Advertisement

Maturational Breakdown of Mitochondria and Other Organelles in Reticulocytes

  • Samuel M. Rapoport
  • Tankred Schewe
  • Bernd-Joachim Thiele
Part of the Blood Cell Biochemistry book series (BLBI, volume 1)

Abstract

One of the characteristics of the differentiation of erythroid cells is the decay or elimination of organelles, including the nucleus, mitochondria, ribosomes, lysosomes, endoplasmic reticulum, and Golgi apparatus. Many of the changes occur in the nucleated precursors of the erythrocyte. Some organelles, however, primarily mitochondria and ribosomes, but also vestiges of others, remain in the reticulocyte. The mechanisms involved in the degradation of organelles are largely unexplored. The process best understood is the maturational breakdown of mitochondria in reticulocytes, which will therefore be the focus of the present review. The various changes appear to constitute a fixed program of maturation that once started takes it course with little or no outside effectors. The interplay of the various events and their causal relationships are open questions.

Keywords

Erythroid Cell Proteolytic System Sodium Cholate Mature Erythrocyte Ubiquitin Conjugate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adachi, K., Nagano, K., Nakao, T., and Nakao, M., 1964, Purification and characterization of ribonuclease from rabbit reticulocytes, Biochim. Biophys. Acta 92: 59–70.PubMedGoogle Scholar
  2. Andree, H. H., Bretschneider, K., Thiele, B. J., and Rapoport, S. M., 1980, Breakdown of ribosomal RNA in rabbit reticulocytes, Acta Biol. Med. Ger. 39: 995–1006.PubMedGoogle Scholar
  3. Antonioli, J. A., and Christensen, H. N., 1969, Differences in schedules of regression of transport systems during reticulocyte maturation, J. Biol. Chem. 244: 1505–1509.PubMedGoogle Scholar
  4. Arrigo, A. P., Tanaka, K., Goldberg, A. L., and Welch, W. J., 1988, Identity of the 19S “prosome” particle with the large multifunctional protease complex of mammalian cells (the proteasome), Nature 331: 19 2194.Google Scholar
  5. Augustin, H. W., and Rapoport, S. M., 1959, Über Atmung und Succinatoxydasesystem bei reifen und jugendlichen Hühner-erythrocyten, Acta Biol. Med. Ger. 3: 433–449.PubMedGoogle Scholar
  6. Augustin, H. W., Häcker, M. R., and Hofmann, E., 1964, Aufnahme und Phosphorylierung von 2-Desoxy-Dglucose in Kaninchen-erythrocyten und -reticulocyten Hoppe-Seyler’s Z. Physiol. Chem. 339: 42–58.PubMedGoogle Scholar
  7. Augustin, H. W., Zborowski, J., Baranska, J., Wiswedel, I., and Wojtczak, L., 1977, Synthesis of phospholipids in mitochondria and other membrane fractions of rabbit reticulocytes, Biochim. Biophys. Acta 489: 298–306.Google Scholar
  8. Balcarek, J. M., Theisen, T. W., Cook, M. N., Varrichio, A., Hwang, S. M., Strohsacker, M. W., and Crooke, S. T., 1988, Isolation and characterization of a cDNA clone encoding rat 5-lipoxygenase, J. Biol. Chem. 263: 13937–13941.PubMedGoogle Scholar
  9. Belkner, J., and Rapoport, S. M., 1989, Approaches to characterize by density-fractionation age-dependent properties of reticulocyte mitochondria, Biomed. Biochim. Acta 48: 3–11.PubMedGoogle Scholar
  10. Belkner, J., Kühn, H., and Wiesner, R., 1990, Oxygenation of biological membranes by the reticulocyte lipoxygenase. Lack of stoichiometry between oxygen uptake and product formation, Biomed. Biochim. Acta 49: S31 — S34.PubMedGoogle Scholar
  11. Bessis, M., 1973, Living Blood Cells and Their Ultrastructure, Springer, Berlin.Google Scholar
  12. Borgeat, P., Nadeau, M., Salari, H., Poubelle, P., and Fruteau de Laclos, B., 1985, Leukotrienes: Biosynthesis, metabolism, and analysis, Adv. Lipid Res. 21: 47–77.PubMedGoogle Scholar
  13. Brodsky, F. M., 1988, Living with clathrin. Its role in intracellular membrane traffic, Science 24: 1396–1402.Google Scholar
  14. Brown-Luedi, M. L., Meyer, L. J., Milburn, S. C., Mo-Ping Yau, P., Corbett, S., and Hershey, J. W. B., 1982, Protein synthesis initiation factors from human HeLa cells and rabbit reticulocytes are similar: Comparison of protein structure, activities, and immunochemical properties, Biochemistry 21: 4202–4206.PubMedGoogle Scholar
  15. Bryant, R. W., Bailey, J. M., Schewe, T., and Rapoport, S. M., 1982, Positional specificity of a reticulocyte lipoxygenase. Conversion of arachidonic acid to 15S-hydroperoxyeicosatetraenoic acid, J. Biol. Chem. 257: 6050–6055.PubMedGoogle Scholar
  16. Bryant, R. W., Schewe, T., Rapoport, S. M., and Bailey, J. M., 1985, Leukotriene formation by a purified reticulocyte lipoxygenase enzyme. Conversion of arachidonic acid and 15-hydroperoxyeicosatetraenoic acid to 14,15-leukotriene A4, J. Biol. Chem. 260: 3548–3555.PubMedGoogle Scholar
  17. Burka, E. R., 1969, Characteristics of RNA degradation in the erythroid cell, J. Clin. Invest. 48: 1266–1272.PubMedGoogle Scholar
  18. Carvalho, M., Carvalho, J. F., and Merrick, W. C., 1984, Biological characterization of various forms of elongation factor 1 from rabbit reticulocytes, Arch. Biochem. Biophys. 234: 603–611.PubMedGoogle Scholar
  19. Ciechanover, A., Heller, H., Elias, S., Haas, A. L., and Hershko, A., 1980, ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation, Proc. Natl. Acad. Sci. USA 77: 1365–1368.PubMedGoogle Scholar
  20. Ciechnover, A., Wolin, S. L., Steitz, J. A., and Lodish, H. F., 1985, Transfer RNA is an essential component f the ubiquitin-and ATP-dependent proteolytic system, Proc. Natl. Acad. Sci. USA 82: 1341–1345.Google Scholar
