Advertisement

Macromolecular Synthesis and Degradation during Terminal Erythroid Cell Development

  • Sophia A. Bonanou-Tzedaki
  • Henry R. V. Arnstein
Part of the Blood Cell Biochemistry book series (BLBI, volume 1)

Abstract

In this chapter we have focused on the major changes in nucleic acids and proteins that occur during terminal erythroid cell development and have attempted to illustrate how these macromolecular changes account for the observed cellular changes. Before discussing these changes in any detail, we present a brief description of the main cellular and molecular events in erythropoiesis.

Keywords

Globin Gene Erythroid Cell Erythroid Differentiation Erythroleukemia Cell Porphobilinogen Deaminase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Affara, N., Goldfarb, P. S., Yang, Q.-S., and Harrison, P. R., 1983, Patterns of expression of erythroblast nonglobin mRNAs, Nucleic Acids Res. 11: 931–945.PubMedGoogle Scholar
  2. Affara, N., Fleming, J., Black, E., Goldfarb, P. S., Thiele, B., and Harrison, P. R., 1985, Analysis of chromatin changes associated with the expression of globin and non-globin genes in cell hybrids between erythroid and other cells, Nucleic Acids Res. 13: 5629–5645.PubMedGoogle Scholar
  3. Affolter, M., Cote, J., Renaud, J., and Ruiz-Carrillo, A., 1987, Regulation of histone and beta A-globin gene expression during differentiation of chicken erythroid cells, Mol. Cell. Biol. 7: 3663–3672.PubMedGoogle Scholar
  4. Alonso, W. R., Ferris, R. C., Zhang, D. E., and Nelson, D. A., 1987, Chicken erythrocyte et-globin chromatin: Enhanced solubility is a direct consequence of induced histone hyperacetylation, Nucleic Acids Res. 15: 9325–9337.PubMedGoogle Scholar
  5. Anagnou, N. P., Yuan, T. Y., Lim, E., Helder, J., Wieder, S., Glaister, D., Marks, B., Wang, A., Colbert, D., and Deisseroth, A., 1985, Regulatory factors specific for adult and embryonic globin genes may govern their expression in erythroleukemia cells, Blood 65: 705–712.PubMedGoogle Scholar
  6. Arnstein, H. R. V., 1976, Changes in protein biosynthesis and enzyme activities during erythroid-cell differentiation, Biochem. Soc. Trans. 4: 965–968.PubMedGoogle Scholar
  7. Arnstein, H. R. V., Langstaff, J. M., Ong, G., Threadgill, G. J., and Bonanou-Tzedaki, S. A., 1987, Control of macromolecular synthesis and degradation during terminal erythroid cell development, Biomed. Biochim. Acta 46: 5115 — S119.Google Scholar
  8. Aujame, L., 1988, The major heat-shock protein hsp 68 is not induced by stress in mouse erythroleukemia cell lines, Biochem. Cell Biol. 66: 691–701.PubMedGoogle Scholar
  9. Aviv, H., Volloch, Z., Bastos, R., and Levy, S., 1976, Biosynthesis and stability of globin mRNA in cultured erythroleukemic Friend cells, Cell 8: 495–503.PubMedGoogle Scholar
  10. Balazovich, K. J., Portnow, P., Boxer, L. A., and Prochownik, E. V., 1987, Changes in protein kinase C activity are associated with the differentiation of Friend erythroleukemia cells, Biochim. Biophys. Acta 927: 247–253.PubMedGoogle Scholar
  11. Banerji, S. S., Laing, K., and Morimoto, R. I., 1987, Erythroid lineage-specific expression and inducibility of the major heat shock protein HSP 70 during avian embryogenesis, Genes Dev. 1: 946–953.PubMedGoogle Scholar
  12. Bastos, R. N., and Aviv, H., 1977, Globin mRNA precursor molecules: Biosynthesis and processing in erythroid cells, Cell 11: 641–650.PubMedGoogle Scholar
  13. Bastos, R. N., Volloch, Z., and Aviv, H., 1977, Messenger RNA population analysis during erythroid differentiation: A kinetic approach, J. Mol. Biol. 110: 191–203.PubMedGoogle Scholar
  14. Beaumont, C., Jain, S., Bogard, M., Nordmann, Y., and Drysdale, J., 1987, Ferritin synthesis in differentiating Friend erythroleukemic cells, J. Biol. Chem. 262: 10619–10623.PubMedGoogle Scholar
  15. Bei-Paraskevopoulou, T., Bonanou-Tzedaki, S. A. and Amstein, H. R. V., 1986, The effect of heat shock on differentiating rabbit erythroid cells, Biochem. Soc. Trans. 14: 973–974.Google Scholar
  16. Benegra, R., Cantor, C. R., and Axel, R., 1986, Nucleosomes are phased along the mouse ß-major globin gene in erythroid and non-erythroid cells, Cell 44: 697–704.Google Scholar
  17. Beru, N., and Goldwasser, E., 1985, The regulation of heme biosynthesis during erythropoietin-induced erythroid differentiation, J. Biol. Chem. 260: 9251–9257.PubMedGoogle Scholar
  18. Bessis, M., 1973, The erythrocytic series, in: Living Blood Cells and Their Ultrastructure (M. Bessis, ed.), pp. 85–87, 110–129, Springer, Berlin.Google Scholar
  19. Beutler, E., 1988, The relationship of red cell enzymes to red cell life-span, Blood Cells 14: 69–75.PubMedGoogle Scholar
  20. Billat, C., Felix, J. M., Mayeux, P., and Jacquot, R., 1981, Binding of glucocorticosteroids to hepatic erythropoietic cells of the rat fetus, J. Endocrinol. 80: 307–315.Google Scholar
  21. Bishop, J. M., 1985, Viral oncogenes, Cell 42: 23–38.PubMedGoogle Scholar
  22. Boivin, P., 1988, Role of the phosphorylation of red blood cell membrane proteins, Biochem. J. 256: 689–695.PubMedGoogle Scholar
  23. Bonanou-Tzedaki, S. A., Sohi, M., and Arnstein, H. R. V., 1981, Regulation of erythroid cell differentiation by hemin, Cell Differ. 10: 267–279.PubMedGoogle Scholar
  24. Bonanou-Tzedaki, S. A., Sohi, M. K., and Arnstein, H. R. V., 1984, The effect of hemin on RNA synthesis and stability in differentiating rabbit erythroblasts, Eur. J. Biochem. 144: 589–596.PubMedGoogle Scholar
  25. Bonanou-Tzedaki, S. A., Setchenska, M. S., and Arnstein, H. R. V., 1986, Stimulation of adenylate cyclase activity of rabbit bone marrow immature erythroblasts by erythropoietin and hemin, Eur. J. Biochem. 155: 363–370.PubMedGoogle Scholar
