Advertisement

Iron-Mediated Oxidative Stress and Erythrocytes

  • Catherine Rice-Evans
Part of the Blood Cell Biochemistry book series (BLBI, volume 1)

Abstract

Iron in its labile, chelatable form has been implicated in the generation of radical species such as the hydroxyl radical, ferryl species [an Fe(IV)-oxygen complex], perferryl (Fe2+ −O2 ↔ Fe3+ −O 2 ∙), and Fe2+ /Fe3+ /O2 complexes (for reviews see Halliwell and Gutteridge, 1986; Czapski and Goldstein, 1986; Aust and White, 1986; Aust and Minotti, 1987; Gutteridge and Halliwell, 1989) and in the propagation of oxidative events.

Keywords

Lipid Peroxidation Sickle Cell Iron Overload Lipid Hydroperoxide Iron Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aisen, P., 1977, Some physicochemical aspects of iron metabolism, CIBA Found. Symp. 51: 1–17.Google Scholar
  2. Ames, B. N., Cathcart, R., Schwiers, E., and Hochstein, P., 1981, Uric acid provides an antioxidant defence in humans against oxidant-and radical-caused aging and cancer: A hypothesis, Proc. Natl. Acad. Sci. USA 78: 6858–6862.PubMedCrossRefGoogle Scholar
  3. Arden, G. B., Wonke, B., Kennedy, C., and Huehns, E. R., 1984, Ocular changes in patients undergoing longterm desferrioxamine treatment, Br. J. Ophthalmol. 68: 873–877.PubMedCrossRefGoogle Scholar
  4. Aruoma, O., Halliwell, B., Laughton, M. J., Quinlan, G. J., and Gutteridge, J. M. C., 1989, The mechanism of initiation of lipid peroxidation. Evidence against a requirement for iron(II)—iron(III) complex, Biochem. J. 258: 617–620.PubMedGoogle Scholar
  5. Asakura, T., Minakata, K., Adachi, K., Russell, M. O., and Schwartz, E., 1977, Denatured haemoglobin in sickle erythrocytes, J. Clin. Invest. 59: 633–640.PubMedCrossRefGoogle Scholar
  6. Aust, S. D., and White, B. C., 1986, The role of iron in lipid peroxidation, in: Free Radicals, Cell Damage and Disease ( C. Rice-Evans, ed.), pp. 15–27, Richelieu Press, London.Google Scholar
  7. Aust, S. D. and Minotti, G., 1987, The role of iron in the inhibition of lipid peroxidation, Chem. and Physics of Lipids 44: 141–207.Google Scholar
  8. Bauminger, E. R., Cohen, S. G., Offer, S., Racmilewitz, E. A., 1979, Quantitative studies of ferritin-like iron in erythrocytes of thalassaemia, sickle cell anemia and haemoglobin Hammersmith by Mossbauer spectroscopy, Proc. Natl. Acad. Sci. USA 76: 939–943.PubMedCrossRefGoogle Scholar
  9. Blake, D. R., Winyard, P., and Lunec, J., 1985, Cerebral and ocular toxicity induced by desferrioxamine, Q. J. Med. 219: 345–355.Google Scholar
  10. Brunori, M., Wyman, J., Antonini, E., and Rossi-Fanelli, A., 1965, Studies on the oxidation—reduction potentials of haem proteins, J. Biol. Chem. 240: 3317–3324.PubMedGoogle Scholar
  11. Brunori, M., Falcioni, G., Fioreti, E., Giardina, B., and Rotilio, G., 1975, Formation of superoxide in the autoxidation of isolated a and ß chains of human haemoglobin and its involvement in haemichrome precipitation, Eur. J. Biochem. 53: 99–104.CrossRefGoogle Scholar
  12. Bunn, F., and Jandl, J., 1966, Exchange of haem among haemoglobin molecules, Proc. Natl. Acad. Sci. USA 56: 974–978.PubMedCrossRefGoogle Scholar
  13. Butler, J., Hoey, B. M., Lea, J. S., 1988, The measurement of radicals by pulse radiolysis, in: Free Radicals, Methodology and Concepts ( C. Rice-Evans, and B. Halliwell, eds.), pp. 457–479, Richelieu Press, London.Google Scholar
  14. Bessis, M., 1983, Red cell shapes, in Red Cell Shape ( M. Bessis, R. I. Weed, P. F. Leblond, eds.), Springer, New York.Google Scholar
