Biosynthesis of Secondary Metabolites

  • Giancarlo Lancini
  • Rolando Lorenzetti


The study of biosynthesis of secondary metabolites consists of the identification of the sequence of reactions by which the cell converts one or more primary metabolites into the final molecule. It also concerns the identification of the factors by which this process is regulated. In contrast to the great variety of chemical structures, the biological reactions involved in the biosynthesis of most secondary microbial metabolites can be grouped in a limited number of biosynthetic pathways. In this chapter we give a short description of these pathways, and summarize the methods commonly used for their identification.


Secondary Metabolite Primary Metabolite Acyl Carrier Protein Aminoglycoside Antibiotic Extender Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. Corcoran, J. W., (ed.), 1981, Antibiotics IV—Biosynthesis, Springer-Verlag, Berlin.Google Scholar
  2. Lancini, G. C., 1985, Antibiotic biosynthesis—Relation with primary metabolism, in Industrial Aspects of Biochemistry and Genetics ( N. G. Alaeddinoglu, A. L. Demain, and G. C. Lancini, eds.), pp. 75–105, Plenum Press, New York.CrossRefGoogle Scholar
  3. Pape, H., and Rehm, H. J., (eds.), 1986, Biotechnology, Vol. 4, VCH Verlag, Weinheim.Google Scholar
  4. Vandamme, E. J., (ed.), 1984, Biotechnology of Industrial Antibiotics, Dekker, New York.Google Scholar
  5. Vining, L. C., (ed.), 1983, Biochemistry and Genetic Regulation of Commercially Important Antibiotics, Addison–Wesley, Reading, Mass.Google Scholar

Class I Reactions

  1. Hirose-Kumagai, A., Yugita, A., and Akamatsu, N., 1982, UDP-N-methyl-Dglucosamine-phosphate. A possible intermediate of N-methyl-L-glucosamine moiety of streptomycin, J. Antibiot. 35: 1571.PubMedCrossRefGoogle Scholar
  2. Hook, D. J., and Vining, L. C., 1973, Biosynthesis of the peptide antibiotic etamycin. Origin of the 3-hydroxypicolinyl and amino-acid fractions, J. Chem. Soc. Chem. Commun. 1973: 18.Google Scholar
  3. Hurley, L. H., and Speedie, M. K., 1981, Pyrrolo(1,4)benzodiazepine antibiotics: Anthramycin, tomaymycin and sibiromycin, in Antibiotics IV—Biosynthesis ( J. W. Corcoran, ed.), pp. 262–294, Springer-Verlag, Berlin.Google Scholar
  4. Isono, K., 1988, Nucleoside antibiotics: Structure, antibiotic activity and biosynthesis, J. Antibiot. 41: 1711.PubMedCrossRefGoogle Scholar
  5. Kakinuma, K., Ogawa, Y., Sakasi, T., Seto, H., and Otake, N., 1989, Mechanism and stereochemistry of the biosynthesis of 2-deoxystreptamine and neosamine C, J. Antibiot. 42: 926.PubMedCrossRefGoogle Scholar
  6. Kuo, M. S., Yurek, D. A., Coats, J. H., Chung, S. T., and Li, G. P., 1992, Isolation and identification of 3-propylidene-01-pyrroline-5-carboxylic acid, a biosynthetic precursor of lincomycin, J. Antibiot. 45: 1773.PubMedCrossRefGoogle Scholar
  7. Lancini, G. C., 1989, Fermentation and biosynthesis of glycopeptide antibiotics, Prog. Ind. Microbiol. 27: 283.Google Scholar
  8. Malik, V., 1983, Chloramphenicol, in Biochemistry and Genetic Regulation of Commercially Important Antibiotics ( L. C. Vining, ed.), pp. 293–309, Addison-Wesley, Reading, Mass.Google Scholar
  9. Martinkus, K. J., Tann, C., and Gould, S. J., 1983, The biosynthesis of the streptolidine moiety in streptothricin F, Tetrahedron 39: 3493.CrossRefGoogle Scholar
  10. Ogawara, H., Maeda, K., and Umezawa, H., 1968, The biosynthesis of pyridomycin, Biochemistry 7: 3296.PubMedCrossRefGoogle Scholar
  11. Perlman, D., Otani, S., Perlman, K. L., and Walker, J. E., 1973, 3-Hydroxy-4methylkynurenine as an intermediate in actinomycin biosynthesis, J Antibiot. 26: 289.Google Scholar
  12. Ristow, H., Salnikow, J., and Kleinkauf, H., 1974, Biosynthesis of valinomycin, FEBS Lett. 42: 127.PubMedCrossRefGoogle Scholar
  13. Suhadolnik, R. J., 1981, Biosynthesis of the nucleoside antibiotics, in Antibiotics IV—Biosynthesis ( J. W. Corcoran, ed.), pp. 353–370, Springer-Verlag, Berlin.Google Scholar
  14. Vara, J. A., Lewandoska-Sharbek, M., Wang, Y., Donadio, S., and Hutcinson, C. R., 1989, Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythraea (Streptomyces erythreus), J. Bacteriol. 171: 5872.PubMedGoogle Scholar
  15. Walker, J. B., 1975, Pathways of biosynthesis of guanetidated inositol moieties of streptomycin and bluensomycin, Methods Enzymol. 43: 429.PubMedCrossRefGoogle Scholar
  16. Zocher, R., and Kleinkauf, H., 1978, Biosynthesis of enniantin B: Partial purification and characterization of the synthesizing enzyme and studies of the biosynthesis, Biochem. Biophys. Res. Commun. 81: 1162.PubMedCrossRefGoogle Scholar

