Molecular Genetics of Human Erythrocyte Sialoglycoproteins Glycophorins A, B, C, and D

  • Jean-Pierre Cartron
  • Yves Colin
  • Shinichi Kudo
  • Minoru Fukuda
Part of the Blood Cell Biochemistry book series (BLBI, volume 1)


The membrane of human erythrocytes has been a model system for studying the structure and function of the plasma membrane. By analyzing the components of the human erythrocyte membrane, the most important concepts in membrane biochemistry and biology have been borne out. Isolation and characterization of a major erythrocyte sialoglycoprotein, now called glycophorin A, provided the essential characteristics of trans-membrane glycoprotein (Tomita and Marchesi, 1975). Membrane proteins associated less strongly with the lipid bilayer—peripheral proteins—were recognized at the same time (Singer and Nicolson, 1972). The erythrocyte cytoskeleton was identified by investigation of the interaction of these proteins with the filamentous network beneath the lipid bilayer (Yu et al.,1973). Thus, this system provides an interesting model for studying the structure and organization of membrane glycoproteins, how those glycoproteins interact with other proteins, and cytoskeletal protein interactions. Furthermore, the structural change of cell-surface carbohydrates during development was elucidated for the first time in this system (Fukuda et al., 1979), which corresponds to fetal (i) and to adult (I) erythrocyte antigens.


Blood Group Human Erythrocyte Erythroid Differentiation Membrane Skeleton Human Erythrocyte Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, D. P., Low, P. S., Dola, A., and Maisel, H., 1987, Band 3 and ankyrin homologues are present in eye lens: Evidence for all major erythrocyte membrane components in same non-erythroid cell, Biochem. Biophys. Res. Commun. 149: 266–275.PubMedGoogle Scholar
  2. Alloisio, N., Morlé, L., Bachir, D., Guetami, D., Colonna, P., and Delaunay, J., 1985, Red cell membrane sialoglycoprotein in homozygous and heterozygous 4.2(—) hereditary elliptocytosis, Biochim. Biophys. Acta 816: 57–62.PubMedGoogle Scholar
  3. Alper, S. L., Kopito, R. R., Libresco, S. M., and Lodish, H. F., 1988, Cloning and characterization of a murine band 3-related cDNA from kidney and from a lymphoid cell line, J. Biol. Chem. 263: 17092–17099.PubMedGoogle Scholar
  4. Andersson, L. C., Gahmberg, C. G., Teerenhovi, L., and Vuopio, P., 1979, Glycophorin A as a cell surface marker of early erythroid differentiation in acute leukemia, Int. J. Cancer 23: 717–723.Google Scholar
  5. Anderson, L. C., Wegelius, R., Borgström, G. H., and Gahmberg, C. G., 1980, Change in cellular phenotype from lymphoid to erythroid in a case of ALL, Scand. J. Haematol. 23: 115–121.Google Scholar
  6. Anderson, R. A., and Lovrien, R. E., 1984, Glycophorin is linked by band 4.1 protein to the human erythrocyte membrane skeleton, Nature 307: 655–658.PubMedGoogle Scholar
  7. Anderson, R. A., and Marchesi, V. T., 1985, Associations between glycophorin and protein 4.1 require a polyphosphoinositide cofactor: A mechanism for membrane skeleton association, Nature 318: 295–298.PubMedGoogle Scholar
  8. Anstee, D. J., 1980, Blood group MNSs-active sialoglycoproteins of the human erythrocyte membrane in: Immunology of the Erythrocyte (S. G. Sandler, M.D. Nusbacher, and M. S. Schanfield, eds.), Volume 43, pp. 67–98, Liss, New York.Google Scholar
  9. Anstee, D. J., 1981, The blood group MNSs-active sialoglycoproteins, Semin. Hematol. 18: 13–31.PubMedGoogle Scholar
  10. Anstee, D. J., Mawby, W. J., and Tanner, M. J. A., 1979, Abnormal blood-group-Ss-active sialoglycoproteins in the membrane of Miltenberger class III, IV and V human erythrocytes, Biochem. J. 183: 193–203.PubMedGoogle Scholar
  11. Anstee, D. J., Parsons, S. F., Ridgwell, K., Tanner, M. J. A., Merry, A. H., Thomson, E. E., Judson, P. A., Johnson, P., Bates, S., and Fraser, I. D., 1984a, Two individuals with elliptocytic red cells lack three minor erythrocyte membrane sialoglycoproteins, Biochem. J. 218: 615–619.PubMedGoogle Scholar
  12. Anstee, D. J., Ridgwell, K., Tanner, M. J. A., Daniels, G. L., and Parsons, S. F., 1984b, Individuals lacking the Gerbich blood-group antigen have alterations in the human erythrocyte membrane sialoglycoproteins and -y, Biochem. J. 221: 97–104.PubMedGoogle Scholar