  15. Chidambaram, M. V., Barnes, G., and Frieden, E., 1983, Caeruloplasmin and the reactions forming diferric transferrin, FEBS Lett. 159: 137–140.PubMedCrossRefGoogle Scholar
  16. Chiu, D., and Lubin, B., 1979, Abnormal vitamin E and glutathione peroxidase levels in sickle cell anaemia: Evidence for increased susceptibility to lipid peroxidation in vivo, J. Lab. Clin. Med. 94: 542–548.PubMedGoogle Scholar
  17. Chiu, D., Lubin, B., and Shohet, S., 1982, Peroxidative reactions in red cell biology, in: Free Radicals in Biology ( W. A. Pryor, ed.), Volume V, pp. 115–160, Academic Press, New York.Google Scholar
  18. Chung, J., and Wood, J. L., 1971, Oxidation of thiocyanate to cyanide catalysed by haemoglobin, J. Biol. Chem. 246: 555–560.PubMedGoogle Scholar
  19. Clark, M. R., Mohandas, N., and Shohet, S. B., 1980, The deformability of oxygenated irreversibly sickled cells, J. Clin. Invest. 65: 185–196.CrossRefGoogle Scholar
  20. Cohen, G., and Hochstein, P., 1963, Glutathione peroxidase, the primary agent for the elimination of hydrogen peroxide in erythrocytes, Biochemistry 2: 1420–1428.PubMedCrossRefGoogle Scholar
  21. Czapski, G., and Goldstein, S., 1986, When do metal complexes protect biological systems from superoxide toxicity and when do they enhance it? Free Radical Res. Commun. 1: 157–161.CrossRefGoogle Scholar
  22. Darley-Usmar, V. M., Hersey, A., and Garland, L. G., 1989, A method for the comparative assessment of antioxidants as peroxyl radical scavengers, Biochem. Pharmacol. 38: 1465–1467.PubMedCrossRefGoogle Scholar
  23. Das, S. K., and Nair, R. C., 1980, Superoxide dismutase, glutathione peroxidase, catalase and lipid peroxidation of normal and sickled erythrocytes, Br. J. Haematol. 44: 87–92.PubMedCrossRefGoogle Scholar
  24. Davies, K. J. A., and Goldberg, A. L., 1987, Oxygen radicals stimulate intracellular proteolysis and lipid peroxidation by independent mechanisms in erythrocytes, J. Biol. Chem. 262: 8220–8226.PubMedGoogle Scholar
  25. Davies, K. J. A., Sevanian, A., Mukkassah-Kelly, S. F., and Hochstein, P., 1986, Uric acid—iron ion complexes, Biochem. J. 235: 747–754.PubMedGoogle Scholar
  26. Davies, M. J., and Slater, T. F., 1987, Studies on the metal ion and lipoxygenase-catalysed breakdown of hydroepoxides using electron spin resonance spectroscopy, Biochem J. 245: 167–173.PubMedGoogle Scholar
  27. Davies, M. J., Donkor, R. E., Dunster, A., Gee, C. A., Jonas, S., and Willson, R. L., 1987, Desferrioxamine and superoxide free radicals: Formation of an enzyme-damaging nitroxide, Biochem. J. 246: 725–729.PubMedGoogle Scholar
  28. Davies, S. C., Marcus, R. E., Hungerford, J. L., Miller, M. H., Arden, G. B., and Huehns, E. R., 1983, Ocular toxicity of high dose intravenous desferrioxamine, Lancet 2: 181–184.PubMedCrossRefGoogle Scholar
  29. Diplock, A. T., 1983, The role of vitamin E in biological membranes, CIBA Found. Symp. 101: 45–53.Google Scholar
  30. Doly, M., Bonhomme, B., and Vennat, J. C., 1986, Experimental study of the retinal toxicity of haemoglobin iron, Ophthalmic Res. 18: 21–27.PubMedCrossRefGoogle Scholar
  31. Eaton, J. W., Skelton, T. O., Swofford, H. S., Kaplin, C. E., and Jacobs, H. S., 1974, Elevated calcium in sickle cell disease, Nature 246: 105–106.CrossRefGoogle Scholar
  32. Esterbauer, H., 1985, Lipid peroxidation products: Formation, chemical properties and biological activities, in: Free Radicals in Liver Injury ( G. Poli, K. Cheeseman, M. U. Dianzani, and T. F. Slater, eds.), pp. 29–47, IRL Press, Oxford, England.Google Scholar