Class II Reactions

  1. Baldwin, J. E., Bird, J. W., Field, R. A., O’Challagan, N. M., Schofield, C. J., and Willis, A. C., 1991, Isolation and partial characterization of ACV synthetase from Ceph-alosporium acremonium and Streptomyces clavuligerus. Evidence of the presence of phosphopantothenate in ACV synthetase, J. Antibiot. 44: 241.PubMedCrossRefGoogle Scholar
  2. Baltz, R. H., and Seno, E. T., 1988, Genetics of Streptomyces fradiae and tylosin biosynthesis, Annu. Rev. Microbiol. 42: 547.PubMedCrossRefGoogle Scholar
  3. Behal, V., Bucko, M., and Hostalek, Z., 1983, Tetracyclines, in Biochemistry and Genetics of Commercially Important Antibiotics ( L. C. Vining, ed.), pp. 255–276, Addison–Wesley, Reading, Mass.Google Scholar
  4. Donadio, S., Stayer, M. J., McAlpine, J. B., Swanson, S. J., and Katz, L., 1991, Modular organization of genes required for complex polyketide biosynthesis, Science 252: 675.PubMedCrossRefGoogle Scholar
  5. Donovan, M. J., Borell, C. W., Wendt-Pienkowsky, E., Deli, S., and Hutchinson, C. R., 1989, Polyether antibiotic biosynthesis: Biochemical and genetic aspects, in Genetics and Molecular Biology of Industrial Microorganisms ( C. L. Hershberger, S. W. Queener, and G. Hegeman, eds.), pp. 85–92, American Society for Microbiology, Washington, D.C.Google Scholar
  6. Ebersole, R. C., Godfredsen, W. O., Vangedal, S., and Caspi, E., 1973, Mechanism of oxidative cyclization of squalene. Evidence for cyclization of squalene from either end of squalene molecule in the in vivo biosynthesis of fusidic acid by Fusidium coccineum, J. Am. Chem. Soc. 95: 8133.PubMedCrossRefGoogle Scholar
  7. Harris, C. M., Roberson, J. S., and Harris, T. M., 1976, Biosynthesis of griseofulvin, J. Am. Chem. Soc. 98: 5380.PubMedCrossRefGoogle Scholar
  8. Hopwood, D. A., and Sherman, D. H., 1990, Molecular genetics of polyketides and its comparison to fatty acid biosynthesis, Annu. Rev. Genet. 24: 37.PubMedCrossRefGoogle Scholar
  9. Jung, G., 1991, Lantibiotics—Ribosomally synthesized biologically active polypeptides containing sulfide bridges and a- 3-didehydroamino acids, Angew. Chem. Int. Ed. Engl. 30: 1051.CrossRefGoogle Scholar
  10. Kleinkauf, H., and von Döhren, H., 1987, Biosynthesis of peptide antibiotics, Annu. Rev. Microbiol. 41: 259.PubMedCrossRefGoogle Scholar
  11. Lancini, G. C., 1986, Ansamycins, in Biotechnology, Vol. 4, (H. Pape and H.-J. Rehm, eds.), pp. 431–463, VCH Verlag, Weinheim.Google Scholar
  12. Martin, J. F., 1984, Biosynthesis, regulation and genetics of polyene macrolide antibiotics, in Macrolide Antibiotics ( S. Omura, ed.), pp. 405–424, Academic Press, New York.Google Scholar
  13. Omura, S., and Tanaka, Y., 1984, Biochemistry, regulation and genetics of macrolide production, in Macrolide Antibiotics ( S. Omura, ed.), pp. 199–259, Academic Press, New York.Google Scholar
  14. Shulman, M. D., Valentino, D., and Hensens, O., 1986, Biosynthesis of avermectins by Streptomyces avermitilis. Incorporation of labelled precursors, J. Antibiot. 39: 541.CrossRefGoogle Scholar
  15. Strohl, W. R., Bartel, P. L., Connors, M. C., Zhy, C., Dosch, D. C., Beale, J. M., Floss, H. G., Stutzman-Engwall, K., Otten, S. L., and Hutchinson, C. R., 1989, Biosynthesis of natural and hybrid polyketides by anthracycline-producing streptomycetes, in Genetics and Molecular Biology of Industrial Microorganisms ( C. L. Hershberger, S. W. Queener, and G. Hegeman, eds.), pp. 68–84, American Society for Microbiology, Washington, D.C.Google Scholar
  16. Umezawa, S., Kondo, S., and Ito, Y., 1986, Aminoglycoside antibiotics, in Biotechnology, Vol. 4 ( H. Pape and H.-J. Rehm, eds.), pp. 309–357, VCH Verlag, Weinheim.Google Scholar
  17. Vater, J., 1990, Gramicidin S synthetase, in Biochemistry of Peptide Antibiotics (H. Kleinkauf and H. van Dohren, eds.), pp. 33–55, de Gruyter, Berlin.Google Scholar
  18. Zang, J., and Demain, A. L., 1990, Purification of ACV synthetase from Streptomyces clavuligerus, Biotechnol. Lett. 12: 46.Google Scholar