  13. Baines, A. J., and Bennett, V., 1985, Synapsin I is a spectrin-binding protein immunologically related to erythrocyte protein 4.1, Nature 315: 410–413.PubMedGoogle Scholar
  14. Battey, J., Moulding, C., Taub, R., Murphy, W., Stewart, T., Potter, H., Lenoir, G., and Leder, P., 1983, The human c-myc oncogene: Structural consequences of translocation into the IgH locus in Burkitt lymphoma, Cell 34: 779–787.PubMedGoogle Scholar
  15. Bennett, V., 1982, The molecular basis for membrane—cytoskeleton association in human erythrocytes, J. Cell. Biochem. 18: 49–65.PubMedGoogle Scholar
  16. Bennett, V., 1985, The membrane skeleton of human erythrocytes and its implications for more complex cells, Annu. Rev. Biochem. 54: 273–304.PubMedGoogle Scholar
  17. Bennett, V., 1989, The spectrin—actin junction of erythrocyte membrane skeletons, Biochim. Biophys. Acta 988: 107–121.PubMedGoogle Scholar
  18. Blanchard, D., Cartron, J. P., Rouger, P., and Salmon, C., 1982, Pj variant, a new hybrid MNSs glycoprotein of the human red cell membrane, Biochem. J. 203: 419–426.PubMedGoogle Scholar
  19. Blanchard, D., Dahr, W., Hummel, M., Latron, F., Beyreuther, K., and Cartron, J. P., 1987a, Glycophorins B and C from human erythrocyte membranes: Purification and sequence analysis, J. Biol. Chem. 262: 5808–5811.PubMedGoogle Scholar
  20. Blanchard, D., El-Maliki, B., Hermand, P., Dahr, W., and Cartron, J. P., 1987b, Structural homology between glycophorins C and D, two minor glycoproteins of the human erythrocyte membrane carrying blood group Gerbich antigen, Proc. IXth Int. Symp. Glycoconjugates, p. F54, Lille, France.Google Scholar
  21. Bloy, C., Blanchard, D., Lambin, P., Goossens, D., Rouger, P., Salmon, C., and Cartron, J. P., 1987, Human monoclonal antibody against Rh(D) antigen: Partial characterization of the Rh(D) polypeptide from human erythrocytes, Blood 69: 1491–1497.PubMedGoogle Scholar
  22. Booth, P. B., Serjeantson, S., Woodfield, D. G., and Amato, D., 1977, Selective depression of blood group antigens associated with hereditary ovalocytosis among Melanesians, Vox Sang. 32: 99–110.PubMedGoogle Scholar
  23. Breathnach, R., and Chambon, P., 1981, Organization and expression of eukaryotic split genes coding for proteins, Annu. Rev. Biochim. 50: 349–383.Google Scholar
  24. Breitbart, R. E., Andreadis, A., and Nadal-Ginard, B., 1987, Alternative splicing: A ubiquitous mechanism for the generation of multiple protein isoforms from single genes, Annu. Rev. Biochem. 56: 467–495.PubMedGoogle Scholar
  25. Britten, R. J., 1986, Rates of DNA sequence evolution differ between taxonomic groups, Science 231: 1393–1398.PubMedGoogle Scholar
  26. Burness, A. T. H., 1981, Glycophorin and sialylated components as receptor for viruses, in: Virus Receptors, Part 2 ( K. Lonberg-Holm and L. Philipson, eds.), pp. 63–84, Chapman and Hall, London.Google Scholar
  27. Cartron, J. P., Colin, Y., Le Van Kim, C., Rahuel, C., Blanchard, D., Bloy, C., and London, J., 1986, Structure of human erythrocyte glycophorin C deduced from cDNA analysis, Blood Transf. Immunohaemat. 29: 267–285.Google Scholar
  28. Chasis, J. A., and Mohandas, N., 1986, Erythrocyte membrane deformability and stability: Two distinct membrane properties that are independently regulated by skeletal protein associations, J. Cell Biol. 103: 343–350.PubMedGoogle Scholar
  29. Chasis, J. A., Reid, M. E., Jensen, R. H., and Mohandas, N., 1988, Signal transduction by glycophorin A: Role of extracellular and cytoplasmic domains in a modulatable process, J. Cell Biol. 107: 1351–1357.PubMedGoogle Scholar
  30. Colin, Y., Rahuel, C., London, J., Romeo, P. H., d’Auriol, L., Galibert, F., and Cartron, J. P., 1986, Isolation of cDNA clones for human erythrocyte glycophorin C, J. Biol. Chem. 261: 229–233.PubMedGoogle Scholar
  31. Colin, Y., Le Van Kim, C., Tsapis, A., Clerget, M., d’Auriol, L., London, J., Galibert, F., and Cartron, J. P., 1989, Human erythrocyte glycophorin C gene structure and rearrangement in genetic variants, J. Biol. Chem. 264: 3773–3780.PubMedGoogle Scholar
  32. Cook, P. J. L., Lindenbaum, R. H., Salonen, R., De La Chapelle, A., Daker, M. G., Buckton, K. E., Noades, J. E., and Tippett, P., 1981, The MNSs blood group of families with chromosome 4 rearrangements, Ann Hum. Genet. 45: 39–47.PubMedGoogle Scholar