  33. Eylar, E. H., and Matioli, G., 1965, Apoferritin synthesis in human erythroid cells in thalassaemia, Nature 208: 661–664.CrossRefGoogle Scholar
  34. Fischer, S., Nagel, R. L., Bookchin, R. M., Roth, E. F., and Tellez-Nagel, I., 1975, The binding of haemoglobin to membranes of normal and sickle erythrocytes, Biochim. Biophys. Acta 375: 422–433.PubMedCrossRefGoogle Scholar
  35. Fortier, N. L., Snyder, L. M., Ganver, F., Kiefer, C., McKenney, J., and Mohandas, N., 1988, The relationship between in vivo generated haemoglobin skeletal protein complex and increased cell and membrane rigidity, Blood 71: 1427–1431.PubMedGoogle Scholar
  36. George, P., and Irvine, D. H., 1952, The interaction between metmyoglobin and hydrogen peroxide, Biochem. J. 52: 511–515.PubMedGoogle Scholar
  37. Girotti, A. W., 1985, Mechanism of lipid peroxidation, J. Free Radical Biol. Med. 1: 87–95.CrossRefGoogle Scholar
  38. Goldberg, B., Stern, A., and Peisach, J., 1976, The mechanism of superoxide generation by the interaction of phenylhydrazine with haemoglobin, J. Biol. Chem. 251: 3045–3051.PubMedGoogle Scholar
  39. Griffiths, H., Unsworth, J., Blake, D. R., and Lunec, J., 1988, Oxidation of amino acids within serum proteins, in: Free Radicals, Chemistry, Pathology and Medicine (C. Rice-Evans and T. Dormandy, eds.), pp. 439454, Richelieu Press, London.Google Scholar
  40. Guerini, A., London, G., Marchais, S., Metivier, F., and Relisse, J. M., 1985, Acute deafness and desferrioxamine, Lancet 2: 39–40.CrossRefGoogle Scholar
  41. Gutteridge, J. M. C., 1986, Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides, FEBS Lett. 201: 291–295.PubMedCrossRefGoogle Scholar
  42. Gutteridge, J. M. C., 1987, The antioxidant activity of haptoglobin towards haemoglobin-stimulated lipid peroxidation, Biochim. Biophys. Acta 917: 219–223.PubMedCrossRefGoogle Scholar
  43. Gutteridge, J. M. C., and Halliwell, B., 1989, Iron toxicity and oxygen radicals, Bailliere’s Clin. Haematol. 2: 195–256.PubMedCrossRefGoogle Scholar
  44. Halliwell, B., and Gutteridge, J. M. C., 1984, Oxygen toxicity, oxygen radicals, transition metals and disease, Biochem. J. 219: 1–14.PubMedGoogle Scholar
  45. Halliwell, B., and Gutteridge, J. M. C., 1986, Oxygen free radicals and iron in relation to biology and medicine. Some problems and concepts, Arch. Biochem. Biophys. 246: 501–514.PubMedCrossRefGoogle Scholar
  46. Hartley, A., and Rice-Evans, C., 1989a, Membrane-associated iron species and membrane oxidation in sickle cell disease, Biochem. Soc. Trans. 17: 116–118.Google Scholar
  47. Hartley, A., and Rice-Evans, C., 1989b, The nature of membrane-bound iron species involved in radical-mediated damage to sickle erythrocytes, Biochem. Soc. Trans. 17: 488–489.Google Scholar
  48. Hartley, A., Davies, M. J., and Rice-Evans, C., 1990, Desferrioxamine as a lipid chain-breaking antioxidant in sickle erythrocyte membranes, FEBS Lett (in press).Google Scholar
  49. Hebbel, R. P., Yamada, O., Moldow, C. F., Jacob, H. S., White, J. G., and Eaton, J. W., 1980, Abnormal adherence of sickle erythrocytes to cultured vascular endothelium. Possible mechanisms for microvascular occlusion in sickle cell disease, J. Clin. Invest. 65: 154–158.PubMedCrossRefGoogle Scholar
  50. Hebbel, R. P., Eaton, J. W., Balasingham, M., Steinberg, M. H., 1982, Spontaneous oxygen radical generation by sickle erythrocytes, J. Clin. Invest. 70: 1253–1259.PubMedCrossRefGoogle Scholar