  26. Bonanou-Tzedaki, S. A., Sohi, M. K., and Arnstein, H. R. V., 1987, The role of cAMP and calcium in the stimulation of proliferation of immature erythroblasts by erythropoietin, Exp. Cell Res. 170: 276–289.PubMedGoogle Scholar
  27. Bondurant, M. C., Lind, R. N., Koury, M. K., and Ferguson, M. E., 1985, Control of globin gene transcription by erythropoietin in erythroblasts from Friend virus-infected mice, Mol. Cell. Biol. 5: 675–683.PubMedGoogle Scholar
  28. Borsook, H., Ratner, K., and Tattrie, B., 1969, Studies on erythropoiesis. II: A method of segregating immature from mature adult rabbit erythroblasts, Blood 34: 32–41.PubMedGoogle Scholar
  29. Brawerman, G., 1981, The role of poly (A) sequences in mammalian messenger RNA, Crit. Rev. Biochem. 10: 1–38.Google Scholar
  30. Brawerman, G., 1987, Determinants of messenger RNA stability, Cell 48: 5–6.PubMedGoogle Scholar
  31. Brock, M. L., and Shapiro, D. J., 1983, Estrogen stabilizes vitellogenin mRNA against cytoplasmic degradation, Cell 34: 207–214.Google Scholar
  32. Broudy, V. C., Lin, N., Egrie, J., de Haen, C., Weiss, T., Papayannopoulou, T., and Adamson, J. W., 1988, Identification of the receptor for erythropoietin on human and murine erythroleukemia cells and modulation by phorbol ester and dimethylsulfoxide, Proc. Natl. Acad. Sci. USA 85: 6513–6517.PubMedGoogle Scholar
  33. Brown, D. T., Wellman, S. E., and Sittman, D. B., 1985, Changes in the levels of three different classes of histone mRNA during murine erythroleukemia cell differentiation, Mol. Cell. Biol. 5: 2879–2886.PubMedGoogle Scholar
  34. Brown, D.T., Yang, Y. S., and Sittman, D. B., 1988, Histone gene switching in murine erythroleukemia cells is differentiation specific and occurs without loss of cell cycle regulation, Mol. Cell. Biol. 8: 4406–4415.PubMedGoogle Scholar
  35. Brown, J. E., and Adamson, J. W., 1977, Modulation of in vitro erythropoiesis. The influence of ß-adrenergic agonists on erythroid colony formation, J. Clin. Invest. 60: 70–77.PubMedGoogle Scholar
  36. Burka, E. R., 1968, Hemin: An inhibitor of erythroid cell ribonuclease, Science 162:1287.Google Scholar
  37. Casey, J. L., Hentze, M. W., Koeller, D. M., Caughman, S. W., Rouault, T. A., Klausner, R. D., andGoogle Scholar
  38. Hardford, J. B., 1988, Iron-responsive elements: Regulatory RNA sequences that control mRNA levels and translation, Science 240: 924–928.Google Scholar
  39. Chang, C. S., and Sassa, S., 1988, Induction of delta levulinic acid dehydratase in mouse Friend virus transformed erythroleukemia cells during erythroid differentiation, Blood 64: 64–70.Google Scholar
  40. Charnay, P., and Maniatis, T., 1983, Transcriptional regulation of globin gene expression in the human erythroid cell line K562, Science 220: 1281–1283.PubMedGoogle Scholar
  41. Chretien, S. A., Dubart, A., Beaupain, D., Raich, N., Grandchamp, B., Rosa, J., Goossens, M., and Romeo, P., 1988, Alternative transcription and splicing of the human porphobilinogen deaminase gene result either in tissue-specific or in housekeeping expression, Proc. Natl. Acad. Sci. USA 85: 6–10.PubMedGoogle Scholar
  42. Clissold, P. M., Arnstein, H. R. V., and Chesterton, C. J., 1977, Quantitation of globin mRNA levels during erythroid development in the rabbit and discovery of a new 3-related species in immature erythroblasts, Cell 11: 353–361.PubMedGoogle Scholar
  43. Coll, J., Saula, S., Martin, P., Raes, M. B., Lagrou, C., Graf, T., Beug, H., Simon, I. E., and Stehelin, D., 1983, The cellular oncogenes c-myc, c-myb and c-erb are transcribed in defined types of avian hematopoietic cells, Exp. Cell Res. 149: 151–162.PubMedGoogle Scholar
  44. Conkie, D., Kleiman, L., Harrison, P. R., and Paul, J., 1975, Increase in the accumulation of globin mRNA in immature erythroblasts in response to erythropoietin in vivo and in vitro, Exp. Cell Res. 93: 315–324.PubMedGoogle Scholar
  45. Conscience, J. F., and Meier, W., 1980, Coordinate expression of erythroid marker enzymes during dimethylsulfoxide-induced differentiation of Friend erythroleukemia cells, Exp. Cell Res. 125: 111–119.PubMedGoogle Scholar
  46. Curtis, P. J., Mantei, N., and Weissmann, C., 1977, Characterization and kinetics of synthesis of 15S 0-globin RNA, a putative precursor of I3-globin mRNA, Cold Spring Harbor Symp. Quant. Biol. 42: 971–984.Google Scholar
  47. D’Andrea, A. D., Lodish, H. F., and Wong, G. G., 1989, Expression cloning of the murine erythropoietin receptor, Cell 57: 277–285.PubMedGoogle Scholar
  48. Daniels, R. S., McKay, M. J., Atkinson, E. M., and Hipkiss, A. R., 1983, Subcellular distribution of abnormal proteins in rabbit reticulocytes, FEBS Lett. 156: 145–150.PubMedGoogle Scholar
  49. Darnell, J. E., Jr., 1982, Variety in the level of gene control in eukaryotic cells, Nature 297: 365–371.PubMedGoogle Scholar
  50. Denton, M. J., and Arnstein, H. R. V., 1973, Characterization of developing adult mammalian erythroid cells separated by velocity sedimentation, Br. J. Haematol. 24: 7–17.PubMedGoogle Scholar
  51. Denton, M. J., Spencer, N., and Arnstein, H. R. V., 1975, Biochemical and enzymic changes during erythrocyte differentiation—the significance of the final cell division, Biochem. J. 146: 205–211.PubMedGoogle Scholar
  52. Dexter, M. T., 1987, Growth factors involved in haemopoiesis, J. Cell Sci. 88: 1–6.PubMedGoogle Scholar
  53. Dons, R. F., Corash, L. M., and Gorden, P., 1981, The insulin receptor is an age-dependent integral component of the human erythrocyte membrane, J. Biol. Chem. 256: 2982–2987.PubMedGoogle Scholar