  21. Ciechanover, A., Ferber, S., Dvorah, G., Elias, S., Hershko, A., and Arfin, S., 1988, Purification and haracterization of arginyl-tRNA-protein transferase from rabbit reticulocytes, J. Biol. Chem. 263: 11155 — 11167.PubMedGoogle Scholar
  22. Coutelle, C., Rosenthal, S., Gross, J., David, H., and Uerlings, I., 1973, Leitkriterien der Retikulozytenreifung, VI. Verhalten der RNS and Retikulozytenwerte sowie des Ribosomengehaltes in peripheren erythroiden Zellpopulationen verschiedener Dichte im Verlaufe einer Entblutungsanämie beim Kaninchen, Acta Biol. Med. Ger. 31: 781–794.PubMedGoogle Scholar
  23. Danon, D., Zehavi-Willner, T., and Berman, C. R., 1965, Alterations in polyribosomes of reticulocytes maturing in vivo, Proc. Natl. Acad. Sci. USA 54: 873–879.PubMedGoogle Scholar
  24. Davis, J. Q., Danserau, D., Johnstone, R. M., and Bennet, V., 1986, Selective externalization of an ATP-binding protein structurally related to the clathrin-uncoating ATPase/heat shock protein in vesicles containing terminal transferrin receptors during reticulocyte maturation, J. Biol. Chem. 261: 15368–15371.PubMedGoogle Scholar
  25. DeBellis, R. H., 1969, Fate of reticulocyte ribosomes during in vivo maturation, Biochemistry 8: 3451–3454.PubMedGoogle Scholar
  26. Dixon, R. A. F., Jones, R. E., Diehl, R. E., Bennett, C. D., Karoman, S,. and Rouzer, C. A., 1988, Cloning of the cDNA for human 5-lipoxygenase, Proc. Natl. Acad. Sci. USA 85: 416–420.Google Scholar
  27. Driscoll, J., and Goldberg, A. L., 1989, Skeletal muscle proteasome can degrade proteins in an ATP-dependent process that does not require ubiquitin, Proc. Natl. Acad. Sci. USA 86: 787–791.PubMedGoogle Scholar
  28. Dubiel, W., Müller, M., and Rapoport, S. M., 1981a, ATP-dependent proteolysis of reticulocyte mitochondria is preceded by the attack of lipoxygenase, Biochem. Int. 3: 165–171.Google Scholar
  29. Dubiel, W., Müller, M., Rathmann, J., Hiebsch, C., and Rapoport, S. M., 1981b, Determination and characteristics of energy-dependent proteolysis in rabbit reticulocytes, Acta Biol. Med. Ger. 40: 625–628.PubMedGoogle Scholar
  30. Dubiel, W., Müller, M., and Rapoport, S. M., 1986, Kinetics of 125I-ubiquitin conjugation with and liberation from rabbit reticulocyte stroma, FEBS Lett. 194: 50–55.PubMedGoogle Scholar
  31. Dubiel, W., Drung, I., Müller, M., and Rapoport, S. M., 1987a, Effect of substrate heat-denaturation on ATP-and ubiquitin-dependent proteolysis, Biomed. Biochim. Acta 46: 159–164.PubMedGoogle Scholar
  32. Dubiel, W., Drung, I., Müller, M., and Rapoport, S. M., 1987b, Kinetic studies on the ATP- and ubiquitindependent proteolytic system of reticulocytes, Biomed. Biochim. Acta 46: 565–570.PubMedGoogle Scholar
  33. Dubiel, W., Drung, I., Müller, M., and Rapoport, S. M., 1988, The effects of substrate denaturation and tRNA on the ATP- and ubiquitin-dependent proteolytic system of reticulocytes, Biol. Zentralblatt 107: 93–96Google Scholar
  34. Etlinger, J. D., and Goldberg, A. L., 1980, Control of protein degradation in reticulocytes and reticulocyte extracts by hemin, J. Biol. Chem. 255: 4563–4568.PubMedGoogle Scholar
  35. Farkas, W., and Marks, P. A., 1968, Partial purification and properties of a ribonuclease from rabbit reticulocytes, J. Biol. Chem. 243: 6464–6473.PubMedGoogle Scholar
  36. Ferber, S., and Ciechanover, A., 1986, Transfer RNA is required for conjugation of ubiquitin to selective substrates of the ubiquitin-and ATP-dependent proteolytic system, J. Biol. Chem. 261: 3128–3134.PubMedGoogle Scholar
  37. Ferber, S., and Ciechanover, A., 1987, Role of arginine-tRNA in protein degradation by the ubiquitin pathway, Nature 326: 808–810.PubMedGoogle Scholar
  38. Fiskum, G., Bryant, R. W., Low, C.-E., Pease, A., and Bailey, J. M., 1985, Lipoxygenation of mitochondrial membranes by reticulocyte lipoxygenase, in: Prostaglandins, Leukotrienes, and Lipoxins: Biochemistry, Mechanism of Action, and Clinical Applications (J. M. Bailey, ed.), pp. 87–95, Plenum Press, New York.Google Scholar
  39. Fleming, J., Thiele, B. J., Chester, J., O’Prey, J., Janetzki, S., Aitken, A., Anton, I. A., Rapoport, S. M., and Harrison, P. R., 1989, The complete sequence of the rabbit erythroid cell-specific 15-lipoxygenase mRNA: Comparison of the predicted amino acid sequence of the RBC lipoxygenase with other lipoxygenases, Gene 79: 181–188.PubMedGoogle Scholar
  40. Freudenberg, H., and Mager, J., 1971, Studies on the mechanism of the inhibition of protein synthesis induced by intracellular ATP depletion, Biochim. Biophys. Acta 232: 537–555.PubMedGoogle Scholar
  41. Furakawa, M., Yoshimoto, T., Ochi, K., and Yamamoto, S., 1984, Studies on arachidonate 5-lipoxygenase of rat basophilic leukemia cells, Biochim. Biophys. Acta 795: 458–465.Google Scholar
  42. Ganoth, D., Leshinsky, E., Eytan, E., and Hershko, A., 1988, A multicomponent system that degrades proteins conjugated to ubiquitin: Resolution of factors and evidence for ATP-dependent complex formation, J. Biol. Chem. 263: 12412–12419.PubMedGoogle Scholar
  43. Gasko, O., and Danon, D., 1972, Deterioration and disappearance of mitochondria during reticulocyte maturation, Exp. Cell Res. 75: 159–169.PubMedGoogle Scholar
  44. Geiduschek, J. B., and Singer, S. J., 1979, Molecular changes in the membranes of mouse erythroid cells accompanying differentiation, Cell 16: 149–163.PubMedGoogle Scholar