  51. Hershko, C., Graham, G., Bates, G. W., and Rachmilewitz, E. A., 1978, Nonspecific serum iron in thalassaemia: An abnormal serum iron fraction of potential toxicity, Br. J. Haematol. 49: 255–263.CrossRefGoogle Scholar
  52. Hochstein, P., Jain, S. K., and Rice-Evans, C., 1981, The physiological significance of oxidative perturbations in erythrocyte membrane lipids and proteins, in: The Red Cell ( G. Brewer, ed.), pp. 449–459, Liss, New York.Google Scholar
  53. Jackson, M. E., Brenton, D. P., and Modell, B., 1983, DTPA in management of iron overload in thalassaemia, J. Inher. Metab. Dis. 6: 97–98.CrossRefGoogle Scholar
  54. Jacobs, A., 1977, Low molecular weight intracellular iron transport compounds, Blood 50: 433–439.PubMedGoogle Scholar
  55. Kahane, I., and Rachmilewitz, E. A., 1976, Alteration of the red blood cell membrane and the effect of vitamin E on osmotic fragility in thalassaemia major, Jar. J. Med. Sci. 12: 11–15.Google Scholar
  56. Kappus, H., 1985, Lipid peroxidation: Mechanisms, analysis, enzymology and biological relevance, in: Oxidative Stress ( H. Sies, ed.), pp. 273–310, Academic Press, New York.Google Scholar
  57. Keberle, H., 1964, The biochemistry of desferrioxamine and its relation to iron metabolism, Ann. N.Y. Acad. Sci. 119: 758–768.PubMedCrossRefGoogle Scholar
  58. Kim, H. C., Friedman, S., Asakura, T., and Schwartz, E., 1980, Inclusions in red blood cells containing HbS or HbC, Br. J. Haematol. 44: 547–554.PubMedCrossRefGoogle Scholar
  59. Kuross, S. A., and Hebbel, R. P., 1988, Nonhaem iron in sickle erythrocyte membranes: Association with phospholipids and potential role in lipid peroxidation, Blood 72: 1278–1285.PubMedGoogle Scholar
  60. Kuross, S. A., Rank, B. H., and Hebbel, R. P., 1988, Excess haem in sickle erythrocyte inside-out membranes: Possible role in thiol oxidation, Blood 71: 876–882.PubMedGoogle Scholar
  61. Labeque, R., and Mainett, L., 1988, Reaction of haematin with allylic fatty acid hydroepoxides, Biochemistry 27: 7060–7070.PubMedCrossRefGoogle Scholar
  62. Lessin, L. S., Kuranstin-Mills, J., Wallas, C., and Weems, H., 1978, Membrane alterations in irreversibly sickled cells: Haemoglobin—membrane interactions, J. Supramol. Struct. 9: 537–543.PubMedCrossRefGoogle Scholar
  63. Levine, R. L., Oliver, C. N., Fulks, R. M., and Stadtman, E. R., 1981, Turnover of bacterial glutamate synthetase: Oxidative inactivation precedes proteolysis, Proc. Natl. Acad. Sci. USA 78: 2120–2124.PubMedCrossRefGoogle Scholar
  64. Liu, S. C., Zhai, S., and Palek, J., 1988, Detection of haemin release during haemoglobin S denaturation, Blood 71: 1755–1758.PubMedGoogle Scholar
  65. Lubin, B., Chiu, D., Bastacky, J., Roelofsen, B., and Van Deenen, L. L. M., 1981, Abnormalities in the membrane phospholipid organisation in sickled erythrocytes, J. Clin. Invest. 67: 1643–1649.PubMedCrossRefGoogle Scholar
  66. Lux, S. E., John, K. M., and Karnovsky, M. J., 1976, Irreversible deformation of the spectrin—actin lattice in irreversibly sickled cells, J. Clin. Invest. 58: 955–963.PubMedCrossRefGoogle Scholar
  67. McCord, J. M., and Fridovich, I., 1969, Superoxide dismutase an enzymic function for erythrocuprein (haemocuprein), J. Biol. Chem. 244: 6049–6055.PubMedGoogle Scholar
  68. Marklund, S. L., 1984, Extracellular superoxide dismutase and other superoxide dismutase isoenzymes in tissues from nine mammalian species, Biochem. J. 222: 649–655.PubMedGoogle Scholar
  69. Minotti, G., and Aust, S. D., 1987a, Role of iron in the initiation of lipid peroxidation, Chem. Phys. Lipids 44: 191–208.PubMedCrossRefGoogle Scholar