  33. Cotmore, S. F., Furthmayr, H., and Marchesi, V. T., 1977, Immunochemical evidence for the transmembrane orientation of glycophorin A. Localization of ferritin—antibody conjugates in intact cells, J. Mol. Biol. 113: 539–553.PubMedGoogle Scholar
  34. Dahr, W., 1986, Immunochemistry of sialoglycoproteins in human red blood cell membranes, in: Recent Advances in Blood Group Biochemistry ( V. Vengelen-Tyler and W. J. Judd, eds.), pp. 23–65, American Association of Blood Banks, Arlington, Va.Google Scholar
  35. Dahr, W., Uhlenbruck, G., and Knott, H., 1975, Immunochemical aspects of the MNSs blood group system, J. Immunogenet. 2: 87–100.Google Scholar
  36. Dahr, W., Uhlenbruck, G., Janssen, E., and Schmalisch, R., 1977, Different N-terminal amino acids in the M, N glycoprotein from MM and NN erythrocytes, Hum. Genet. 35: 335–343.Google Scholar
  37. Dahr, W., Beyreuther, K., Steinbach, H., Gielen, W., and Krüger, J., 1980, Structure of the Ss blood group antigens. II. A methionine/threonine polymorphism within the N-terminal sequence of Ss glycoprotein, Hoppe-Seyler’s Z. Physiol. Chem. 361: 895–906.PubMedGoogle Scholar
  38. Dahr, W., Beyreuther, K., Kordowicz, M., and Krüger, J., 1982, N-terminal amino acid sequence of sialoglycoprotein D (glycophorin C) from human erythrocyte membranes, Eur. J. Biochem. 125: 57–62.PubMedGoogle Scholar
  39. Dahr, W., Kiedrowski, S., Blanchard, D., Hermand, P., Moulds, J. J., and Cartron, J. P., 1987, High frequency of human erythrocyte membrane sialoglycoproteins. V. Characterization of the Gerbich blood group antigens: Ge2 and Ge3, Biol. Chem. Hoppe-Seyler 368: 1375–1383.PubMedGoogle Scholar
  40. Dahr, W., Blanchard, D., Kiedrowski, S., Poschmann, A., Cartron, J. P., and Moulds, J., 1989, High frequency antigens of human erythrocyte membrane sialoglycoproteins. VI. Monoclonal antibodies reacting with the N-terminal domain of glycophorin C, Biol. Chem. Hoppe-Seyler 370: 849–854.PubMedGoogle Scholar
  41. Daniels, G. L., Shaw, M. A., Judson, P. A., Reid, M. E., Anstee, D. J., Colpitis, P., Cornwall, J., Moore, B. P. L., and Lee, S., 1986, A family demonstrating inheritance of the Leach phenotype: A Gerbich-negative phenotype associated with elliptocytosis, Vox Sang. 50: 117–121.PubMedGoogle Scholar
  42. Demuth, D. R., Showe, L. C., Ballantinne, M., Palumbo, A., Fraser, P. J., Cioe, L., Rovera, G., and Curtis, P. J., 1986, Cloning and structural characterization of a human non-erythroid band 3-like protein, EMBO J. 5: 1205–1214.PubMedGoogle Scholar
  43. El-Maliki, B., Blanchard, D., Dahr, W., Beyreuther, K., and Cartron, J. P., 1989, Structural homology between glycophorins C and D of human erythrocytes, Eur. J. Biochem. 183: 639–643.PubMedGoogle Scholar
  44. Fairbanks, G., Steck, T. L., and Wallach, D. F. H., 1971, Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane, Biochemistry 10: 2606–2617.PubMedGoogle Scholar
  45. Fukuda, M., 1980, K562 human leukaemic cells express fetal type (i) antigen on different glycoproteins from circulating erythrocytes, Nature 285: 405–407.PubMedGoogle Scholar
  46. Fukuda, M., 1981, ‘Iìtmor-promoting phorbol diester-induced specific changes in cell surface glycoprotein profile of K562 human leukemic cells, Cancer Res. 41: 4621–4628.Google Scholar
  47. Fukuda, M., 1985, Cell surface glycoconjugates as onco-differentiation markers in hematopoietic cells, Biochim. Biophys. Acta 780: 119–150.PubMedGoogle Scholar
  48. Fukuda, M., and Fukuda, M. N., 1984, Cell surface glycoproteins and carbohydrate antigens in development and differentiation of human erythroid cells in: The Biology of Glycoproteins (R. J. Ivatt, ed.), pp. 183234, Plenum Press, New York.Google Scholar
  49. Fukuda, M., Fukuda, M. N., and Hakomori, S., 1979, Developmental change and genetic defect in the carbohydrate structure of band 3 glycoprotein of human erythrocyte membrane, J. Biol. Chem. 254: 3700–3703.PubMedGoogle Scholar
  50. Furthmayr, H., 1978a, Glycophorins A, B, C: A family of sialoglycoproteins. Isolation and preliminary characterization of trypsin-derived peptides, J. Supramol. Struct. 9: 79–95.PubMedGoogle Scholar