  54. Earp, H. S., Rubin, R. A., Austin, K. S., and Dy, R. C., 1983, DMSO increases tyrosine residue phosphorylation in membranes from murine erythroleukemia cells, Biochem. Biophys. Res. Commun. 112: 413–418.PubMedGoogle Scholar
  55. Emilia, G., Donelli, A., Ferrari, S., Torelli, U., Selleri, L., Zucchini, P., Moretti, L., Venturei, D., Cercherelli, G., and Torelli, G., 1986, Cellular levels of mRNA for c-myc, c-myb and c-fes oncogenes in normal myeloid and erythroid precursors of human bone marrow: An in situ hybridization study, Br. J. Haematol. 62: 287–292.PubMedGoogle Scholar
  56. Evans, T., Reitman, M., and Felsenfeld, G., 1988, An erythrocyte-specific DNA-binding factor recognizes a regulatory sequence common to all chicken globin genes, Proc. Natl. Acad. Sci. USA 85: 5976–5980.PubMedGoogle Scholar
  57. Fadigan, A., and Dailey, H. A., 1987, Inhibition of ferrochelatase during differentiation of murine erythroleukaemia cells, Biochem. J. 243: 419–424.PubMedGoogle Scholar
  58. Fibach, E., Gambari, R., Shaw, P., Maniatis, G., Reuben, R. C., Sassa, S., Rifkind, R. A., and Marks, P. A., 1979, Tumor promoter-mediated inhibition of cell differentiation: Suppression of the expression of erythroid functions in murine erythroleukemia cells, Proc. Natl. Acad. Sci. USA 76: 1906–1910.PubMedGoogle Scholar
  59. Fibach, E., Konijn, A. M., Rauminger, R. E., Ofer, S., and Rachmilewitz, E. A., 1987, Effect of extracellular hemin on hemoglobin and ferritin content of erythroleukemia cells, J. Cell. Physiol. 130: 460–465.PubMedGoogle Scholar
  60. Frazer, J. K., Lin, F. K., and Berridge, M., 1988, Expression of high affinity receptors for erythropoietin on human bone marrow cells and on the human erythroleukemic cell line HEL, Exp. Hematol. 16: 836–842.Google Scholar
  61. Friend, C., Scher, W., Holland, J. G., and Sato, T., 1971, Hemoglobin synthesis in murine virus-induced leukemic cells in vitro: Stimulation of erythroid differentiation by dimethyl sulfoxide, Proc. Natl. Acad. Sci. USA 68: 378–382.PubMedGoogle Scholar
  62. Fucci, L., Vitale, E., Cirotto, C., and Gerasi, G., 1987, Evidence that hemoglobin switch in the chick embryo depends on erythroid cell line substitution, Cell Differ. 20: 55–63.PubMedGoogle Scholar
  63. Fukamachi, H., Saito, T., Tojo, A., Kitamura, T., Urabe, A., and Takaku, F., 1987, Binding of erythropoietin to CFU-E derived from fetal mouse liver cells, Exp. Hematol. 15: 833–837.PubMedGoogle Scholar
  64. Galbraith, R. A., Sassa, S., and Kappas, A., 1985, Herne binding to murine erythroleukemic cells, J. Biol. Chem. 260: 12198–12202.PubMedGoogle Scholar
  65. Galson, D. L., and Housman, D. E., 1988, Detection of two tissue-specific DNA-binding proteins with affinity for sites in the mouse 3-globin intervening sequence 2, Mol. Cell. Biol. 8: 381–392.PubMedGoogle Scholar
  66. Ganguly, S., and Skoultchi, A. I., 1985, Absolute rates of globin gene transcription and mRNA formation during differentiation of cultured mouse erythroleukemic cells, J. Biol. Chem. 260: 12167–12173.PubMedGoogle Scholar
  67. Geiduschek, J. B., and Singer, S. J., 1979, Molecular changes in the membranes of mouse erythroid cells accompanying differentiation, Cell 16: 149–163.PubMedGoogle Scholar
  68. Ghosal, J., Chakraborty, M., Biswas, T., Ganguly, C. K., and Datta, A. G., 1987, Effect of erythropoietin on the glucose transport of rat erythrocytes and bone marrow cells, Biochem. Med. Metab. Biol. 38: 134–141.PubMedGoogle Scholar
  69. Gidari, A. S., 1981, Mechanism of glucocorticoid-mediated inhibition of murine erythroid colony formation in vitro, J. Cell. Physiol. 109: 419–427.PubMedGoogle Scholar
  70. Glass, J., Lavidor, L. M., and Robinson, S. H., 1975, Studies on murine erythroid cell development: Synthesis of heme and hemoglobin, J. Cell Biol. 65: 298–308.PubMedGoogle Scholar
  71. Golde, D. W., Bersch, N., and Li, C. H., 1977, Growth hormone: Species-specific stimulation of erythropoiesis in vitro, Science 196: 1112–1113.PubMedGoogle Scholar
  72. Goodman, J. W., Hall, E. A., Miller, K. L., and Shinpock, S. G., 1985, Interleukin 3 promotes erythroid burst formation in “serum free” cultures without detectable erythropoietin, Proc. Natl. Acad. Sci. USA 82: 3291–3295.PubMedGoogle Scholar
  73. Graf, T., and Beug, H., 1983, Role of v-erbA and v-erbB oncogenes of avian erythroblastosis virus in erythroid cell transformation, Cell 34: 7–9.PubMedGoogle Scholar
  74. Grandchamp, B., Beaumont, C., de Vemeuil, H., and Nordmann, Y., 1985, Accumulation of porphobilinogen deaminase, uroporphyrinogen decarboxylase and a-and 3-globin mRNAs during differentiation of mouse erythroleukemic cells, J. Biol. Chem. 260: 9630–9635.PubMedGoogle Scholar
  75. Granick, J. L., and Sassa, S., 1978, Hemin control of heme biosynthesis in mouse Friend virus-transformed erythroleukemia cells in culture, J. Biol. Chem. 253: 5402–5406.PubMedGoogle Scholar
  76. Granick, S., and Levere, M. D., 1965, The intracellular localization of heme by a fluorescence technique J. Cell Biol. 26 :167–176.Google Scholar
  77. Gregory, C. J., 1976, Erythropoietin sensitivity as a differentiation marker in the haemopoietic system: Studies of three erythropoietic colony responses in culture, J. Cell. Physiol. 89: 289–302.PubMedGoogle Scholar
  78. Gross, D. S., and Garrard, W. T., 1987, Poising chromatin for transcription, Trends Biochem. Sci. 12: 293297.Google Scholar
  79. Gross, M., and Goldwasser, E., 1969, On the mechanism of erythropoietin-induced differentiation. V: Characterization of the ribonucleic acid formed as a result of erythropoietin action, Biochemistry 8: 1795–1805.PubMedGoogle Scholar