  70. Minotti, G., and Aust, S. D., 1987b, The requirement for iron (IV) in the initiation of lipid peroxidation by iron (II) and hydrogen peroxide, J. Biol. Chem. 262: 1098–1104.PubMedGoogle Scholar
  71. Misra, H. P., and Fridovich, I., 1972, The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase, J. Biol. Chem. 247: 3170–3175.PubMedGoogle Scholar
  72. Modell, B., and Berdoukas, V., 1984, The Clinical Approach to Thalassaemia, Grune and Stratton, New York.Google Scholar
  73. Morehouse, K. M., Flitter, W. D., and Mason, R. P., 1987, The enzymatic oxidation of desferal to a nitroxide radical, FEBS Lett. 222: 246–250.PubMedCrossRefGoogle Scholar
  74. Moser, U., 1987, Uptake of ascorbic acid by leukocytes, Ann. N.Y. Acad. Sci. 498: 200–215.PubMedCrossRefGoogle Scholar
  75. O’Brien, P. J., 1969, Intracellular mechanisms for the decomposition of a lipid hydroperoxide, Can. J. Biochem. 47: 485–492.PubMedCrossRefGoogle Scholar
  76. Osaki, S., Johnson, D. A., and Frieden, E., 1966, Possible significance of the ferrous oxidase activity of caeruloplasmin in normal human serum, J. Biol. Chem. 241: 2746–2751.PubMedGoogle Scholar
  77. Palek, J., 1977, Red cell membrane injury in sickle cell anaemia, Br. J. Haematol. 35: 1–9.PubMedCrossRefGoogle Scholar
  78. Panter, S. S., Sadrzadeh, S. M., Hallaway, P. E., Haines, J. L., Anderson, V. E., and Eaton, J. W., 1985, Hypohaptoglobinaemia associated with familial epilepsy, J. Exp. Med. 161: 748–754.PubMedCrossRefGoogle Scholar
  79. Pearson, H. A., and O’Brien, R. T., 1975, The management of thalassaemia major, Semin. Haematol. 12: 255–265.Google Scholar
  80. Peisach, J., Blumberg, W. E., Wittenberg, B. A., and Wittenberg, J. B., 1968, The electronic structure of protohaem proteins. III. The configuration of the haem and its ligands, J. Biol. Chem. 243: 1871–1880.PubMedGoogle Scholar
  81. Peisach, J., Blumberg, W. E., and Rachmilewitz, E. A., 1975, The demonstration of ferrihaemochrome intermediates in Heinz body formation following the oxidation of oxyhaemoglobin by acetylphenylhydrazinc, Biochem. Biophys. Acta 393: 404–418.PubMedCrossRefGoogle Scholar
  82. Perutz, M., 1989, Myoglobin and haemoglobin: Role of distal residues in reactions with haem ligands, Trends Biochem. Sci. 14: 42–44.PubMedCrossRefGoogle Scholar
  83. Petersen, R. I., Symons, M. C. R., and Taiwo, F. A., 1989, Application of irradiation and ESR spectroscopy to the study of ferryl haemoglobin and myoglobin, J. Chem. Soc. Faraday Trans. 85: 2435–2443.CrossRefGoogle Scholar
  84. Platt, O. S., Falcone, J. F., and Lux, S. E., 1985, Molecular defect in the sickle erythrocyte cytoskeleton. Abnormal spectrin binding to sickle inside-out vesicles, J. Clin. Invest. 75: 266–271.PubMedCrossRefGoogle Scholar
  85. Poli, G., Ramenghi, U., David, O., Biasi, F., Cecchini, G., Carini, R., Chiarpotto, E., and Dianzani, M. U., 1986, Lipid peroxidation in red blood cells obtained from thalassaemic subjects and exposed to oxidative stress, in: Free Radicals, Cell Damage and Disease ( C. Rice-Evans, ed.), pp. 449–459, Richelieu Press, London.Google Scholar
  86. Polliack, A., and Rachmilewitz, E. A., 1973, Ultrastructural studies in thalassaemia major, Br. J. Haematol. 24: 319–326.PubMedCrossRefGoogle Scholar
  87. Polliack, A., Yataganas, X., Thorell, B., and Rachmilewitz, E. A., 1974, An electron microscopic study of the nuclear abnormalities in erythroblasts in beta-thalassaemia major, Br. J. Haematol. 26: 201–204.PubMedCrossRefGoogle Scholar