  51. Furthmayr, H., 1978b, Structural comparison of glycophorins and immunochemical analysis of genetic variants, Nature 271: 519–524.PubMedGoogle Scholar
  52. Gahmberg, C. G., Myllyla, G., Leikola, J., Pirkola, A., and Nordling, S., 1976, Absence of the major sialoglycoprotein in the membrane of human En(a—) erythrocytes and increased glycosylation of band 3, J. Biol. Chem. 251: 6108–6116.PubMedGoogle Scholar
  53. Gahmberg, C. G., Jokinen, M., and Andersson, L. C., 1978, Expression of the major sialoglycoprotein (glycophorin) on erythroid cells in human bone marrow, Blood 52: 379–387.PubMedGoogle Scholar
  54. Gahmberg, C. G., Jokinen, M., and Andersson, L. C., 1979, Expression of the major red cell sialoglycoprotein glycophorin A, in the human leukemic cell line K562, J. Biol. Chem. 254: 7442–7448.PubMedGoogle Scholar
  55. Gahmberg, C. G., Ekblom, M., and Anderson, L. C., 1984, Differentiation of human erythroid cells is associated with increased 0-glycosylation of the major sialoglycoprotein, glycophorin A, Proc. Natl. Acad. Sci. USA 81: 6752–6756.PubMedGoogle Scholar
  56. Gahmberg, C. G., Autero, M., and Hermonen, J., 1988, Major 0-glycosylated sialoglycoproteins of human hematopoietic cells: Differentiation antigens with poorly understood functions, J. Cell. Biochem. 37: 9 1105.Google Scholar
  57. Greaves, M. F., Sieff, C., and Edwards, P. A. W., 1983, Monoclonal antiglycophorin as a probe for erythrolcukemias, Blood 61: 645–651.PubMedGoogle Scholar
  58. Hadley, T. J., Klotz, F. W., and Miller, L. H., 1986, Invasion of erythrocytes by malaria parasites: A cellular and molecular overview, Annu. Rev. Microbiol. 40: 451–477.PubMedGoogle Scholar
  59. Hann, S. R., King, M. W., Bentley, D. L., Anderson, C. W., and Eisenman, R. N., 1988, A non-AUG translation initiation in c-myc exon 1 generates an N-terminal distinct protein whose synthesis is disrupted in Burkitt’s lymphomas, Cell 52: 1985–1995.Google Scholar
  60. Hartmann, E., Rapoport, T. A., and Lodish, A. F., 1989, Predicting the orientation of eukaryote membrane-spanning proteins, Proc. Natl. Acad. Sci. 86: 5786–5790.PubMedGoogle Scholar
  61. Hayashida, H., and Miyata, T., 1983, Unusual evolutionary conservation and frequent DNA segment exchange in class I genes of the major histocompatibility complex, Proc. Natl. Acad. Sci. USA 80: 2671–2675.PubMedGoogle Scholar
  62. High, S., and Tanner, M. J. A., 1987, Human erythrocyte membrane sialoglycoprotein ß. The cDNA sequence suggests the absence of a cleaved N-terminal signal sequence, Biochem. J. 243: 277–280.PubMedGoogle Scholar
  63. Huang, C. H., Johe, K., Moulds, J. J., Siebert, P. P., Fukuda, M., and Blumenfeld, O. O., 1987, S glycoprotein (glycophorin B) gene deletion in two individuals homozygous for the S—s—U— blood group phenotype, Blood 70: 1830–1835.PubMedGoogle Scholar
  64. Irimura, T., Tsuji, T., Togami, K., Yamamoto, K., and Osawa, T., 1981, Structure of a complex-type sugar chain of human glycophorin A, Biochemistry 20: 560–566.PubMedGoogle Scholar
  65. Ishii, S., Xu, Y.-H., Stratton, R. H., Roe, B. A., Merlino, G. T., and Pastan, I., 1985, Characterization and sequence of the promoter region of the human epidermal growth factor receptor gene, Proc. Natl. Acad. Sci. USA 82: 4920–4924.PubMedGoogle Scholar
  66. Jansson, S. E., Gripenburg, J., Hekali, R., and Gahmberg, C. G., 1981, Organization of membrane lipids and proteins in human En(a—) erythrocytes that lack major sialoglycoprotein, glycophorin A, Biochem. J. 195: 123–128.PubMedGoogle Scholar
  67. Jokinen, M., Ulmanen, I., Andersson, L. C., Kääriäinen, L., and Gahmberg, C. G., 1981, Cell-free synthesis and glycosylation of the major human-red-cell sialoglycoprotein, glycophorin A, Eur. J. Biochem. 114: 393–397.PubMedGoogle Scholar
  68. Jokinen, M., Ehnholm, C., Vaisanen-Rhen, V., Korhonen, T., Pipkorn, R., Kalkkinen, N., and Gahmberg, G., 1985, Identification of the major human sialoglycoprotein from red cells, glycophorin AM, as the receptor for Escherichia coli IH11165 and characterization of the receptor site, Eur. J. Biochem. 147: 47–52.PubMedGoogle Scholar
  69. Katamine, S., Notario, V., Rao, D., Miki, T., Cheah, M. S. C., Tronick, S. R., and Robbins, K. C., 1988, Primary structure of the human fgr proto-oncogene product p55c-fer, Mol. Cell. Biol. 8: 259–266.PubMedGoogle Scholar
