erythrocyte membrane during hypotonic hemolysis and stable holes in the membrane after lysis by saponin and lysolecithin, J. Cell Biol. 32: 55–70.PubMedGoogle Scholar
  153. Seeman, P., 1974, Ultrastructure of membrane lesions in immune lysis, osmotic lysis and drug-induced lysis, Fed. Proc. 33: 2116–2124.PubMedGoogle Scholar
  154. Seeman, P., Cheng, D., and Iles, G. H., 1973, Structure of membrane holes in osmotic and saponin hemolysis, J. Cell Biol. 56: 519–527.PubMedGoogle Scholar
  155. Selvaraj, P:, Tosse, W. F., Silber, R., and Springer, T. A., 1988, The major Fc receptor in blood has a phosphatidylinositol anchor and is deficient in paroxysmal nocturnal haemoglobinuria, Nature 333:565567.Google Scholar
  156. Shelton, E., Kuff, E. L., Maxwell, E. S., and Harrington, J. T., 1970, Cytoplasmic particles and aminoacyl transferase I activity, J. Cell Biol. 45: 1–8.PubMedGoogle Scholar
  157. Shin, B. C., and Carraway, K. L., 1973, Association of glyceraldehyde-3-phosphate dehydrogenase with the human erythrocyte membrane, J. Biol. Chem. 248: 1436–1444.PubMedGoogle Scholar
  158. Siems, W., Dubiel, W., Dumdey, R., Muller, M., and Rapoport, S. M., 1984, Accounting for the ATP-consuming processes in rabbit reticulocytes, Eur. J. Biochem. 139: 101–107.PubMedGoogle Scholar
  159. Silman, I., and Futerman, A. H., 1987, Modes of attachment of acetylcholinesterase to the surface membrane, Eur. J. Biochem. 170: 11–22.PubMedGoogle Scholar
  160. Siriwittayakorn, J., and Yuthavong, Y., 1979, Relation between low erythrocyte acetylcholinesterase activity and membrane lipids in paroxysmal nocturnal haemoglobinuria, Br. J. Haematol. 41: 383–391.PubMedGoogle Scholar
  161. Smith, D. W. E., Silbert, P. E., and McNamara, A. L., 1979, The association of histidyl-tRNA synthetase with reticulocytè ribosomes, Biochim. Biophys. Acta 562: 453–461.PubMedGoogle Scholar
  162. Smulson, M., 1974, Subribosomal particles of HeLa cells, Exp. Cell Res. 87: 253–258.PubMedGoogle Scholar
  163. Som, K., and Hardesty, B., 1975, Isolation and partial characterization of an aminoacyl-tRNA synthetase complex from rabbit reticulocytes, Arch. Biochem. Biophys. 166: 507–517.PubMedGoogle Scholar
  164. Stansell, M. J., and Deutsch, H. F., 1965, Preparation of crystalline erythrocuprein and catalase from human erythrocytes, J. Biol. Chem. 240: 4299–4305.PubMedGoogle Scholar
  165. Steck, T. L., 1978, The band 3 protein of the human red cell membrane: A review, J. Supramol. Struct. 8: 31 1324.Google Scholar
  166. Sugarman, J., Devine, D. V., and Rosse, W. F., 1986, Structural and functional differences between decay-accelerating factor and red cell acetylcholinesterase, Blood 68: 680–684.PubMedGoogle Scholar
  167. Switzer, R. L., 1969, Regulation and mechanism of phosphoribosylpyrophosphate synthetase, J. Biol. Chem. 244: 2854–2863.PubMedGoogle Scholar
  168. Taguchi, R., and Ikezawa, H., 1987, Properties of bovine erythrocyte acetylcholinesterase solubilized by phosphatidylinositol-specific phospholipase C, J. Biochem. 102: 803–811.PubMedGoogle Scholar
  169. Tanaka, K., Waxman, L., and Goldberg, A. L., 1983, ATP serves two distinct roles in protein degradation in reticulocytes, one requiring and one independent of ubiquitin, J. Cell Biol. 96: 1580–1585.PubMedGoogle Scholar
  170. Tanaka, K., Ii, K., Ichihara, A., Waxman, L., and Goldberg, A. L., 1986, A high molecular weight protease in the cytosol of rat liver, J. Biol. Chem. 261: 15197–15203.PubMedGoogle Scholar
  171. Tanaka, K., Yoshimura, T., Ichihara, A., Ikai, A., Nishigai, M., Morimoto, Y., Sato, M., Tanaka, N., Katsube, Y., Kameyama, K., and Takagi, T., 1988a, Molecular organization of a high molecular weight multi-protease complex from rat liver, J. Mol. Biol. 203: 985–996.PubMedGoogle Scholar
  172. Tanaka, K., Yoshimura, T., Kumatori, A., Ichihara, A., Ikai, A., Nishigai, M., Kameyama, K., and Takagi, T., 1988b, Proteasomes (multi-protease complexes) as 20S ring-shaped particles in a variety of eukaryotic cells, J. Biol. Chem. 263: 16209–16217.PubMedGoogle Scholar