  88. Puppo, A., and Halliwell, B., 1988, Formation of hydroxyl radicals from hydrogen peroxide in the presence of iron: Is haemoglobin a biological Fenton reagent? Biochem. J. 249: 185–190.PubMedGoogle Scholar
  89. Rachmilewitz, E. A., 1985, Erythrocyte membrane alterations in beta-thalassaemia, Clin. Haematol. 14: 163–182.PubMedGoogle Scholar
  90. Rachmilewitz, E. A., Peisach, J., and Blumberg, W. E., 1971, Studies on the stability of oxyhaemoglobin A and its constituent chains and their derivatives, J. Biol. Chem. 246: 3356–3366.PubMedGoogle Scholar
  91. Rachmilewitz, E. A., Lubin, B. H., and Shohet, S. B., 1976, Lipid membrane peroxidation in betathalassaemia major, Blood 47: 495–505.PubMedGoogle Scholar
  92. Rank, B. H., Carlsson, J., and Hebbel, R. P., 1985, Abnormal redox status of membrane: Protein thiols in sickle erythrocytes, J. Clin. Invest. 75: 1531–1537.PubMedCrossRefGoogle Scholar
  93. Rice-Evans, C., 1987, Oxidative modifications in erythrocytes induced by iron, in: Free Radicals, Oxidant Stress and Drug Action ( C. Rice-Evans, ed.), pp. 307–330, Richelieu Press, London.Google Scholar
  94. Rice-Evans, C., 1989, Iron chelators and the suppression of oxidative damage in erythrocytes: Extracellular and intracellular responses, in: Free Radicals, Metal Ions and Biopolymers ( P. Beaumont, D. Deeble, B. Parsons, and C. Rice-Evans, eds.), pp. 283–301, Richelieu Press, London.Google Scholar
  95. Rice-Evans, C., 1990, Decompartmentalised, microbleeding and membrane oxidation, in: Free Radicals, Lipoproteins and Membrane Lipids (A. Crastes de Paulet, L. Douste Blazy, and R. Paoletti, eds.), in press.Google Scholar
  96. Rice-Evans, C., and Baysal, E., 1987a, Role of membrane-bound haemoglobin products in oxidative damage in sickle cell membranes, Acta Haematol. 78: 105–108.PubMedCrossRefGoogle Scholar
  97. Rice-Evans, C., and Baysal, E., 1987b, Iron-mediated oxidative stress in erythrocytes, Biochem. J. 244: 19 1196.Google Scholar
  98. Rice-Evans, C., and Chapman, D., 1981, Red blood cell biomembrane structure and deformability, Scand. J. Clin. Lab. Invest. 156: 99–110.CrossRefGoogle Scholar
  99. Rice-Evans, C., and Dunn, M. J., 1982, Erythrocyte deformability and disease, Trends Biochem. Sci. 7: 282–286.CrossRefGoogle Scholar
  100. Rice-Evans, C., and Hartley, A., 1989, Free radicals erythrocyte disorders and iron decompartmentalisation, in: Medical, Biochemical and Chemical Aspects of Free Radicals ( O. Hayaishi, E. Niki, M. Kondo, and T. Yoshikawa, eds.), Elsevier, Amsterdam, pp. 1185–1194.Google Scholar
  101. Rice-Evans, C., and Omorphos, S., 1983, Hydrazine and sickle cells, Biochem. Soc. Trans. 11: 180–181.Google Scholar
  102. Rice-Evans, C., and Omorphos, S. C., 1986, Free radical-induced membrane damage in sickle erythrocytes, in: Approaches to the Therapy of Sickle Cell Anaemia ( Y. Beuzard, S. Charache, and F. Galacteros, eds.), pp. 329–336, INSERM, Paris.Google Scholar
  103. Rice-Evans, C., Bruckdorfer, K. R., and Dootson, G., 1978, Studies on the altered membrane characteristics of sickle cells, FEBS Lett. 94: 81–86.PubMedCrossRefGoogle Scholar
  104. Rice-Evans, C., Johnson, A., and Flynn, D. M., 1980, Red cell membrane abnormalities in beta-thalassaemia major, FEBS Lett. 119: 53–57.PubMedCrossRefGoogle Scholar
  105. Rice-Evans, C., Omorphos, S., and White, J. M., 1982, The effects of hydrazine on sickle cells, Biochim. Biophys. Acta 691: 367–371.PubMedCrossRefGoogle Scholar