  70. Kopito, R. R., Andersson, M. A., and Lodish, H. F., 1987a, Multiple tissue-specific sites of transcriptional initiation of the mouse anion antiport gene in erythroid and renal cells, Proc. Natl. Acad. Sci. USA 84: 7149–7153.PubMedGoogle Scholar
  71. Kopito, R. R., Andersson, M., and Lodish, H. F., 1987b, Structure and organization of the murine band 3 gene, J. Biol. Chem. 262: 8035–8040.PubMedGoogle Scholar
  72. Kozak, M., 1981, Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes, Nucleic Acids Res. 9: 5223–5252.Google Scholar
  73. Kozak, M., 1984, Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs, Nucleic Acids Res. 12: 857–872.PubMedGoogle Scholar
  74. Kozak, M., 1986a, Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes, Cell 44: 283–292.PubMedGoogle Scholar
  75. Kozak, M., 1986b, Bifunctional messenger RNAs in eukaryotes, Cell 47: 481–483.PubMedGoogle Scholar
  76. Kozak, M., 1989, The scanning model for translation: An update, J. Cell Biol. 108: 229–241.PubMedGoogle Scholar
  77. Kudo, S., and Fukuda, M., 1989, Structural organization of glycophorin A and B genes: Glycophorin B gene evolved by homologous recombination at Alu repeat sequences, Proc. Natl. Acad. Sci. USA 86: 4619–4623.PubMedGoogle Scholar
  78. Langlois, R. G., Bigbee, W. L., Kyoizumi, S., Nakamura, N., Bean, M. A., Akiyama, M., and Jensen, R. H., 1987, Evidence for increased somatic cell mutations at the glycophorin A locus in atomic bomb survivors, Science 236: 445–448.PubMedGoogle Scholar
  79. Langlois, R. G., Bigbee, W. L., Jensen, R. H., and German, J., 1989, Bloom’s syndrome: Use of the glycophorin A (GPA) assay to demonstrate an excessive accumulation of mutations in vivo, Am. J. Hum. Genet. 43: A26 (abstract).Google Scholar
  80. Lazarides, E., 1987, From genes to structural morphogenesis: The genesis and epigenesis of a red blood cell, Cell 51: 345–356.PubMedGoogle Scholar
  81. Laemmli, U. K., 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227: 680–681.PubMedGoogle Scholar
  82. Lehrman, M. A., Golstein, J. L., Russel, D. W., and Brown, M. S., 1987, Duplication of seven exons in LDL receptor gene caused by Alu—Alu recombination in a subject with familial hypercholesterolemia, Cell 48: 827–835.PubMedGoogle Scholar
  83. Leiff, S. E., Rosenfeld, M. G., and Evans, R. M., 1986, Complex transcriptional units: Diversity in gene expression by alternative RNA processing, Annu. Rev. Biochem. 55 :1091–1097.Google Scholar
  84. Leonard, W. J., Depper, J. M., Kanehisa, M., Krönke, M., Peffer, N. J., Svettik, P. B., Sullivan, M., and Greene, W. C., 1985, Structure of the human interleukin-2 receptor gene, Science 230: 633–639.PubMedGoogle Scholar
  85. Leto, T. L., Fortugno-Erikson, D., Barton, D., Yang-Feng, T. L., Francke, U., Harris, A. S., Morrow, J. S., Marchesi, V. T., and Benz, E. J., 1988, Comparison of nonerythroid a-spectrin genes reveals strict homology among diverse species, Mol. Cell. Biol. 8: 1–9.PubMedGoogle Scholar
  86. Le Van Kim, C., Colin, Y., Blanchard, D., Dahr, W., London, J., and Cartron, J. P., 1987, Gerbich group deficiency of the Ge:1,-2,-3 and Ge:1,-2,-3 types, Eur. J. Biochem. 165: 571–579.Google Scholar
  87. Le Van Kim, C., Colin, Y., Mitjavila, M. T., Clerget, M., Dubart, A., Nakazawa, M., Vainchenker, W., and Cartron, J. P., 1989, Structure of the promoter region and tissue specificity of the human glycophorin C, J. Biol. Chem. 264: 20407–20414.Google Scholar
  88. Lin, C. S., Goldthwait, D. A., and Samols, D., 1988, Identification of Alu transposition in human lung carcinoma cells, Cell 54: 153–159.PubMedGoogle Scholar
  89. Liska, K., Majdic, O., Bettelheim, P., and Knapp, W., 1983, Glycophorin A expression in malignant hematopoiesis, Am. J. Hematol. 15: 219–226.Google Scholar
  90. Lisowska, E., 1989, Antigenic properties of human erythrocyte glycophorins, in: Molecular Immunology of Complex Carbohydrates (A. M. Wu, ed.), Plenum Press, New York, in press.Google Scholar
  91. Macdonald, E. B., and Gems, L. M., 1986, An unusual sialoglycoprotein associated with the Webb-positive phenotype, Vox Sang. 50: 112–116.PubMedGoogle Scholar
  92. Mann, K. G., Jenny, R. J., and Krishnaswamy, S., 1988, Cofactor proteins in the assembly and expression of blood clotting enzyme complexes, Annu. Rev. Biochem. 57: 915–956.PubMedGoogle Scholar