  80. Gross, M., and Goldwasser, E., 1970, On the mechanism of erythropoietin-induced differentiation. VII: The relationship between stimulated DNA and RNA synthesis, J. Biol. Chem. 245: 1632–1636.PubMedGoogle Scholar
  81. Groudine, M., Peretz, M., Nakamoto, B., Papayannopoulou, T., and Stamatoyanopoulos, G., 1986, The modulation of HbF synthesis in adult erythroid progenitor (burst-forming unit) cultures reflects changes in-y-globin gene transcription and chromatin structure, Proc. Natl. Acad. Sci. USA 83: 6887–6890.PubMedGoogle Scholar
  82. Haas, A. L., and Rose, I. A., 1981, Hemin inhibits ATP-dependent ubiquitin-dependent proteolysis: Role of hemin in regulating ubiquitin conjugate degradation, Proc. Natl. Acad. Sci. USA 78: 6845–6848.PubMedGoogle Scholar
  83. Hammond, K. D., Wollbrandt, R. K., and Gilbert, D. A., 1985, Acid phosphatase and phosphoaminoacid phosphatases in murine erythroleukemic cells, Int. J. Biochem. 17: 259–264.PubMedGoogle Scholar
  84. Hanash, S. M., and Rucknagel, D. L., 1978, Proteolytic activity in erythrocyte precursors Proc. Natl. Acad. Sci. USA 75 :3427–3431.Google Scholar
  85. Harel, L., Blat, C., Lacour, F., and Friend, C., 1981, Altered RNA/protein ratio associated with the induction of differentiation of Friend erythroleukemia cells, Proc. Natl. Acad. Sci. USA 78: 3882–3886.PubMedGoogle Scholar
  86. Harrison, F. L., Beswick, T. M., and Chesterton, C. J., 1981, Separation of haemopoietic cells for biochemical investigation Biochem. J. 194 :789–791.Google Scholar
  87. Harrison, P. R., 1984, Molecular analysis of erythropoiesis Exp. Cell. Res. 155 :321–344.Google Scholar
  88. Hentzen, D., Renucci, A., le Guellec, D., Benchaibi, M., Jurdic, P., Gandrillon, O., and Samarut, J., 1987, The chicken c-erbA proto-oncogene is preferentially expressed in erythrocytic cells during late stages of differentiation, Mol. Cell. Biol. 7: 2416–2424.PubMedGoogle Scholar
  89. Hinssen, H., Vandekerckhove, J., and Lazarides, E., 1987, Gelsolin is expressed in early erythroid progenitor cells and negatively regulated during erythropoiesis, J. Cell Biol. 105: 1425–1434.PubMedGoogle Scholar
  90. Huez, G., Bruck, C., and Cleuter, Y., 1981, Translational stability of native and deadenylated rabbit globin mRNA injected into HeLa cells, Proc. Natl. Acad. Sci. USA 78: 908–911.PubMedGoogle Scholar
  91. Hulea, S. A., Denton, M. J., and Arnstein, H. R. V., 1975, Ribonuclease activity during erythroid cell maturation, FEBS Lett. 51: 346–350.PubMedGoogle Scholar
  92. Hunt, T., 1976, Control of globin synthesis, Br. Med. Bull. 32: 257–261.PubMedGoogle Scholar
  93. Hunt, T., Hunter, T., and Munro, A., 1969, Control of hemoglobin synthesis: Rate of translation of the messenger RNA for the a and 13 chains, J. Mol. Biol. 43: 123–133.PubMedGoogle Scholar
  94. Ibraham, N. G., Lutton, J. D., and Levere, R. D., 1982, The role of heme biosynthetic and degradative enzymes in erythroid colony development: The effect of hemin, Br. J. Haematol. 50: 17–28.Google Scholar
  95. Ibraham, N. G., Friedland, M. L., and Levere, R. D., 1983, Heme metabolism in erythroid and hepatic cells, Prog. Hematol. 13: 75–130.PubMedGoogle Scholar
  96. Kabnick, K. S., and Housman, D. E., 1988, Determinants that contribute to cytoplasmic stability of human c- fos and 3-globin mRNAs are located at several sites in each mRNA, Mol. Cell Biol. 8: 3244–3250.PubMedGoogle Scholar
  97. Kaneda, T., Murate, T., Sheffery, M., Brown, K., Rifkind, R. A., and Marks, P. A., 1985, Gene expression during terminal differentiation: Dexamethasone suppression of inducer-mediated al and 1:mai-globin gene expression, Proc. Natl. Acad. Sci. USA 82: 5020–5024.PubMedGoogle Scholar
  98. Karlsson, S., and Nienhuis, A. W., 1985, Developmental regulation of human globin genes, Annu. Rev. Biochem. 54: 1071–1108.PubMedGoogle Scholar
  99. Kasturi, K., and Harrison, P., 1985, The cell specificity and biosynthesis of mouse glycophorins studied with monoclonal antibodies, Exp. Cell Res. 157: 253–264.PubMedGoogle Scholar
  100. Kazazian, H. A., Snyder, P., and Cheng, T., 1974, Separation of a-and I3-globin messenger RNAs by formamide gel electrophoresis, Biochem. Biophys. Res. Commun. 59: 1053–1060.PubMedGoogle Scholar
  101. Keppel, F., Allet, B., and Eisen, H., 1977, Appearance of a chromatin protein during the erythroid differentiation of Friend virus-transformed cells, Proc. Natl. Acad. Sci. USA 74: 653–656.PubMedGoogle Scholar
  102. Khochbin, S., Principand, E., Chabanas, A., and Lawrence, J. J., 1988, Early events in murine erythroleukemia cells induced to differentiate: Accumulation and gene expression of the transformation-associated cellular protein p53, J. Mol. Biol. 200: 55–64.PubMedGoogle Scholar
  103. Kim, C. G., Barnhart, K. M., and Sheffery, M., 1988, Purification of multiple erythroid cell proteins that bind the promoter of the a-globin gene, Mol. Cell. Biol. 8: 4270–4281.PubMedGoogle Scholar
  104. Kirsch, I. R., Bertness, V., Silver, J., and Hollis, G. F., 1986, Regulated expression of c-myb and c-myc oncogenes during erythroid differentiation, J. Cell Biochem. 32: 11–21.PubMedGoogle Scholar
  105. Kleiman, L., Peters, S., Woodward-Jack, J., and Myers, J., 1980, Alterations in the metabolism of transfer RNA during erythroid differentiation of the Friend erythroleukemia cells, Exp. Cell Res. 129: 415–424.PubMedGoogle Scholar
  106. Konialis, C. P., Barlow, J. H., and Butterworth, P. H. W., 1985, Cloned cDNA for rabbit erythrocyte carbonic anhydrase I: A novel erythrocyte-specific probe to study development in erythroid tissues, Proc. Natl. Acad. Sci. USA 82: 663–667.PubMedGoogle Scholar