  106. Rice-Evans, C., Baysal, E., Flynn, D., and Kontoghiorghes, G., 1986a, Iron-mediated free radical effects on erythrocytes: The role of desferrioxamine, Biochem. Soc. Trans. 14: 368–369.Google Scholar
  107. Rice-Evans, C., Baysal, E., Flynn, D., and Kontoghiorghes, G., 1986b, The effects of desferrioxamine and ascorbate on haemoglobin from thalassaemic erythrocytes, in: Superoxide and Superoxide Dismutase in Chemistry, Pathology and Medicine ( G. Rotilio, ed.), pp. 662–666, Elsevier, Amsterdam.Google Scholar
  108. Rice-Evans, C., Omorphos, S. C., and Baysal, E., 1986c, Sickle cell membranes and oxidative damage, Biochem. J. 237: 265–269.PubMedGoogle Scholar
  109. Rice-Evans, C., Omorphos, S. C., and Baysal, E., 1986d, Sickle cell pathology: Is the membrane important? in: Free Radicals, Cell Damage and Disease (C. Rice-Evans, ed.), pp. 149–166Google Scholar
  110. Richelieu Press, London. Rice-Evans, C., Okunade, G., and Khan, R., 1989, The suppression of iron release from activated myoglobin by physiological electron donors and by desferrioxamine, Free Radical Res. Commun. 7: 45–54.Google Scholar
  111. Risdon, R. A., Barry, M., and Flynn, D., 1975, Transfusional iron overload: Hepatic fibrosis in thalassaemia, J. Pathol. 116: 83–95.CrossRefGoogle Scholar
  112. Romeo, M. A., DiGregorio, F., and Schiliro, G., 1984, Allergy to desferrioxamine, J. Inher. Metab. Dis. 7: 121–124.PubMedCrossRefGoogle Scholar
  113. Roshchupkin, D. I., Talitsky, V. V., and Peleritsyn, A. N., 1979, Fluorescence study of tryptophan photolysis, Photochem. Photobiol. 30: 635–641.CrossRefGoogle Scholar
  114. Rowland, I., and Symons, M. C. R., 1988, Tumours and iron: The use of electron spin resonance, in: Free Radicals, Methodology and Concepts ( C. Rice-Evans and B. Halliwell, eds.), pp. 169–184, Richelieu Press, London.Google Scholar
  115. Rowley, D. A., and Halliwell, B., 1982a, Superoxide-dependent formation of hydroxyl radicals in the presence of thiol compounds, FEBS Leu. 138: 33–36.CrossRefGoogle Scholar
  116. Rowley, D. A., and Halliwell, B., 1982b, Superoxide-dependent formation of hydroxyl radicals from NADH and NADPH in the presence of iron salts, FEBS Lett. 142: 39–41.PubMedCrossRefGoogle Scholar
  117. Rowley, D. A., and Halliwell, B., 1983, Formation of hydroxyl radicals from hydrogen peroxide and iron salts by superoxide-and ascorbate-dependent mechanisms: Relevance to the pathology of rheumatoid disease, Clin. Sci. 64: 649–653.PubMedGoogle Scholar
  118. Schwartz, R., Rybicki, A. C., Heath, R. H., and Lubin, B. H., 1987, Protein 4.1 in sickle erythrocytes, J. Biol. Chem. 262: 15666–15672.PubMedGoogle Scholar
  119. Searle, A., and Tomasi, A., 1982, Hydroxyl free radical production in iron-cysteine solutions and protection by zinc, J. lnorg. Chem. 17: 161–166.Google Scholar
  120. Shaklai, N., Sharma, V. S., and Ranney, H. M., 1981, Interaction of sickle cell haemoglobin with erythrocyte membranes, Proc. Natl. Acad. Sci. USA 78: 65–68.PubMedCrossRefGoogle Scholar
  121. Shaklai, N., Shviro, Y., Rabizadeh, E., and Kirscher-Zilbe, I., 1985, Accumulation and drainage of haemin in the red cell membrane, Biochim. Biophys. Acta 821: 355–356.PubMedCrossRefGoogle Scholar
  122. Sies, H., 1986, Biochemistry of oxidative stress, Angew. Chem. Int. Ed. Engl. 25: 1058–1071.CrossRefGoogle Scholar
  123. Singh, A., Koroll, G. W., and Cundall, R. B., 1982, Pulse radiolysis of aqueous solutions of sodium azide: Reactions of azide radical, tryptophan and tyrosine, Radiat. Phys. Chem. 19: 137–146.Google Scholar