  93. Marchesi, V. T., Tillack, T. W., Jackson, R. L., Segrest, J. P., and Scott, R. E., 1972, Chemical characterization and surface orientation of the major glycoprotein of the human erythrocyte membrane, Proc. Natl. Acad. Sci. USA 69: 1445–1449.PubMedGoogle Scholar
  94. Mattei, M. G., Colin, Y., Le Van Kim, C., Mattei, J. F., and Cartron, J. P., 1986, Localization of the gene for human erythrocyte glycophorin C to chromosome 2g14-q21, Hum. Genet. 74: 420–422.PubMedGoogle Scholar
  95. Merry, A. H., Thomson, E. E., Anstee, D. J., and Stratton, F., 1984, The quantification of erythrocyte antigen sites with monoclonal antibodies, Immunology 51: 793–800.PubMedGoogle Scholar
  96. Merry, A. H. J., Hodson, C., Thomson, E., Mallinson, G., and Anstee, D. J., 1986, The use of monoclonal antibodies to quantify the levels of sialoglycoproteins a and S variant sialoglycoproteins in human erythrocyte membranes, Biochem. J. 233: 93–98.PubMedGoogle Scholar
  97. Mitchell, G. H., and Bannister, L. H., 1988, Malarial parasites invasion: Interaction with the red cell membranes, in: CRC Critical Reviews in Oncology/Hematology, Volume 8, pp. 255–310, CRC Press, Cleveland, Ohio.Google Scholar
  98. Mohandas, N., Chasis, J. A., and Shohet, S. B., 1983, The influence of membrane skeleton on red cell deformability, membrane material properties and shape, Semin. Hematol. 20: 225–242.PubMedGoogle Scholar
  99. Morrow, B., and Rubin, C. S., 1987, Biogenesis of glycophorin A in K562 human erythroleukemia cells, J. Biol. Chem. 262: 13812–13820.PubMedGoogle Scholar
  100. Mueller, T. J., and Morrison, M., 1981, Glycoconnection (PAS 2), a membrane attachment site for the human erythrocyte cytoskeleton, in: Erythrocyte Membrane 2: Recent Clinical and Experimental Advances (W. C. Kruckenberg, J. W. Eaton, and G. J. Brewer, eds.), pp. 95–112, Liss, New York.Google Scholar
  101. Müller-Eberhard, H. J., and Miescher, P., 1985, Complement, Springer-Verlag, Berlin.Google Scholar
  102. Nicholls, R. D., Fishel-Ghodsian, N., and Higgs, D. R., 1987, Recombination at the human cs-globin gene cluster: Sequence features and topological constraints, Cell 49: 369–378.PubMedGoogle Scholar
  103. Padgett, R. A., Grabowski, P. J., Konarska, M. M., Seiler, S., and Sharp, P. A., 1986, Splicing of messenger RNA precursors, Annu. Rev. Biochem. 55: 1119–1150.PubMedGoogle Scholar
  104. Paollela, G., Lucero, M. A., Murphy, M. H., and Baralle, F. E., 1983, The Alu family repeat promoter has transfer RNA like bipartite structure, EMBO J. 2: 691–696.Google Scholar
  105. Parkkinen, J., Rogers, G. N., Korhonen, T., Dahr, W., and Finne, J., 1986, Identification of the 0-linked sialyloligosaccharides of glycophorin A as the erythrocyte receptors for S-fimbriated Escherichia coli, Infect. Immun. 54: 37–42.PubMedGoogle Scholar
  106. Rahuel, C., London, J., d’Auriol, L., Mattei, M. G., Tournamille, C., Skrzynia, C., Lebouc, Y., Galibert, F., and Cartron, J. P., 1988a, Characterization of cDNA clones for human glycophorin A. Use for gene localization and for analysis of normal and glycophorin A deficient (Finnish type) genomic DNA, Eur. J. Biochem. 172: 147–153.PubMedGoogle Scholar
  107. Rahuel, C., London, J., Vignal, A., Cherif-Zahar, B., Colin, Y., Siebert, P., Fukuda, M., and Cartron, J. P., 1988b, Alteration of the genes for glycophorin A and B in glycophorin A deficient individuals, Eur. J. Biochem. 177: 605–614.PubMedGoogle Scholar
  108. Rahuel, C., Vignal, A., London, J., Hamel, S., Romeo, P. H., Colin, Y., and Cartron, J. P., 1989, Structure of the 5’ flanking region of the glycophorin A gene and analysis of its multiple transcripts, Gene 85: 471–477.PubMedGoogle Scholar
  109. Rearden, A., Taetle, R., Elmajian, D. A., Majda, J. A., and Baird, S. M., 1985, Glycophorin A on normal and leukemia cells detected by monoclonal antibodies, including a new monoclonal antibody reactive with glycophorins A and B, Mol. Immunol. 22: 368–378.Google Scholar
  110. Reid, E. M., Shaw, M. A., Rowe, G., Anstee, D. J., and Tanner, M. J. A., 1985, Abnormal minor human erythrocyte membrane sialoglycoprotein ß in association with the rare blood-group antigen Webb (Wb), Biochem. J. 232: 289–291.PubMedGoogle Scholar