  107. Koury, M. J., Sawyer, S. T., and Bondurant, M. C., 1984, Splenic erythroblasts in anemia-inducing Friend disease: A source of cells for studies of erythropoietin-mediated differentiation, J. Cell. Physiol. 121: 526532.Google Scholar
  108. Koury, M. J., Bondurant, M. C. and Mueller, T. J., 1986, The role of erythropoietin in the production of principal erythrocyte proteins other than hemoglobin during terminal erythroid differentiation, J. Cell. Physiol. 126: 259–265.PubMedGoogle Scholar
  109. Koury, M. J., Bondurant, M. C., and Atkinson, J. B., 1987, Erythropoietin control of terminal erythroid differentiation: Maintenance of cell viability, production of hemoglobin and development of the erythrocyte membrane, Blood Cells 13: 217–223.PubMedGoogle Scholar
  110. Krowczynska, A., Yenofsky, R., and Brawerman, G., 1985, Regulation of messenger RNA stability in mouse erythroleukemia cells, J. Mol. Biol. 181: 231–239.PubMedGoogle Scholar
  111. Kunzio, G. S., and Goldstein, L., 1981, Small nuclear RNAs in cellular growth and differentiation. I: Metabolic alterations seen in Friend erythroleukemic cells, J. Cell. Physiol. 109: 234–241.Google Scholar
  112. Kurtz, A., Jelkmann, W., and Bauer, C., 1983, Insulin stimulates erythroid colony formation independently of erythropoietin, Br. J. Haematol. 53: 311–316.PubMedGoogle Scholar
  113. Lachman, H. M., and Skoultchi, A. I., 1984, Expression of c-myc changes during differentiation of mouse erythroleukemia cells, Nature 310: 592–594.PubMedGoogle Scholar
  114. Langstaff, J. M., and Arnstein, H. R. V., 1985, Messenger RNA turnover during bone marrow erythroid cell differentiation, Biochim. Biophys. Acta 825: 316–325.PubMedGoogle Scholar
  115. Lawrence, W. D., Davis, P. J., and Blas, S. D., 1987, Action of erythropoietin in vitro on rabbit reticulocyte membrane Cat+-ATPase activity, J. Clin. Invest. 80: 586–589.PubMedGoogle Scholar
  116. Lazarides, E., 1987, From genes to structural morphogenesis: The genesis and epigenesis of a red blood cell, Cell 51: 345–356.PubMedGoogle Scholar
  117. Lehnert, M. E., and Lodish, H. F., 1988, Unequal synthesis and differential degradation of a and ß spectrin during murine erythroid differentiation, J. Cell Biol. 107: 413–420.PubMedGoogle Scholar
  118. Linch, D. C., and Nathan, D. G., 1984, T cell and monocyte-derived burst-promoting activity directly act on erythroid progenitor cells, Nature 312: 775–776.PubMedGoogle Scholar
  119. Lo, S. C., Aft, R., Ross, J., and Mueller, G. C., 1978, Control of globin gene expression by steroid hormones in differentiating Friend leukemia cells, Cell 15: 447–453.PubMedGoogle Scholar
  120. Lodish, H. F., 1976, Translational control of protein synthesis, Annu. Rev. Biochem. 45:39–72. Lowenhaupt, K., and Lingrel, J. B., 1978, A change in the stability of globin mRNA during the induction of murine erythroleukemia cells, Cell 14: 337–344.Google Scholar
  121. Lowenhaupt, K., and Lingrel, J. B., 1979, Synthesis and turnover of globin mRNA in murine erythroleukemia cells induced with hemin, Proc. Natl. Acad. Sci. USA 76: 5173–5177.PubMedGoogle Scholar
  122. McCaffery, P., Frazer, J. K., Liu, F.-K., and Berridge, M. V., 1987, Erythropoietin receptor identification and modulation of expression on erythroid precursor cells, Exp. Hematol. (Suppl.) 15: 436 (abstract).Google Scholar
  123. McKay, M. J., Daniels, R. S., and Hipkiss, A. R., 1980, Breakdown of aberrant proteins in rabbit reticulocytes decreases with cell age, Biochem. J. 188: 279–283.PubMedGoogle Scholar
  124. Maniatis, G. M., Rifkind, R. A., Bank, A., and Marks, P. A., 1973, Early stimulation of RNA synthesis by erythropoietin in cultures of erythroid precursor cells, Proc. Natl. Acad. Sci. USA 70: 3189–3194.PubMedGoogle Scholar
  125. Mantovani, R., Malgaretti, N., Nicolis, S., Giglioni, B., Comi, P., Cappellini, N., Bertero, M. T., CalligarisCappio, F., and Ottolenghi, S., 1988, An erythroid specific nuclear factor binding to the proximal CACCC box of the r3-globin gene promoter, Nucleic Acids Res. 16: 4299–4313.PubMedGoogle Scholar
  126. Marbaix, G., Huez, G., Burny, A., Cluter, Y., Hubert, E., Leclercq, M., Chantrenne, H., Soreq, H., Nudel, U., and Littauer, U. Z., 1975, Absence of polyadenylate segment in globin messenger RNA accelerates its degradation in Xenopus oocytes, Proc. Natl. Acad. Sci. USA 72: 3065–3067.PubMedGoogle Scholar
  127. Marchesi, V. T., 1985, Stabilizing infrastructures of membranes, Annu. Rev. Cell Biol. 1: 531–561.PubMedGoogle Scholar
  128. Marks, P. A., and Rifkind R. A., 1978, Erythroleukemic differentiation, Annu. Rev. Biochem. 47: 419–448.PubMedGoogle Scholar
  129. Martin, P., and Papayannopoulou, T., 1982, HEL cells: A new human erythroleukemia cell line with spontaneous and induced globin expression, Science 216:1233–1235.Google Scholar
  130. Mason, M., Narindrasorasak, S., and Sanwal, B. D., 1985, Regulation of cyclic 3’,5’AMP phosphodiesterase in Friend erythroleukemia cells, J. Cycl. Nucl. Prot. Phosph. Res. 10: 129–142.Google Scholar
  131. Mayeux, P., Billat, C., Felix, J. M., and Jacquot, R., 1986a, Mode of action of erythropoietin and glucocorticoids on the hepatic erythroid precursor cells: Role of prostaglandins, Cell Differ. 18:17–26.Google Scholar
  132. Mayeux, P., Felix, J. M., Billat, C., and Jacquot, R., 1986b, Induction by hemin of proliferation and differentiation of progenitor erythroid cells responsible for erythropoietin, Exp. Hematol. 14: 801–808.PubMedGoogle Scholar