  124. Snyder, L. M., Fortier, N. L., Leb, L., McKenney, J., Trainor, J., Sheerin, H., and Mohandas, N., 1988, The role of membrane protein sulphydryl groups in hydrogen peroxide-mediated membrane damage in human erythrocytes, Biochim. Biophys. Acta 937: 229–240.PubMedCrossRefGoogle Scholar
  125. Stocks, J., Offerman, E. L., Modell, C. B., and Dormandy, T. L., 1972, The susceptibility to autoxidation of human red cell lipids in health and disease, Br. J. Haematol. 23: 713–724.PubMedCrossRefGoogle Scholar
  126. Tappel, A. L., 1962, Vitamin E as the biological lipid antioxidant, Vitam. Horm. (N.Y.) 20: 493–510.CrossRefGoogle Scholar
  127. Tappel, A. L., 1980, Measurement of and protection from in vivo lipid peroxidation, in: Free Radicals in Biology ( W. A. Pryor, ed.), Volume IV, pp. 1–45, Academic Press, New York.Google Scholar
  128. Tillman, W., and Schroter, W., 1979, Rheological properties of erythrocytes in homozygous and heterozygous thalassaemia, Br.J. Haematol. 41: 401–411.CrossRefGoogle Scholar
  129. Waugh, S. M., Willardson, B. M., Kannan, R., Labotka, R. J., and Low, P. S., 1986, Heinz bodies induce clustering of band 3, glycophorin and ankyrin in sickle cell erythrocytes, J. Clin. Invest. 78: 1155–1160.PubMedCrossRefGoogle Scholar
  130. Weiss, J., 1964, The nature of iron bound in oxyhaemoglobin, Nature 202: 83–84.PubMedCrossRefGoogle Scholar
  131. Whitburn, K., 1987, The interaction of oxymyoglobin with hydrogen peroxide: The formation of ferryl myo-globin at moderate excess of hydrogen peroxide, Arch. Biochem. Biophys. 253: 419–430.PubMedCrossRefGoogle Scholar
  132. White, J. G., 1974, Ultrastructural features of erythrocyte and haemoglobin sickling, Arch. Intern. Med. 133: 545–562.PubMedCrossRefGoogle Scholar
  133. Williams, D. R., 1971, The Metals of Life, Van Nostrand—Rheinhold, Princeton, N.J.Google Scholar
  134. Winterboum, C. C., 1979, Comparison of superoxide with other reducing agents in the biological production of hydroxyl radicals, Biochem. J. 182: 625–628.Google Scholar
  135. Winterboum, C. C., 1981, Hydroxyl radical production in body fluids. Roles of metal ions, ascorbate and superoxide, Biochem. J. 198: 125–131.Google Scholar
  136. Winterboum, C. C., McGrath, B. N. M., and Carrell, R. W., 1976, Reactions involving superoxide and normal and unstable haemoglobins, Biochem. J. 155: 493–502.Google Scholar
  137. Wittenberg, J. B., Wittenberg, B. A., Peisach, J., and Blumberg, W. E., 1970, On the state of iron and the nature of the ligand in oxyhaemoglobin, Proc. Natl. Acad. Sci. USA 67: 1846–1853.PubMedCrossRefGoogle Scholar
  138. Wolff, S. P., and Dean, R. T., 1986, Fragmentation of proteins by free radicals and its effect on their susceptibility to enzymic hydrolysis, Biochem. J. 234: 399–403.PubMedGoogle Scholar
  139. Wolff, S. P. Garner, A., and Dean, R. T., 1986, Free radicals, lipids and protein degradation, Trends Biochem. Sci. 11: 27–31.CrossRefGoogle Scholar
  140. Worwood, M. J., 1983, Iron and haemochromatosis, J. Inher. Metab. Dis. 6: 63–69.PubMedCrossRefGoogle Scholar
  141. Yoshino, S., Blake, D. R., Hewitt, S., Morris, C., and Bacon, P. A., 1985, Effect of blood on the activity and persistence of antigen reduced inflammation in the rat air pouch, Ann. Rheum. Dis. 44: 495–490.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Catherine Rice-Evans
    • 1
  1. 1.Department of Biochemistry and ChemistryRoyal Free Hospital School of MedicineLondonEngland

Personalised recommendations