Class III Reactions

  1. Baltz, R. H., Seno, E. T., Stonesifer, J., Matsushima, P., and Wild, G. M., 1982, Genetics and biochemistry of tylosin production, in Trends in Antibiotic Research ( H. Umezawa, A. L. Demain, T. Hata, and C. R. Hutchinson, eds.), pp. 65–72, Japan Antibiotics Research Association, Tokyo.Google Scholar
  2. Demain, A. L., and Wolfe, S., 1987, Biosynthesis of cephalosporins, Dev. Ind. Microbiol: 27: 175.Google Scholar
  3. Kase, H., Odakura, Y., Takazawa, Y., Kitamura, S., and Nakayama, K., 1982, Biosynthesis of sagamicin and related aminoglycosides, in Trends in Antibiotic Research ( H. Umezawa, A. L. Demain, T. Hata, and C. R. Hutchinson, eds.), pp. 195–211, Japan Antibiotics Research Association, Tokyo.Google Scholar
  4. Knock, M., Van Pée, K., Vining, L. C., and Lingens, F., 1989, Purification, properties and immunological detection of a bromoperoxidase-catalase from Streptomyces venezuelae and from a chloramphenicol-non producing mutant, J. Gen. Microbiol. 135: 2493.Google Scholar
  5. Nuesch, J., Heim, J., and Treichler, H. J., 1987, The biosynthesis of sulfur-containing ß-lactam antibiotics, Annu. Rev. Microbiol. 41: 51.PubMedCrossRefGoogle Scholar
  6. Okuda, T., and Ito, Y., 1982, Biosynthesis and mutasynthesis of aminoglycoside antibiotics, in Aminoglycoside Antibiotics ( H. Umezawa and I. R. Hooper, eds.), pp. 111–203, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  7. Speedie, M. K., Zulty, J. J., Fox, B. M., and Wallace, K. K., 1992, Methylation pathways in antibiotic producing streptomycetes, in Secondary Metabolite Biosynthesis and Metabolism ( R. J. Petrosky and S. P. McCormick, eds.), pp. 61–76, Plenum Press, New York.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Giancarlo Lancini
    • 1
  • Rolando Lorenzetti
    • 1
  1. 1.MMDRI-Lepetit Research CenterGerenzano (Varese)Italy

Personalised recommendations