  111. Reid, E. M., Anstee, D. J., Tanner, M. J. A., Ridgwell, K., and Nurse, C. T., 1987a, Structural relationships between human erythrocyte sialoglycoproteins ß and -y and abnormal sialoglycoproteins found in certain rare human erythrocyte variants lacking the Gerbich blood-group antigen(s), Biochem. J. 244: 123–128.PubMedGoogle Scholar
  112. Reid, E. M., Chasis, J. A., and Mohandas, N., 1987b, Identification of a functional role for human erythrocyte sialoglycoproteins 13 and y, Blood 69: 1068–1072.PubMedGoogle Scholar
  113. Robinson, J., Sieff, C., Delia, D., Edwards, P. A. W., and Greaves, M., 1981, Expression of cell-surface HLADR, HLA (ABC) and glycophorin during erythroid differentiation, Nature 289:68-71.Google Scholar
  114. Rouger, P., Anstee, D. J., and Salmon, C., 1988, First International Workshop on monoclonal antibodies against human red blood cell and related antigens, Paris 1987, Blood Transf. Immunohaemat. 31 (2).Google Scholar
  115. Rouyer, F., Simmler, M. C., Page, D. C., and Weissenbach, J., 1987, A sex chromosome rearrangement in a human XX male caused by Alu—Alu recombination, Cell 51: 417–425.PubMedGoogle Scholar
  116. Ruskin, B., Kariner, A. R., Maniatis, T., and Green, M. R., 1984, Excision of an intact intron as a novel lariat structure during pre-mRNA splicing in vitro, Cell 38: 317–331.PubMedGoogle Scholar
  117. Sabatini, D. D., Kreibich, G., Morimoto, T., and Adesnik, M., 1982, Mechanisms for the incorporation of proteins in membranes and organelles, J. Cell Biol. 92: 1–22.PubMedGoogle Scholar
  118. Segrest, J. P., Jackson, R. L., Marchesi, V. T., Guyer, R. B., and Terry, W., 1972, Red cell membrane glycoprotein: Amino acid sequence of an intramembranous region, Biochem. Biophys. Res. Commun. 49: 964–969.PubMedGoogle Scholar
  119. Sheetz, M. P., and Sawyer, D., 1978, Triton shells of intact erythrocytes, J. Supramol. Struct. 8:399–412. Siebert, P. D., and Fukuda, M., 1986a, Isolation and characterization of human glycophorin A cDNA clones by a synthetic oligonucleotide approach: Nucleotide sequence and mRNA structure, Proc. Natl. Acad. Sci.USA 83: 1665–1669.Google Scholar
  120. Siebert, P. D., and Fukuda, M., 1986b, Human glycophorin A and B are encoded by separate single copy genes coordinately regulated by a tumor-promoting phorbol ester, J. Biol. Chem. 261: 12433–12436.PubMedGoogle Scholar
  121. Siebert, P. D., and Fukuda, M., 1987, Molecular cloning of human glycophorin B cDNA: Nucleotide sequence and genomic relationship to glycoprotein A, Proc. Natl. Acad. Sci. USA 84: 6735–6739.PubMedGoogle Scholar
  122. Sieff, C., Bicknell, D., Caine, G., Robinson, J., Lam, G., and Greaves, M., 1982, Changes in cell surface antigen expression during hematopoietic differentiation, Blood 60: 703–713.PubMedGoogle Scholar
  123. Silverberg, M., Furthmayr, H., and Marchesi, V. T., 1976, The effect of carboxymethylating a single methionine residue on the subunit interactions of glycophorin A, Biochemistry 15: 1448–1454.PubMedGoogle Scholar
  124. Singer, S. J., and Nicholson, G. L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175: 720–731.PubMedGoogle Scholar
  125. Sondag, D., Alloisio, N., Blanchard, D., Ducluzeau, M. T., Colonna, P., Bachir, D., Bloy, C., Cartron, J. P., and Delaunay, J., 1987, Gerbich reactivity in 4.1 (—) hereditary elliptocytosis and protein 4.1 level in blood group Gerbich deficiency, Br. J. Haematol. 65: 43–50.PubMedGoogle Scholar
  126. Strubin, M., Long, E. O., and Mach, B., 1986, Two forms of the la antigen-associated invariant chain result from alternative initiations at two in-phase AUGs, Cell 47: 619–625.PubMedGoogle Scholar
  127. Tang, K. T., Leto, T. L., Correas, I., Alonso, M. A., Marchesi, V. T., and Benz, E. J., Jr., 1988, Selective expression of an erythroid specific isoform of protein 4.1, Proc. Natl. Acad. Sci. USA 85: 3713–3717.PubMedGoogle Scholar
  128. Tanner, M. J. A., and Anstee, D. J., 1976, The membrane change in En(a—) human erythrocytes. Absence of the major erythrocyte sialoglycoprotein, Biochem. J. 153: 271–277.PubMedGoogle Scholar
  129. Tanner, M. J. A., High, S., Martin, P. G., Anstee, D. J., Judson, P. A., and Jones, T. J., 1988, Genetic variants of human red-cell membrane sialoglycoprotein 13. Study of the alterations occurring in the sialoglycoprotein-fl gene, Biochem. J. 250: 407–414.PubMedGoogle Scholar