  133. Mayeux, P., Billat, C., and Jacquot, R., 1987, The erythropoietin receptor of rat erythroid progenitor cells. Characterization and affinity cross-linkage, J. Biol. Chem. 262: 13985–13990.PubMedGoogle Scholar
  134. Mechti, N., Piechaczyk, M., Blanchard, J. M., Marty, L., Bonnieu, A., Jeanteur, P., and Lebleu, B., 1986, Transcriptional and post-transcriptional regulation of c-myc expression during the differentiation of murine erythroleukemia Friend cells, Nucleic Acids Res. 14: 9653–9666.PubMedGoogle Scholar
  135. Mezl, V. A., Kawasaki, E. S., and Hunt, J. A., 1979, Analysis of the ratio of a-to fl-globin and globin messenger RNA content of fractionated rabbit erythroid bone-marrow cells, Biochem. J. 179: 525535.Google Scholar
  136. Ngai, J., Stack, J. H., Moon, R. T., and Lazarides, E., 1987, Regulated expression of multiple chicken erythroid membrane skeletal protein 4.1 variants is governed by differential RNA processing and translational control, Proc. Natl. Acad. Sci. USA 84: 4432–4436.PubMedGoogle Scholar
  137. Nijhof, W., and Wierenga, P. K., 1983, Isolation and characterization of the erythroid progenitor cell: CFU-e, J. Cell Biol. 96: 386–392.PubMedGoogle Scholar
  138. Nijhof, W., Wierenga, P. K., Sahr, K., Beru, N., and Goldwasser, E., 1987, Induction of globin mRNA transcription by erythropoietin in differentiating erythroid precursor cells, Exp. Hematol. 15: 779–784.PubMedGoogle Scholar
  139. Nudel, U., Salmon, J., Fibach, E., Terada, M., Rifkind, R., Marks, P. A., and Bank, A., 1977, Accumulation of a-and r3-globin messenger RNAs in mouse erythroleukemia cells, Cell 12: 463–469.PubMedGoogle Scholar
  140. Ochoa, S., and De Haro, C., 1979, Regulation of protein synthesis in eukaryotes, Annu. Rev. Biochem. 48: 549–580.PubMedGoogle Scholar
  141. Ong, G. C., 1987, Enzyme synthesis and mRNA changes during erythroid differentiation, Ph.D. thesis, University of London.Google Scholar
  142. Orkin, S. T., Swan, D., and Leder, P., 1975, Differential expression of a-and 13-globin genes during differentiation of cultured erythroleukemic cells, J. Biol. Chem. 250: 8753–8760.PubMedGoogle Scholar
  143. Paul, J., 1976, Haemoglobin synthesis and cell differentiation, Br. Med. Bull. 32: 277–281.PubMedGoogle Scholar
  144. Peterson, J. L., and McConkey, E. H., 1976, Proteins of Friend leukemia cells—Comparison of hemoglobin synthesizing and non-induced populations, J. Biol. Chem. 251: 555–558.PubMedGoogle Scholar
  145. Pfeffer, S. R., Huima, T., and Redman, C. M., 1986, Biosynthesis of spectrin and its assembly into the cytoskeletal system of Friend erythroleukemia cells, J. Cell Biol. 103: 103–113.PubMedGoogle Scholar
  146. Pickart, C. M., and Vella, A. T., 1988, Levels of active ubiquitin carrier proteins decline during erythroid maturation, J. Biol. Chem. 263: 12028–12034.PubMedGoogle Scholar
  147. Ponka, P., Schulman, H. M., and Martinez-Medellin, I., 1988, Haem inhibits iron uptake subsequent to endocytosis of transferrin in reticulocytes, Biochem. J. 251: 105–109.PubMedGoogle Scholar
  148. Popovic, W. J., Brown, J. E., and Adamson, J. W., 1977, The influence of thyroid hormones on in vitro erythropoiesis, J. Clin. Invest. 60: 907–913.PubMedGoogle Scholar
  149. Porter, P. N., Meints, R. H., and Mesner, K., 1979, Enhancement of erythroid colony growth in culture by hemin, Exp. Hematol. 7: 11–16.PubMedGoogle Scholar
  150. Profous-Juchelka, H. L., Reuben, R. C., Marks, P. A., and Rifkind, R. A., 1983, Transcriptional and posttranscriptional regulation of globin gene accumulation in murine erythroleukemia cells, Mol. Cell. Biol. 3: 229–232.PubMedGoogle Scholar
  151. Ramsay, R. G., Ikada, K., Rifkind, R. A., and Marks, P. A., 1986, Changes in gene expression associated with induced differentiation of erythroleukemia: Proto-oncogenes, globin genes and cell division, Proc. Natl. Acad. Sci. USA 83: 6849–6853.PubMedGoogle Scholar
  152. Rao, K., Harford, J. B., Rouault, T., McClelland, A., Ruddle, F. H., and Klausner, R. D., 1985, Transcriptional regulation by iron of the gene for the transferrin receptor, Mol. Cell. Biol. 6: 236–240.Google Scholar
  153. Rapoport, S. M., and Schewe, T., 1986, The maturational breakdown of mitochondria in reticulocytes, Biochim. Biophys. Acta 864: 471–495.PubMedGoogle Scholar
  154. Reuben, R., Rifkind, R., and Marks, P. A., 1980, Chemically induced murine erythroleukemic differentiation, Biochim. Biophys. Acta 605: 325–346.PubMedGoogle Scholar
  155. Richardson, J. M., Morla, A. O., and Wang, J. Y. J., 1987, Reduction in protein tyrosine phosphorylation during differentiation of human leukemia cell line K-562, Cancer Res. 47: 4066–4070.PubMedGoogle Scholar
  156. Riddle, R. D., Yamamoto, M., and Engel, J. D., 1989, Expression of 8-aminolevulinate synthase in avian cells: Separate genes encode erythroid-specific and nonspecific isozymes, Proc. Natl. Acad. Sci. USA 86: 79 2796.Google Scholar
  157. Ross, J., 1988, Messenger RNA turnover in eukaryotic cells, Mol. Biol. Med. 5: 1–14.PubMedGoogle Scholar
  158. Ross, J., and Pizarro, A., 1983, Human beta and delta globin messenger RNAs turn over at different rates, J. Mol. Biol. 167: 607–617.PubMedGoogle Scholar
  159. Ross, J., and Sautner, D., 1976, Induction of globin mRNA accumulation by hemin in cultured erythroleukemic cells, Cell 8: 513–520.PubMedGoogle Scholar
  160. Ross, J., and Sullivan, T. D., 1985, Half lives of beta and gamma globin messenger RNAs and of protein synthetic capacity in cultured human reticulocytes, Blood 66: 1149–1154.PubMedGoogle Scholar
  161. Rovera, G., Abramczuk, J., and Surrey, S., 1977, The effect of hemin on the expression of 3-globin genes in Friend cells, FEBS Leu. 81: 366–370.Google Scholar