  45. Goldberg, A. L., and St. John, A. C., 1976, Intracellular protein degradation in mammalian and bacterial cells, Annu. Rev. Biochem. 45: 747–803.Google Scholar
  46. Glowacki, E. R., and Millette, R. L., 1965, Polyribosomes and the loss of hemoglobin synthesis in the maturing reticulocytes, J. Mol. Biol. 11: 116–127.PubMedGoogle Scholar
  47. Goto, S., and Mizuno, D., 1971, Degradation of RNA in rat reticulocytes. Purification and properties of rat reticulocyte RNase, Arch. Biochem. Biophys. 145: 64–70.PubMedGoogle Scholar
  48. Greksch, G., Wiswedel, I., and Augustin, W., 1973, Enzymatic characterization of rabbit reticulocyte mitochondria in: Abhandlungen der Akademie der Wissenschaften der DDR, pp. 587–599, Akademie-Verlag, Berlin.Google Scholar
  49. Haas, A. L., and Bright, P. M., 1985, The immunochemical detection and quantitation of intracellular ubiquitin—protein conjugates, J. Biol. Chem. 260: 12464–12473.PubMedGoogle Scholar
  50. Haas, A. L., and Rose, I. A., 1981, Hemin inhibits ATP-dependent ubiquitin-dependent proteolysis: Role of hemin in regulating ubiquitin conjugate degradation, Proc. Natl. Acad. Sci. USA 78: 6845–6848.PubMedGoogle Scholar
  51. Harding, C., Heuser, J., and Stahl, P., 1983, Receptor-mediated endocytosis and recycling of the transferrin receptor in rat reticulocytes, J. Cell Biol. 97: 324–339.Google Scholar
  52. Harding, C., Heuser, J., and Stahl, P., 1984, Endocytosis and intracellular processing of transferrin and colloidal gold transferrin in rat reticulocytes, Eur. J. Cell Biol. 35: 256–263.PubMedGoogle Scholar
  53. Harris, E. D., and Johnson, C. A., 1969, Incorporation of glucosamine-14C into membrane proteins of reticulocytes, Biochemistry 8: 512–515.PubMedGoogle Scholar
  54. Harrison, P. R., Frampton, J., Chambers, I., Kasturi, K., Thiele, B., Conkie, D., Fleming, J., Chester, J., O’Prey, J., and McBain, W., 1987, Analysis of erythroid cell-specific gene expression, in: Molecular and Cellular Aspects of Erythropoietin and Erythropoiesis (I. N. Rich, ed.), pp. 37–50, Springer-Verlag, Berlin.Google Scholar
  55. Härtel, B., Ludwig, P., Schewe, T., and Rapoport, S. M., 1982, Self-inactivation by 13-hydroperoxylinoleic acid and lipohydroperoxidase activity of the reticulocyte lipoxygenase, Eur. J. Biochem. 126: 353–357.PubMedGoogle Scholar
  56. Hershko, A., and Ciechanover, A., 1982, Mechanisms of intracellular protein breakdown, Annu. Rev. Biochem. 51: 335–364.PubMedGoogle Scholar
  57. Hershko, A., Leshinsky, A., Ganoth, D., and Heller, H., 1984a, ATP-dependent degradation of ubiquitinprotein conjugates, Proc. Natl. Acad. Sci. USA 81: 1619–1623.PubMedGoogle Scholar
  58. Hershko, A., Heller, H., Eytan, E., Kaklij, G., and Rose, I. A., 1984b, Role of the a-amino group of protein in ubiquitin-mediated protein breakdown, Proc. Natl. Acad. Sci. USA 81: 7021–7025.PubMedGoogle Scholar
  59. Heynen, M. J., and Verwilghen, R. L., 1982, A quantitative ultrastructural study of normal rat erythroblasts and reticulocytes, Cell Tissue Res. 224: 397–408.PubMedGoogle Scholar
  60. Höhne, M., Bayer, D., Prehn, S., Schewe, T., and Rapoport, S. M., 1983, In vitro maturation of rabbit reticulocytes. III. Response of lipoxygenase, Biomed. Biochim. Acta 42: 1129–1134.PubMedGoogle Scholar
  61. Höhne, M., Thiele, B. J., Prehn, S., Giessmann, E., Nack, B., and Rapoport, S. M., 1988, Activation of translationally inactive lipoxygenase mRNP particles from rabbit reticulocytes, Biomed. Biochim. Acta 47: 75–78.Google Scholar
  62. Holt, G. D., Haltiwanger, R. S., Tones, C. R., and Hart, G. W., 1987, Erythrocytes contain cytoplasmic glycoproteins. 0-linked G1cNAc on band 4.1, J. Biol. Chem. 262: 14847–14850.PubMedGoogle Scholar
  63. Hough, R., Pratt, G., and Rechsteiner, M., 1986, Ubiquitin—lysozyme conjugates: Identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates, J. Biol. Chem. 261: 2400–2408.PubMedGoogle Scholar
  64. Hough, R., Pratt, G., and Rechsteiner, M., 1987, Purification of two high molecular weight proteases from rabbit reticulocyte lysate, J. Biol. Chem. 262: 8303–8313.PubMedGoogle Scholar
  65. Inaba, M., and Maede, Y., 1986, Na,K-ATPase in dog red cells. Immunological identification and maturation-associated degradation by the proteolytic system, J. Biol. Chem. 261: 16099–16105.PubMedGoogle Scholar
  66. Ishiura, S., and Sugita, H., 1986, Ingensin, a high-molecular mass alkaline protease from rabbit reticulocyte, J. Biochem. 100: 753–763.PubMedGoogle Scholar
  67. Johnstone, R. M., Adam, M., Hammond, J. R., Orr, L., and Turbide, C., 1987, Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes), J. Biol. Chem. 262: 9412–9420.PubMedGoogle Scholar
  68. Knopf, P. M., and Lamfrom, H., 1965, Changes in the ribosome distribution during incubation of rabbit reticulocytes in vitro, Biochim. Biophys. Acta 95: 398–407.PubMedGoogle Scholar
  69. Kobayashi, T., and Levine, L., 1983, Arachidonic acid metabolism by erythrocytes, J. Biol. Chem. 258: 91169121.Google Scholar
  70. Kostie, M. M., and Rapoport, S. M., 1989, Maturation-dependent changes of the rabbit reticulocyte energy metabolism, FEBS Lett. 250: 400–441.Google Scholar
  71. Krause, W., David, H., Uerlings, I., and Rosenthal, S., 1972, Veränderungen der Mitochondrien-Ultrastruktur von Kaninchenretikulozyten im Reifungsprozeß, Acta Biol. Med. Ger. 28: 779–786.PubMedGoogle Scholar