  130. Tate, C. G., and Tanner, M. J. A., 1988, Isolation of cDNA clones for human erythrocyte membrane sialoglycoproteins a and S, Biochem. J. 254: 743–750.PubMedGoogle Scholar
  131. Thomas, D. B., and Winzler, R. J., 1969, Structural studies on human erythrocyte sialoglycoproteins: Alkali-labile oligosaccharides, J. Biol. Chem. 244: 5943–5946.PubMedGoogle Scholar
  132. Tomita, M., and Marchesi, V. T., 1975, Amino-acid sequence and oligosaccharide attachment sites of human erythrocyte glycophorin, Proc. Natl. Acad. Sci. USA 72: 2964–2968.PubMedGoogle Scholar
  133. Tomita, M., Furthmayr, H., and Marchesi, V. T., 1978, Primary structure of human erythrocyte glycophorin A. Isolation and characterization of peptides and complete amino acid sequence, Biochemistry 17: 4756–4770.PubMedGoogle Scholar
  134. Tounkara, A., Piller, F., Blanchard, D., and Cartron, J. P., 1986, Evaluation of receptor sites for Plasmodium falciparum (malaria) on human erythrocytes. Chemical synthesis of peptides relevant to glycophorin A, in Proceedings, European Peptide Symposium (D. Theodoropoulos, ed.), de Gruyter, Berlin.Google Scholar
  135. Treisman, R., Proudfoot, N. J., Shandler, M., and Maniatis, T., 1982, A single-base change at a splice site in a ß°-thalassemic gene causes abnormal RNA splicing, Cell 29: 903–911.PubMedGoogle Scholar
  136. Vignal, A., Rahuel, C., El Maliki, B., Le Van Kim, C., London, J., Blanchard, D., d’Auriol, L., Galibert, F., Blajchman, M. A., and Cartron, J. P., 1989, Molecular analysis of glycophorin A and B gene structure and expression in homozygous Miltenberger class V (Mi“) human erythrocytes, Eur. J. Biochem. 184: 337344.Google Scholar
  137. Villeval, J. L., Cramer, P., Lemoine, F., Henri, A., Bettaieb, A., Bernaudin, F., Beuzard, Y., Berger, R., Flandrin, G., Breton-Gorius, J., and Vainchenker, W., 1986, Phenotype of early erythroblastic leukemia, Blood 68: 1167–1174.PubMedGoogle Scholar
  138. Villeval, J. L., Le Van Kim, C., Bettaieb, A., Debili, N., Colin, Y., El Maliki, B., Blanchard, D., Vainchenker, W., and Cartron, J. P., 1989, Early expression of glycophorin C during normal and leukemic human erythroid differentiation, Cancer Res. 49: 2626–2629.PubMedGoogle Scholar
  139. Von Heijne, G., 1983, Patterns of amino-acids near signal-sequence cleavage sites, Eur. J. Biochem. 133: 1721.Google Scholar
  140. Von Heijne, G., 1988, Transcending the impenetrable: How proteins come to terms with membranes, Biochim. Biophys. Acta 947: 307–333.Google Scholar
  141. Wasniowska, K., Drzeniek, Z., and Lisowoska, E., 1977, The amino acids of M and N blood group glycopeptides are different, Biochem. Biophys. Res. Commun. 76: 385–390.Google Scholar
  142. Watson, R. J., Dyson, P. J., and McMahon, J., 1987, Multiple c-myb transcript cap sites are variously utilized in cells of mouse haematopoietic origin, EMBO J. 6: 1643–1651.PubMedGoogle Scholar
  143. Yamanashi, Y., Fukushige, S.-H., Semba, K., Sukegawa, J., Miyajima, N., Matsubara, K. 1., Yamamoto, T., and Toyoshima, K., 1987, The yes-related cellular gene lyn encodes a possible tyrosine kinase similar to p56“k, Mol. Cell. Biol. 7: 237–243.Google Scholar
  144. Yasukawa, K., Hirano, T., Watanabe, Y., Muratini, K., Matsuda, T., Nakai, S. and Kishimoto, T., 1987, Structure and expression of human B cell stimulatory factor-2 (BSF-2/IL-6) gene, EMBO J. 6: 2939–2945.PubMedGoogle Scholar
  145. Yoshima, H., Furthmayr, H., and Kobata, A., 1980, Structures of the asparagine-linked sugar chains of glycophorin A, J. Biol. Chem. 255: 9713–9718.PubMedGoogle Scholar
  146. Yu, J., Fischman, D. A., and Steck, T. L., 1973, Selective solubilization of proteins and phospholipide from red cell membranes by nonionic detergents, J. Supramol. Struct. 1: 232–248.Google Scholar
  147. Yurchenco, P. D., and Furthmayr, H., 1980, Expression of red cell membrane proteins in erythroid precursor cells, J. Supramol. Struct. 13: 255–269.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Jean-Pierre Cartron
    • 1
  • Yves Colin
    • 1
  • Shinichi Kudo
    • 2
  • Minoru Fukuda
    • 2
  1. 1.Unité INSERM U76Institut National de Transfusion SanguineParisFrance
  2. 2.La Jolla Cancer Research FoundationLa JollaUSA

Personalised recommendations