  162. Russanov, E. M., Kirkova, M. D., Setchenska, M. S., and Arnstein, H. R. V., 1981, Enzymes of oxygen metabolism during erythrocyte differentiation, Biosci. Rep. 1: 927–931.PubMedGoogle Scholar
  163. Rutherford, T. R., Clegg, J. B., and Weatherall, D. J., 1979a, K562 human leukemic cells synthesize embryonic hemoglobin in response to hemin, Nature 280:164–165.Google Scholar
  164. Rutherford, T., Thompson, C. G., and Moore, M. R., 1979b, Heme biosynthesis in Friend erythroleukemia cells: Control by ferrochelatase, Proc. Natl. Acad. Sci. USA 76: 833–836.PubMedGoogle Scholar
  165. Sap, J., Munoz, A., Damm, K., Goldberg, Y., Ghysdael, J., Leutz, A., Beug, H., and Vennstrom, B., 1986, The c-erb-A protein is a high-affinity receptor for thyroid hormone, Nature 324: 635–640.PubMedGoogle Scholar
  166. Sassa, S., 1976, Sequential induction of heme pathway enzymes during erythroid differentiation in mouse Friend leukemia virus-infected cells, J. Exp. Med. 143: 305–315.PubMedGoogle Scholar
  167. Sawada, K., Krantz, S. B., Kans, J. S., Dessypris, E. N., Sawyer, S., Glick, A. D., and Civin, C. I., 1987, Purification of human erythroid colony-forming units and demonstration of specific binding of erythropoietin, J. Clin. Invest. 80: 357–366.PubMedGoogle Scholar
  168. Sawyer, S. T., and Krantz, S. B., 1986, Transferrin receptor number, synthesis and endocytosis during erythropoietin-induced maturation of Friend virus-infected erythroid cells, J. Biol. Chem. 261: 9187–9195.PubMedGoogle Scholar
  169. Sawyer, S., Krantz, S. B., and Goldwasser, E., 1987, Binding and receptor-mediated endocytosis of erythropoietin in Friend virus-infected erythroid cells, J. Biol. Chem. 262: 5554–5562.PubMedGoogle Scholar
  170. Schwartz, D. A., and Rubin, C. S., 1985, Identification and differential expression of 2 forms of regulatory subunits R-II of cyclic AMP-dependent protein kinase II in Friend erythroleukemic cells differentiation, J. Biol. Chem. 260: 6296–6303.PubMedGoogle Scholar
  171. Setchenska, M. S., and Amstein, H. R. V., 1978, Changes in lactate dehydrogenase isoenzyme pattern during differentiation of rabbit bone-marrow erythroid cells, Biochem. J. 170: 193–201.PubMedGoogle Scholar
  172. Setchenska, M. S., and Amstein, H. R. V., 1979, Changes in malate dehydrogenase isoenzymes during differentiation of rabbit bone marrow erythroid cells, Int. J. Biochem. 10: 817–821.PubMedGoogle Scholar
  173. Setchenska, M. S., and Amstein, H. R. V., 1983a, Characteristics of the ß-adrenergic adenylate cyclase system of developing rabbit bone marrow erythroblasts, Biochem. J. 210: 559–566.PubMedGoogle Scholar
  174. Setchenska, M. S., and Arnstein, H. R. V., 1983b, Characteristics of the adenylate cyclase system of differentiating rabbit bone marrow erythroblasts, Biomed. Biochim. Acta 42: 1111–1122.PubMedGoogle Scholar
  175. Setchenska, M. S., Vassileva-Popova, J. G., and Arnstein, H. R. V., 1980, Plasma membrane-associated protein kinase activity of differentiating rabbit bone marrow erythroid cells, Int. J. Biochem. 11: 393–399.PubMedGoogle Scholar
  176. Setchenska, M. S., Amstein, H. R. V., and Vassileva-Popova, J. G., 1981, Cyclic AMP phosphodiesterase activity during differentiation of rabbit erythroid bone marrow cells, Biochem. J. 196: 887–892.PubMedGoogle Scholar
  177. Setchenska, M. S., Bonanou-Tzedaki, S. A., and Arnstein, H. R. V., 1988, Changes in protein kinase activities and protein phosphorylation during rabbit erythroid cell development, 14th ICB Prague, MO: 263, p. 124 (abstract).Google Scholar
  178. Shaul, Y., Ginzburg, I., and Aviv, H., 1982, Preferential transcription and nuclear transport of globin gene sequences, as control steps leading to final differentiation of murine erythroleukemic cells, Eur. J. Biochem. 128: 637–642.PubMedGoogle Scholar
  179. Shaw, G., and Kamen, R., 1986, A conserved AU sequence from the 3’ untranslated region of GM-CSF mRNA mediates selective mRNA degradation, Cell 46: 659–667.PubMedGoogle Scholar
  180. Sherton, C., and Kabat, D., 1976, Changes in RNA and protein metabolism preceding onset of hemoglobin synthesis in cultured Friend leukemia cells, Del,. Biol. 48: 118–131.Google Scholar
  181. Sieff, C. A., Emerson, S. G., Donahue, R. E., Nathan, D. G., Wang, E. A., Wong, G. G., and Clark, S. C., 1985, Human recombinant granulocyte—macrophage colony-stimulating factor: A multilineage hematopoietin, Science 230: 1171–1173.PubMedGoogle Scholar
  182. Singh, M. K., and Yu, J., 1984, Accumulation of a heat shock-like protein during differentiation of human erythroid cell line K562, Nature 309: 631–633.PubMedGoogle Scholar
  183. Sittman, D. B., Graves, R. A., and Marzluff, W. F., 1983, Histone mRNA concentrations are regulated at the level of transcription and mRNA degradation, Proc. Natl. Acad. Sci. USA 80: 1849–1853.PubMedGoogle Scholar
  184. Smith, B. J., Walker, J. M., and Johns, E. W., 1980, Structural homology between a mammalian H10 subfraction and avian erythrocyte-specific histone H5, FEBS Lett. 112: 42–44.PubMedGoogle Scholar
  185. Spencer, N., and Peller, S., 1976, Carbonic anhydrase isoenzymes I and II in rabbit erythroid cells, Biochem. Soc. Trans. 4: 1153–1155.PubMedGoogle Scholar
  186. Spivak, J. L., 1986, The mechanism of action of erythropoietin, Int. J. Cell Cloning 4: 139–166.PubMedGoogle Scholar
  187. Stewart, A. G., Clissold, P. M., and Arnstein, H. R. V., 1976, The initiation of globin synthesis in differentiating rabbit bone marrow erythroid cells, Eur. J. Biochem. 65: 349–355.PubMedGoogle Scholar