  72. Kroschwald, P., Kroschwald, A., Wiesner, R., Schewe, T., and Kuhn, H., 1986, The occurrence of a lipoxygenase pathway in reticulocytes of various species, Biomed. Biochim. Acta 45: 1237–1247.PubMedGoogle Scholar
  73. Kroschwald, P., Kroschwald, A., Kuhn, H., Ludwig, P., Thiele, B. J., Höhne, M., Schewe, T., and Rapoport, S. M., 1989a, Occurrence of the erythroid cell-specific arachidonate 15-lipoxygenase in human reticulocytes, Biochem. Biophys. Res. Commun. 160: 954–960.PubMedGoogle Scholar
  74. Kühn, H., and Brash, A. R., 1990, Occurrence of lipoxygenase products in membranes of rabbit reticulocytes. Evidence for a role of the reticulocyte lipoxygenase in the maturation of red cells, J. Biol. Chem. 265: 1454–1458.PubMedGoogle Scholar
  75. Kühn, H., Belkner, J., and Wiesner, R., 1990a, Metabolism of polyenoic fatty acids by rabbit reticulocytes. Intracellular action of the erythroid lipoxygenase on membrane lipids, Biomed. Biochim. Acta 49: S25–30.PubMedGoogle Scholar
  76. Kühn, H. Belkner, J., and Wiesner, R., 1990b, Subcellular distribution of lipoxygenase products in rabbit reticulocyte membranes, Eur. J. Biochem.,in press.Google Scholar
  77. Kühn, H., Belkner, J., Wiesner, R., and Alder, L., 1990c, Occurrence of 9- and 13-keto octadecadienoic acid in biological membranes oxygenated by the reticulocyte lipoxygenase, Arch. Biochem. Biophys. in press.Google Scholar
  78. Kühn, H., Wiesner, R., and Schewe, T., 1990d, Formation of oxygenase and hydroperoxidase products by the pure reticulocyte lipoxygenase, Biomed. Biochim. Acta 49: S39 — S41.PubMedGoogle Scholar
  79. Kühn, H., Wiesner, R., Schewe, T., and Rapoport, S. M., 1983a, Reticulocyte lipoxygenase exhibits both n-6 and n-9 activities, FEBS Lett. 153: 353–356.PubMedGoogle Scholar
  80. Kühn, H., Pliquett, F., Wunderlich, S., Schewe, T., and Krause, W., 1983b, Reticulocyte lipoxygenase changes the passive electric properties of bovine heart submitochondrial particles, Biochim. Biophys. Acta 735: 283290.Google Scholar
  81. Kühn, H., Schewe, T., and Rapoport, S. M., 1986a, The stereo chemistry of the reactions of lipoxygenases and their metabolites. Proposed nomenclature of lipoxygenases and related enzymes, Enzymol. Relat. Areas Mol. Biol. 58: 273–311.Google Scholar
  82. Kühn, H., Salzmann-Reinhardt, U., Ludwig, P., Pönicke, K., Schewe, T., and Rapoport, S. M., 1986b, Thestoichiometry of oxygen uptake and conjugated diene formation during the dioxygenation of linoleic acid by the pure reticulocyte lipoxygenase. Evidence for aerobic hydroperoxidase activity, Biochim. Biophys. Acta 876: 187–193.PubMedGoogle Scholar
  83. Kühn, H., Wiesner, R., Alder, L., Fitzsimmons, B. S., Rokach, J., and Brash, A. R., 1987, Formation of lipoxin B by the pure reticulocyte lipoxygenase via sequential oxygenation of the substrate, Eur. J. Biochem. 169: 593–601.PubMedGoogle Scholar
  84. Kühn, H., Wiesner, R., Belkner, J., and Alder, L., 1989, Occurrence of 9- and 13-ketooctadecadienoic acid in biological membranes oxygenated by the reticulocyte lipoxygenase, Arch. Biochem. Biophys.,in press. Lodish, H. F., and Small, B., 1976, Different lifetimes of reticulocyte messenger RNA, Cell 7:59–65.Google Scholar
  85. Ludwig, P., Holzhütter, H.-G., Colosimo, A., Silvestrini, M. C., Schewe, T., and Rapoport, S. M., 1987, A kinetic model for lipoxygenases based on experimental data with the lipoxygenase of reticulocytes, Eur. J. Biochem. 168: 325–337.PubMedGoogle Scholar
  86. Ludwig, P. Höhne, M., Kühn, H., Schewe, T., and Rapoport, S. M., 1988, The biological dynamics of lipoxygenase in rabbit red cells in the course of an experimental bleeding anaemia. Unexpected effects of the calcium ionophore A 23187, Biomed. Biochim. Acta 47:593–608.Google Scholar
  87. Lutze, G., Kunze, D., Reichmann, G., Wiswedel, I., and Augustin, H. W., 1977, Phospholipidzusammensetzung and Fettsäuremuster der isolierten Phospholipide von Mitochondrien aus Kaninchenretickulozyten, Acta Biol. Med. Ger. 36: 1403–1411.PubMedGoogle Scholar
  88. McGuire, M. J., and DeMartino, C. S., 1986, Purification and characterization of a high molecular weight proteinase (macropain) from human erythrocytes, Biochim. Biophys. Acta 873: 279–289.PubMedGoogle Scholar
  89. McKay, M. J., Daniels, R. S., and Hipkiss, A. R., 1980, Breakdown of aberrant protein in rabbit reticulocytes decreases with cell age, Biochem. J. 188: 279–283.PubMedGoogle Scholar
  90. Magnani, M., Stocchi, V., Dacha, M., and Fomaini, G., 1984, Rabbit red blood cell hexokinase. Evidence for an ATP-dependent decay during cell maturation, Mol. Cell. Biochem. 61: 83–92.PubMedGoogle Scholar
  91. Mai, A., Sandring, D., Belkner, J., Prehn, S., and Rapoport, S. M., 1980, In vitro-Reifung von Retikulozyten. Verhalten von RNS and anorganischer Pyrophosphatase, Acta Biol. Med. Ger. 39: 217–222.PubMedGoogle Scholar
  92. Maniatis, G. M., Ramirez, F., Cann, A., Marks, P. A., and Bank, A., 1976, Translation and stability of human globin mRNA in Xenopus oocytes, J. Clin. Invest. 58: 1419–1427.PubMedGoogle Scholar
  93. Marbaix, G., Burny, A., Huez, G., Lebleu, B., and Temmermann, J., 1970, Evolution of the polyribosome distribution during in vivo reticulocyte maturation, Eur. J. Biochem. 13: 322–325.Google Scholar
  94. Marbaix, G., Huez, G., Nokin, P., and Cleuter, Y., 1976, Free cytoplasmic a-globin messenger RNA appears during the maturation of reticulocytes, FEBS Lett. 66: 269–273.PubMedGoogle Scholar