  173. Tanaka, W. K., Som, K., and Hardesty, B., 1976, Comparison of free and ribosome-bound phenylalanine-tRNA synthetase from rabbit reticulocytes, Arch. Biochem. Biophys. 172: 252–260.PubMedGoogle Scholar
  174. Tanner, M. J. A., and Gray, W. R., 1971, The isolation and functional identification of a protein from the human erythrocyte ‘ghost,’ Biochem. J. 125: 1109–1117.PubMedGoogle Scholar
  175. Tarone, G., Hamasaki, N., Fukudoa, M., and Marchesi, V. T., 1979, Proteolytic degradation of human erythrocyte band 3 by membrane-p ciated protease activity, J. Membr. Biol. 45: 1–12.Google Scholar
  176. Tillmann, W., Cordua, A., and Schroter, W., 1975, Organization of enzymes of glycolysis and of glutathione metabolism in human red cell membranes, Biochim. Biophys. Acta 382: 157–171.Google Scholar
  177. Trachsel, H., and Staehelin, T., 1979, Initiation of mammalian protein synthesis the multiple functions of the initiation factor eIF-3, Biochim. Biophys. Acta 565: 305–331.PubMedGoogle Scholar
  178. Tsukahara, T., Ishiura, S., and Sugita, H., 1988, An ATP-dependent protease and ingensin, the multicatalytic proteinase, in K562 cells, Eur. J. Biochem. 177: 261–266.Google Scholar
  179. Ussery, M. A., Tanaka, W. K., and Hardesty, B., 1977, Subcellular distribution of aminoacyl-tRNA synthetases in various eukaryotic cells, Eur. J. Biochem. 72: 491–500.PubMedGoogle Scholar
  180. Waldman, A. L., Marx, G., and Goldstein, J., 1975, Isolation of rabbit reticulocyte initiation factors by means of heparin bound to Sepharose, Proc. Natl. Acad. Sci. USA 72: 2352–2356.PubMedGoogle Scholar
  181. Wang, K. K. W., Villalobo, A., and Roufogalis, B. D., 1988, Activation of the Cat+-ATPase of human erythrocyte membrane by an endogenous Cat+-dependent neutral protease, Arch. Biochem. Biophys. 260: 696–704.PubMedGoogle Scholar
  182. Waxman, L., Fagan, J. M., and Goldberg, A. L., 1987, Demonstration of two distinct high molecular weight proteases in rabbit reticulocytes, one of which degrades ubiquitin conjugates, J. Biol. Chem. 262: 2451 2457.Google Scholar
  183. Weed, R. I., Reed, C. F., and Berg, G., 1963, Is hemoglobin an essential structural component of human erythrocyte membranes? J. Clin. Invest. 42: 581–588.PubMedGoogle Scholar
  184. Weitz, M., Bjerrum, O. J., and Brodbeck, U., 1984, Characterization of an active hydrophilic erythrocyte membrane acetylcholinesterase obtained by limited proteolysis of the purified enzyme, Biochim. Biophys. Acta 776: 65–74.PubMedGoogle Scholar
  185. White, M. D., and Ralston, G. B., 1976, A water-soluble Mgt+-ATPase from erythrocyte membranes, Biochim. Biophys. Acta 436: 567–576.PubMedGoogle Scholar
  186. White, M. D., and Ralston, G. B., 1979, The `hollow cylinder’ protein of erythrocyte membranes, Biochim. Biophys. Acta 554: 469–478.PubMedGoogle Scholar
  187. White, M. D., and Ralston, G. B., 1980, Purification of a water-soluble Mgt+-ATPase from human erythrocyte membranes, Biochim. Biophys. Acta 599: 569–579.PubMedGoogle Scholar
  188. Wilk, S., and Orlowski, M., 1983, Evidence that pituitary cation-sensitive neutral endopeptidase is a multi-catalytic protease complex, J. Neurochem. 40: 842–849.PubMedGoogle Scholar
  189. Witheiler, J., and Wilson, D. B., 1972, The purification and characterization of a novel peptidase from sheep red cells, J. Biol. Chem. 247: 2217–2221.PubMedGoogle Scholar
  190. Wright, D. L., and Plummer, D. T., 1973, Multiple forms of acetylcholinesterase from human erythrocytes, Biochem. J. 133: 521–527.PubMedGoogle Scholar
  191. Yamamoto, K., Yamamoto, H., Takeda, G., and Kato, Y., 1988, An aspartic proteinase of erythrocyte membranes. Proposed mechanism of activation and further molecular properties, J. Biol. Chem. 369: 315–322.Google Scholar
  192. Yu, J., and Steck, T. L., 1975, Association of band 3, the predominant polypeptide of the erythrocyte membrane, J. Biol. Chem. 250: 9176–9184.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • J. Robin Harris
    • 1
  1. 1.North East Thames Regional Transfusion CentreBrentwood, EssexEngland

Personalised recommendations