  188. Stohlman, F., Jr., 1970, Kinetics of erythropoiesis, in: Regulation of Hematopoiesis, Volume I ( A. S. Gordon, ed.), pp. 317–326, Educational Division, Meredith Corporation, New York.Google Scholar
  189. Sytkowsky, A. J., and Kessler, C. J., 1984, The 3-adrenergic receptor adenylate cyclase complex of Rauscher murine erythroleukemia cells and its response to erythropoietin-induced differentiation, Blood 64: 84–90.Google Scholar
  190. Terada, M., Epner, E., Nudel, U., Salmon, J., Fibach, E., Rifkind, R. A., and Marks, P. A., 1978, Induction of murine erythroleukemia differentiation by actinomycin D, Proc. Natl. Acad. Sci. USA 75: 2795–2799.PubMedGoogle Scholar
  191. Thiele, B., Andree, H., Hohne, M., and Rapoport, S. M., 1982, Lipoxygenase mRNA in rabbit reticulocytes. Its isolation, characterization and translational repression, Eur. J. Biochem. 129: 133–141.PubMedGoogle Scholar
  192. Thomopoulos, P., Testa, U., Flamier, A., and Berthelier, M., 1980, Insulin receptors and protein synthesis in bone marrow cells and reticulocytes, Diabetes 29: 820–824.PubMedGoogle Scholar
  193. Threadgill, G. J., and Amstein, H. R. V., 1984, The nonhistone proteins of developing mammalian erythroid cells, Cell Differ, 14: 7–17.PubMedGoogle Scholar
  194. Threadgill, G. J., and Arnstein, H. R. V., 1985, Changes in histone acetylation during the development of rabbit bone marrow erythroid cells, Biochim. Biophys. Acta 847: 228–234.PubMedGoogle Scholar
  195. Todokoro, K., and Ikawa, Y., 1986, Sequential expression of proto-oncogenes during a mouse erythroleukemia cell differentiation, Biochem. Biophys. Res. Commun. 135: 1112–1118.PubMedGoogle Scholar
  196. Trainor, C. D., Stamler, S. J., and Engel, J. D., 1987, Erythroid-specific transcription of the chicken histone H5 gene is directed by a 3’ enhancer, Nature 328: 827–830.PubMedGoogle Scholar
  197. Tsai, S. F., Martin, D. I. K., Zou, L. I., D’Andrea, A. D., Wong, G. G., and Orkin, S. H., 1989, Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells, Nature 339: 446–451.PubMedGoogle Scholar
  198. Umemura, T., Umene, K., Nishibura, J., Fukumaki, Y., Sakaki, Y., and Ibayashi, H., 1986, Expression of cmyc oncogene during differentiation of human-burst-forming unit, erythroid (BFU-e), Biochem. Biophys. Res. Commun. 135: 521–526.PubMedGoogle Scholar
  199. Urabe, A., Sassa, S., and Kappas, A., 1979, The influence of steroid hormone metabolites on the in vitro development of erythroid colonies from human bone marrow, J. Exp. Med. 149: 1314–1320.PubMedGoogle Scholar
  200. Volloch, V., and Housman, D., 1981, Stability of globin mRNA in terminally differentiating murine erythroleuemia cells, Cell 23: 509–514.PubMedGoogle Scholar
  201. Volloch, V., Schweitzer, B., and Ritz, S., 1987, Messenger RNA changes during differentiation of murine erythroleukemia cells, Exp. Cell Res. 173: 38–48.PubMedGoogle Scholar
  202. Wall, L., de Boer, E., and Grosveld, F., 1988, The human I3-globin gene 3’ enhancer contains multiple binding sites for an erythroid-specific protein, Gene Dev. 2: 1089–1100.PubMedGoogle Scholar
  203. Watson, R. J., 1988, Expression of the c-myb and c-myc genes is regulated independently in differentiating mouse erythroleukemia cells by common processes of premature transcription arrest and increased mRNA tumover, Mol. Cell Biol. 8: 3938–3942.PubMedGoogle Scholar
  204. Waxman, L., Fagan, J. M., Tanaka, K., and Goldberg, A. L., 1985, A soluble ATP-dependent system for protein degradation from murine erythroleukaemia cells, J. Biol. Chem. 260: 11994–12000.PubMedGoogle Scholar
  205. Weatherall, D. J., and Clegg, J. B., 1981, The Thalassemia Syndrome, 3rd ed., Blackwell, Oxford.Google Scholar
  206. Weintraub, H., 1984, Histone HI-dependent chromatin superstructures and the suppression of gene activity, Cell 38: 17–27.PubMedGoogle Scholar
  207. Wingrove, T. G., Watt, R., Keng, P., and Macara, I. G., 1988, Stabilization of myc proto-oncogene proteins during Friend murine erythroleukemia cell differentiation, J. Biol. Chem. 263: 8918–8924.PubMedGoogle Scholar
  208. Winning, R. W., and Browder, L. W., 1988, Changes in heat shock protein synthesis and hsp70 gene transcription during erythropoiesis of Xenopus laevis, Dev. Biol. 128: 111–120.PubMedGoogle Scholar
  209. Wolfe, A. P., Glover, J. F., Martin, S. C., Tenniswood, M. P. R., Williams, J. L., and Tata, J. R., 1985, Deinduction of transcription of Xenopus 74-kDa albumin genes and destabilization of mRNA by estrogen in vitro and in hepatocyte cultures, Eur. J. Biochem. 171: 457–461.Google Scholar
  210. Woods, C. M., and Lazarides, E., 1985, Degradation of unassembled a-and 3-spectrin by distinct intracellular pathways: Regulation of spectrin topogenesis by a-spectrin degradation, Cell 40: 959–969.PubMedGoogle Scholar
  211. Woods, C. M., Boyer, B., Vogt, P. K., and Lazarides, E., 1986, Control of erythroid cell differentiation: Asynchronous expression of the anion transporter and the peripheral components of the membrane skeleton in AEV- and S13-transformed cells, J. Cell Biol. 103: 1789–1798.PubMedGoogle Scholar
  212. Yoshida, T., Biro, P., Cohen, T., Müller, R. M., and Shibahara, S., 1988, Human heme oxygenase cDNA and induction of its mRNA by hemin, Eur. J. Biochem. 171: 457–461.PubMedGoogle Scholar
  213. Yu, J., and Smith, R. C., 1985, Sequential alterations in globin gene chromatin structure during erythroleukemia cell differentiation, J. Biol. Chem. 260: 3035–3040.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Sophia A. Bonanou-Tzedaki
    • 1
  • Henry R. V. Arnstein
    • 1
  1. 1.Division of Biomolecular Sciences, Department of BiochemistryKing’s College LondonLondonEngland

Personalised recommendations