  95. Maretzki, D., Kostid, M. M., Reimann, B., Schwarzer, E., and Rapoport, S. M., 1986, Maturation of rabbit reticulocytes: Strong decline of the turnover of polyphosphoinositides, Biomed. Biochim. Acta 45: 1227 1236.Google Scholar
  96. Maretzki, D., Ueta, N., Reimann, B., Schwarzer, E., Kostic, M., and Rapoport, S. M., 1987, Maturation dependence of the turnover of phosphatidylinositides in rabbit red blood cells, Biomed. Biochim. Acta 46: 167–171.Google Scholar
  97. Matsumoto, T., Funk, C. D., Radmark, O., Höög, J.-O., Jörnvall, H., and Samuelsson, B., 1988, Molecular cloning and amino acid sequence of human 5-lipoxygenase, Proc. Natl. Acad. Sci. USA 85: 26–30.PubMedGoogle Scholar
  98. Merrick, W. C., Kemper, W. M., Kantor, J. A., and Anderson, W. F., 1975, Purification and properties of rabbit reticulocyte protein synthesis elongation factor 2, J. Biol. Chem. 250: 2620–2625.Google Scholar
  99. Meyer, D. I., Krause, E., and Dobberstein, B., 1982, Secretory protein translocation across membranes—the role of the “docking protein,” Nature 297: 647–650.PubMedGoogle Scholar
  100. Minich, W. B., Evdokimova, V. M., Oleinikov, A. V., Höhne, M., Thiele, B. J., and Rapoport, S. M., 1989, Evidence for the appearance of a reticulocyte population low in lipoxygenase mRNA during the recovery from a phenylhydrazine-induced anemia in rabbits, FEBS Lett. in press.Google Scholar
  101. Morimoto, R., and Fodor, E., 1984, Cell-specific expression of heat shock proteins in chicken reticulocytes and lymphocytes, J. Cell Biol. 99: 1316–1323.PubMedGoogle Scholar
  102. Mosca, J. D., Wu, J. M., and Suhadolnik, R. J., 1983, Restoration of protein synthesis in lysed rabbit reticulocytes by the enzymatic removal of adenosine 5’-monophosphate with either AMP deaminase or AMP nucleosidase, Biochemistry 22: 346–354.PubMedGoogle Scholar
  103. Müller, M., Dubiel, W., Rathmann, J., and Rapoport, S. M., 1980, Determination and characteristics of energy-dependent proteolysis in rabbit reticulocytes, Eur. J. Biochem. 109: 405–410.PubMedGoogle Scholar
  104. Murray, J. J., and Brash, A. R., 1988, Rabbit reticulocyte lipoxygenase catalyzes specific 12(S) and 15(S) oxygenation of arachidonylphosphatidylcholine, Arch. Biochem. Biophys. 265: 514–523.PubMedGoogle Scholar
  105. Narumiya, S., Salmon, J. A., Cottee, F. H., Weatherley, B. C., and Flower, R. J., 1981, Arachidonic acid 15lipoxygenase from rabbit peritoneal polymorphonuclear leukocytes. Partial purification and properties, J. Biol. Chem. 256: 9583–9592.PubMedGoogle Scholar
  106. Navaratnam, S., Feiters, M. C., Al-Hakim, M., Allen, J. C., Veldink, G. A., and Vliegenthart, J. F. G., 1988, Iron environment in soybean lipoxygenase-1, Biochim. Biophys. Acta 956: 70–76.PubMedGoogle Scholar
  107. Nudel, U., Soreq, H., Littauer, U. Z., Marbaix, G., Huez, G., Leclercq, M., Hubert, E., and Chantrenne, H., 1976, Globin mRNA species containing poly(A) segments of different lengths. Their functional stability in Xenopus oocytes, Eur. J. Biochem. 64: 115–121.PubMedGoogle Scholar
  108. O’Prey, J., Chester, J., Thiele, B. J., Janetzki, S., Prehn, S., Fleming, J., and Harrison, P. R., 1989, The promoter structure and complete sequence of the rabbit erythroid cell-specific 15-lipoxygenase gene, Gene 84: 493–499.PubMedGoogle Scholar
  109. Orr, L., Adam, M., and Johnstone, R. M., 1987, Externalization of membrane-bound activities during sheep reticulocyte maturation is temperature and ATP-dependent, Biochem. Cell. Biol. 65: 1080–1090.PubMedGoogle Scholar
  110. Pan, B. T., and Johnstone, R. M., 1983, Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro; selective externalization of the receptor, Cell 33: 967–977.PubMedGoogle Scholar
  111. Pan, B. T., Teng, K., Wu, C., Adam, M., and Johnstone, R. M., 1985, Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocyte, J. Cell Biol. 101: 94 2948.Google Scholar
  112. Park, E. A., and Morgan, H. E., 1984, Energy dependence of RNA degradation in rabbit reticulocytes, Am. J. Physiol. 247: C390 — C395.PubMedGoogle Scholar
  113. Parodi, A. J., and Martin-Barrientes, J., 1977, Glycosylation of endogenous proteins through dolichol derivates in reticulocyte plasma membranes, Biochim. Biophys. Acta 500: 80–88.PubMedGoogle Scholar
  114. Pickart, C. M., and Anthony, T. V., 1988, Levels of active ubiquitin carrier proteins decline during erythroid maturation, J. Biol. Chem. 263: 12028–12035.PubMedGoogle Scholar
  115. Prehn, S., Rosenthal, S., and Rapoport, S. M., 1972, The temperature-dependent enzymatic breakdown of rRNA of reticulocytes, Eur. J. Biochem. 24: 456–460.PubMedGoogle Scholar
  116. Priess, H., and Zillig, W., 1967, Inhibitor für pankreatische Ribonuclease aus roten Blutzellen, Hoppe-Seyler’s Z. Physiol. Chem. 348: 817–822.PubMedGoogle Scholar
  117. Rapoport, S. M., 1986, The Retikulocyte, CRC Press, Boca Raton, Florida.Google Scholar
  118. Rapoport, S. M., and Gerischer-Mothes, W., 1955, Biochemische Vorgänge bei der Erythrocytenreifung: Über einen Hemmstoff des Succinatoxydase-Systems in Reticulocyten, Hoppe-Seyler’s Z. Physiol. Chem. 302: 167–178.PubMedGoogle Scholar
  119. Rapoport, S. M., and Nieradt-Hiebsch, C., 1955, Biochemische Vorgänge bei der Retikulocytenreifung: Über den Angreiffspunkt des Reticulocytenhemmstoffes in der Atmungskette, Hoppe-Seyler’ s Z. Physiol. Chem. 302: 179–185.PubMedGoogle Scholar
  120. Rapoport, S., Guest, G. M., and Wing, M., 1944, Size, hemoglobin content and acid-soluble phosphorus of erythrocytes of rabbits with phenylhydrazine-induced reticulocytosis, Proc. Soc. Exp. Biol. Med. 57: 334347.Google Scholar
  121. Rapoport, S. M., Schewe, T., Wiesner, R., Halangk, W., Ludwig, P., Janicke-Höhne, M., Tanned, C., Hiebsch, C., and Klatt, D., 1979, The lipoxygenase of reticulocytes. Purification, characterization and biological dynamics of the lipoxygenase, its identity with the respiratory inhibitors of the reticulocyte, Eur. J. Biochem. 96: 545–561.PubMedGoogle Scholar
  122. Rapoport, S., Müller, M., Dumdey, R., and Rathmann, J., 1980, Nitrogen economy and the metabolism of serine and glycine in reticulocytes of rabbits, Eur. J. Biochem. 108: 449–455.PubMedGoogle Scholar
  123. Rapoport, S. M., Dubiel, W., and Müller, M., 1981, The mechanism of maturation-dependent breakdown of mitochondria in reticulocytes, Acta Biol. Med. Ger. 40: 1277–1283.PubMedGoogle Scholar
  124. Rapoport, S., Härtel, B., and Hausdorf, G., 1984, Methionine sulfoxide formation is the cause of self-inactivation of reticulocyte lipoxygenase, Eur. J. Biochem. 139: 573–576.PubMedGoogle Scholar
  125. Rapoport, S. M., Dubiel, W., and Müller, M., 1985a, Proteolysis of mitochondria in reticulocytes during maturation is ubiquitin-dependent and is accompanied by a high rate of ATP hydrolysis, FEBS Lett. 180: 249–252.PubMedGoogle Scholar
  126. Rapoport, S. M., Schmidt, J., and Prehn, S., 1985b, Maturation of rabbit reticulocytes: Susceptibility of mitochondria to ATP-dependent proteolysis is determined by the maturational state of reticulocytes, FEBS Lett. 183: 370–374.PubMedGoogle Scholar
  127. Rapoport, S., Schmidt, J., and Prehn, S., 1986, Fe-dependent formation of a protein that makes mitochondria lipoxygenase-susceptible during maturation of reticulocytes, FEBS Lett. 198: 109–111.PubMedGoogle Scholar
  128. Raviv, O., Heller, H., and Hershko, A., 1987, Alterations in components of the ubiquitin-protein ligase system following maturation of reticulocytes to erythrocytes, Biochem. Biophys. Res. Comm. 145: 658–665.PubMedGoogle Scholar
  129. Raw, I., and DiFini, F., 1983, The possible role of ATP-dependent proteolysis on the solubilization of methemoglobin reductase during reticulocyte maturation, Biochem. Biophys. Res. Commun. 116: 357–359.PubMedGoogle Scholar
  130. Rechsteiner, M., 1987, Ubiquitin-mediated pathways for intracellular proteolysis, Annu. Rev. Cell Biol. 3: 1–30.PubMedGoogle Scholar
  131. Richter-Rapoport, S. K. N., Dumdey, R., Hiebsch, C., Thamm, R., Uerlings, I., and Rapoport, S., 1977, Charakterisierung von Retikulozyten des Menschen: Atmung, Pasteur-Effekt und elektronenmikroskopische Befunde an Mitochondrien, Acta Biol. Med. Ger. 36: 53–64.PubMedGoogle Scholar
  132. Rifkind, R. A., Danon, D., and Marks, P. A., 1964, Alterations in polysomes during erythroid cell maturation, J. Cell Biol. 22: 599–611.PubMedGoogle Scholar
  133. Rivett, A. J., 1989, The multicatalytic proteinase from mammalian cells, Arch. Biochem. Biophys. 268: 1–8.PubMedGoogle Scholar
  134. Rosenthal, S., Künzel, W., and Wagenknecht, C., 1964a, Biochemische Charakterisierung der Ribosomen von Kaninchenretikulozyten und ihre Reifungsänderung, Acta Biol. Med. Ger. 13: 281–290.PubMedGoogle Scholar
  135. Rosenthal, S., Rapoport, S. M., and Heinemann, G., 1964b, Über eine ribosomale RNase aus Kaninchenretikulozyten, Acta Biol. Med. Ger. 13: 946–948.PubMedGoogle Scholar
  136. Rosenthal, S., Prehn, S., and Rapoport, S., 1966, Uridinfreisetzung aus ribosomaler RNS von Kaninchenretikulozyten durch alkalische RNase aus Retikulozytenribosomen und Pankreas, Acta Biol. Med. Ger. 17: 667670.Google Scholar
  137. Rosenthal, S., Gross, J., Grauel, E. L., Papies, B., Schulz, W., Belkner, J., Botscharowa, L., Coutelle, C., Hawemann, M., Nieradt-Hiebsch, C., Müller, M., Opitz, M., Prehn, S., Schultze, M., Staak, R., and Wiesner, R., 1972, Leitkriterien der Retikulozytenreifung, in: 6th Internationales Symposium über Struktur und Funktion der Erythrocyten ( S. Rapoport and F. Jung, eds.), pp. 513–522, Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, Akademie-Verlag, Berlin.Google Scholar
  138. Rost, G., 1959, Eigenschaften und Vorkommen eines Ribonuklease-Hemmstoffes im stromafreien Hämolysat roter Blutkörperchen, Acta Biol. Med. Ger. 3: 276–283.PubMedGoogle Scholar
  139. Rothman, J. E., and Schmidt, S. L., 1986, Enzymatic recycling of clathrin from coated vesicles, Cell 46: 5.PubMedGoogle Scholar
  140. Rouzer, C. A., and Samuelsson, B., 1987, Reversible calcium-dependent membrane association of human leukocyte 5-lipoxygenase, Proc. Natl. Acad. Sci. USA 84: 7393–7397.PubMedGoogle Scholar
  141. Salzmann, U., Kühn, H., Schewe, T., and Rapoport, S. M., 1984, Pentane formation during the anaerobic reaction of reticulocyte lipoxygenase. Comparison with lipoxygenases from soybeans and green pea seeds, Biochim. Biophys. Acta 795: 535–542.PubMedGoogle Scholar
  142. Salzmann, U., Ludwig, P., Schewe, T., and Rapoport, S. M., 1985, The share of lipoxygenase in the antimycin-resistant oxygen uptake of intact reticulocytes, Biomed. Biochim. Acta 44: 211–219.Google Scholar
  143. Salzmann-Reinhardt, U., Kühn, H., Wiesner, R., and Rapoport, S., 1985, Metabolism of polyunsaturated fatty acids by rabbit reticulocytes, Eur. J. Biochem. 153: 189–194.PubMedGoogle Scholar
  144. Samuelsson, B., Dahlén, S. E., Lindgren, J. A., and Rouzer, C. A., 1987, Leukotrienes and lipoxins. Structures, biosynthesis and biological effects, Science 237: 1171–1175.PubMedGoogle Scholar
  145. Schafer, D., and Hultquist, D. E., 1981, Isolation of an acid protease from rabbit reticulocytes and evidence for its role in processing redox proteins during erythroid maturation, Biochem. Biophys. Res. Commun. 100: 1555–1561.PubMedGoogle Scholar
  146. Schekman, R., and Singer, S. J., 1976, Clustering and endocytosis of membrane receptors can be induced in mature erythrocytes of neonatal but not adult humans, Proc. Natl. Acad. Sci. USA 73: 4075–4079.PubMedGoogle Scholar
  147. Schewe, T., Wiesner, R., and Schulz, W., 1972, Mitochondrien aus Kaninchen-retikulozyten. III. Zytochromund Phospholipid-Gehalt, Acta Biol. Med. Ger. 28: 1–6.PubMedGoogle Scholar
  148. Schewe, T., Halangk, W., Hiebsch, C., and Rapoport, S. M., 1975, A lipoxygenase in rabbit reticulocytes which attacks phospholipids and intact mitochondria, FEBS Lett. 60: 149–152.PubMedGoogle Scholar
  149. Schewe, T., Albracht, S. P. J., and Ludwig, P., 1981, On the site of action of the inhibition of the mitochondrial respiratory chain by lipoxygenase, Biochim. Biophys. Acta 636: 210–217.PubMedGoogle Scholar
  150. Schewe, T., Rapoport, S. M., and Kühn, H., 1986, Enzymology and physiology of reticulocyte lipoxygenase: Comparison with other lipoxygenases, Adv. Enzymol. Relat. Areas Mol. Biol. 58: 191–272.PubMedGoogle Scholar
  151. Schewe, T., Kroschwald, P., Kroschwald, A., Ludwig, P., and Kühn, H., 1990, The erythroid arachidonate 15lipoxygenase in rat reticulocytes, Biomed. Biochim. Acta 49: S42 — S46.PubMedGoogle Scholar
  152. Schlegel, R. A., Phelps, B. M., Cofer, G. P., and Williamson, P., 1982, Enucleation eliminates a differentiation-specific marker from normal and leukemic murine cells, Exp. Cell Res. 139: 321–328.PubMedGoogle Scholar
  153. Schmidt, J., Prehn, S., and Rapoport, S. M., 1985, Proteolysis during in vitro-maturation of rabbit reticulocytes, Biomed. Biochim. Acta 44: 1429–1434.PubMedGoogle Scholar
  154. Schulz, W., Neymeyer, H. G., and Rosenthal, S., 1971, Mitochondrien aus Kaninchenretikulozyten. I. Präparation and zeltphysiologische Reinheitskriterien, Acta Biol. Med. Ger. 26: 439–456.PubMedGoogle Scholar
  155. Schweiger, H. G., and Rapoport, S. M., 1958, Der N-Stoffwechsel bei Erythrocytenreifung: Die N-Bilanz unter endogenen Bedingungen, Hoppe-Seyler’s Z. Physiol. Chem. 313: 97–108.PubMedGoogle Scholar
  156. Schweiger, H. G., Rapoport, S. M., and Schölzel, E., 1956, Role of nonprotein nitrogen in the synthesis of haemoglobin in the reticulocyte in vitro, Nature 178: 141–142.PubMedGoogle Scholar
  157. Shibata, D., Steczko, J., Dixon, J. E., Hermodson, M., Yazdanparast, R., and Axelrod, B., 1987, Primary structure of soybean lipoxygenase-1, J. Biol. Chem. 262: 10080–10085.PubMedGoogle Scholar
  158. Shibata, D., Steczko, J., Dixon, J. E., Andrews, P. C., Hermodson, M., and Axelrod, B., 1988, Primary structure of soybean lipoxygenase L-2, J. Biol. Chem. 263: 6816–6821.PubMedGoogle Scholar
  159. Siems, W., Müller, M., Dumdey, R., Holzhütter, H.-G., Rathmann, J., and Rapoport, S. M., 1982, Quantification of pathways of glucose utilization and balance of energy metabolism of rabbit reticulocytes, Eur. J. Biochem. 124: 567–576.PubMedGoogle Scholar
  160. Siems, W., Dubiel, W., Dumdey, R., Müller, M., and Rapoport, S. M., 1984, Accounting for the ATP-consuming processes in rabbit reticulocytes, Eur. J. Biochem. 139: 101–107.PubMedGoogle Scholar
  161. Sigal, E., Craik, C. S., Highland, E., Grunberger, D., Costello, L. L., Dixon, R. A. F., and Nadel, J. A., 1988a, Molecular cloning and primary structure of human 15-lipoxygenase, Biochem. Biophys. Res. Commun. 157: 457–464.PubMedGoogle Scholar
  162. Sigal, E., Grunberger, D., Craik, C. S., Caughey, G. H., and Nadel, J. A., 1988b, Arachidonate 15-lipoxygenase ((o-6 lipoxygenase) from human leukocytes. Purification and structural homology to other mammalian lipoxygenases, J. Biol. Chem. 263: 5328–5332.PubMedGoogle Scholar
  163. Singh, M. K., and Yu, J., 1984, Accumulation of a heat-shock-like protein during differentiation of human erythroid cell line, Nature 309: 631–633.PubMedGoogle Scholar
  164. Smith, D. W., and Weinberg, W. C., 1981, Transfer RNA in reticulocyte maturation, Biochim. Biophys. Acta 655: 195–198.PubMedGoogle Scholar
  165. Speiser, S., and Etlinger, J. D., 1982, Loss of ATP-dependent proteolysis with maturation of reticulocytes and erythrocytes, J. Biol. Chem. 257: 14122–14127.PubMedGoogle Scholar
  166. Speiser, S., and Etlinger, J. D., 1983, ATP stimulates proteolysis in reticulocyte extracts by repressing an endogenous protease inhibitor, Proc. Natl. Acad. Sci. USA 80: 3577–3580.PubMedGoogle Scholar
  167. Tanaka, K., and Ichihara, A., 1988, Involvement of proteasomes (multicatalytic proteinase) in ATP-dependent proteolysis in rat reticulocyte extracts, FEBS Len. 236: 159–162.Google Scholar
  168. Thiele, B. J., Belkner, J., Andree, H., Rapoport, T. A., and Rapoport, S. M., 1979, Synthesis of non-globin proteins in rabbit erythroid cells. Synthesis of a lipoxygenase in reticulocytes, Eur. J. Biochem. 96: 563–569.PubMedGoogle Scholar
  169. Thiele, B. J., Andree, H., Höhne, M., and Rapoport, S. M., 1982, Lipoxygenase mRNA in rabbit reticulocytes. Its isolation, characterization and translational repression, Eur. J. Biochem. 129: 133–141.PubMedGoogle Scholar
  170. Thiele, B. J., Black, E., Fleming, J., Nack, B., Rapoport, S. M., and Harrison, P. R., 1987a, Cloning of reticulocyte lipoxygenase mRNA, Biomed. Biochim. Acta 46: 5120 — S123.Google Scholar
  171. Thiele, B. J., Höhne, M., Nack, B., Harrison, P. R., and Rapoport, S. M., 1987b, Lipoxygenase mRNA during development of red blood cells studied with a cloned probe, Biomed. Biochim. Acta 46: S124–5125.Google Scholar
  172. Thiele, B. J., Fleming, J., Kasturi, K., O’Prey, J., Black, E., Chester, J., Rapoport, S. M., and Harrison, P. R., 1987c, Cloning of a rabbit erythroid cell-specific lipoxygenase mRNA, Gene 57: 111–119.PubMedGoogle Scholar
  173. Thilo, C., Schewe, T., Belkner, J., and Rapoport, S., 1979, In Vitro-Reifung von Kaninchenretikulozyten: Verhalten des Sauerstoffverbrauchs, Acta Biol. Med. Ger. 39: 1431–1440.Google Scholar
  174. Ueda, N., Kaneko, S., Yoshimoto, T., and Yamamoto, S., 1986, Purification of arachidonate 5-lipoxygenase from porcine leukocytes and its reactivity with hydroperoxyeicosatetraenoic acids, J. Biol. Chem. 261: 7982–7988.PubMedGoogle Scholar
  175. Van der Meer, R. A., and Duine, J. A., 1988, Pyrroloquinoline quinone (PQQ) is the organic cofactor in soybean lipoxygenase-1, FEBS Lett. 235: 194–200.Google Scholar
  176. Van Renswoude, J., Bridges, K., Harford, J. B., and Klausner, R. D., 1982, Receptor-mediated endocytosis of transferrin and the uptake of Fe in K562 cells: Identification of a nonlysosomal acidic compartment, Proc. Natl. Acad. Sci. USA 79: 6186–6190.PubMedGoogle Scholar
  177. Villa-Trevino, S., Shull, K. H., and Farber, E., 1963, The role of adenosine triphosphate deficiency in ethionine-induced inhibition of protein synthesis, J. Biol. Chem. 238: 1757–176.PubMedGoogle Scholar
  178. Vladimirov, Y. A., Olenov, V. I., Suslova, T. B., and Cheremisina, Z. P., 1980, Lipid peroxidation in mitochondrial membrane, Adv. Lipid Res. 17: 173–249.PubMedGoogle Scholar
  179. Wathelet, M., Moutschen, S., Defilippi, P., Cravador, A., Collet, M., Huez, G., and Content, J., 1986, Molecular cloning, full-length sequence and preliminary characterization of a 56-kDa protein induced by human interferons, Eur. J. Biochem. 155: 11–17.PubMedGoogle Scholar
  180. Waxman, L., Fagan, J. M., Tanaka, K., and Goldberg, A. L., 1985, A soluble ATP-dependent system for protein degradation from murine erythroleukemia cells: Evidence for a protease which requires ATP hydrolysis but not ubiquitin, J. Biol. Chem. 260: 11994–12000.PubMedGoogle Scholar
  181. Waxman, L., Fagan, J. M., and Goldberg, A. L., 1987, Demonstration of two distinct high-molecular weight proteases in rabbit reticulocytes, one of which degrades ubiquitin conjugates, J. Biol. Chem. 262: 2451 2457.Google Scholar
  182. Wiedmann, M., Kurzchelia, T., Hartmann, E., and Rapoport, T. A., 1987, A signal sequence receptor in the endoplasmic reticulum membrane, Nature 328: 830–833.PubMedGoogle Scholar
  183. Wiesner, R., Rosenthal, S., and Hiebsch, C., 1973, Leitkriterien der Retikulozytenreifung, II. Das Verhalten von Zytochromoxydase und Hemmstoff F der Atmungskette bei der Retikulozytenreifung, Acta Biol. Med. Ger. 30: 631–646.PubMedGoogle Scholar
  184. Wiesner, R., Kasüschke, A., Kühn, H., Anton, M., and Schewe, T., 1989, Oxygenation of mitochondrial membranes by the reticulocyte lipoxygenase. Action on monoamine oxidase activities A and B, Biochim. Biophys. Acta 986: 11–17.PubMedGoogle Scholar
  185. Wiesner, R., Kühn, H., Anton, M., and Schewe, T., 1990, Oxygenation of mitochondrial membranes by the erythroid lipoxygenase. Consequences for membrane properties, Biomed. Biochim. Acta 49: S35 — S38.PubMedGoogle Scholar
  186. Wreschner, D. H., and Rechavi, G., 1988, Differential mRNA stability to reticulocyte ribonucleases correlates with 3’ non coding (U)„A sequences, Eur. J. Biochem. 172: 333–340.PubMedGoogle Scholar
  187. Wreschner, D. H., Silverman, R. H., James, T. C., Gilbert, C. S., and Kerr, I. M., 1982, Affinity labelling and characterization of the ppp(A2’P)„A-dependent endoribonuclease from different mammalian sources, Eur. J. Biochem. 124: 261–268.PubMedGoogle Scholar
  188. Yatziv, S., Kahane, I., Abeliuk, P., Cividally, G., and Rachmilewitz, E. A., 1979, “Lysosomal” enzyme activities in red blood cells of normal individuals and patients with homozygous 13-thalassaemia, Clin. Chim. Acta 96:67–72.Google Scholar
  189. Yenofsky, R. L., Fine, M., and Liu, C., 1988, Isolation and characterization of a soybean (Glycine max) lipoxygenase-3 gene, Mol. Gen. Genet. 211: 215–222.Google Scholar
  190. Zeidler, R. B., and Kim, M. D., 1982, Pig reticulocytes. IV. In vitro maturation of naturally occurring reticulocytes with permeability loss to glucose, J. Cell. Physiol. 112: 360–366.Google Scholar
  191. Zweig, S., Tokuysu, K., and Singer, S., 1981, Membrane-associated changes during erythropoiesis. On the mechanism of maturation of reticulocytes to erythrocytes, J. Supramol. Struct. 17: 163–182.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Samuel M. Rapoport
    • 1
  • Tankred Schewe
    • 1
  • Bernd-Joachim Thiele
    • 1
  1. 1.Institute of BiochemistryHumboldt University of Berlin, School of Medicine (Charité)BerlinGerman Democratic Republic

Personalised recommendations