Advertisement

Living Polymerization of Proteins: Actin and Tubulin. A Review

  • Stoil Dirlikov

Abstract

Living polymerization of the two major proteins in eucaryotic cells: actin and tubulin is reviewed. Actin is a large globular protein built of 375 alpha-amino acid residues and has a molecular weight of 42,000. It polymerizes in vivo and in vitro with the formation of long linear filaments (up to 50 microns) with two distinguished (“plus” and “minus”) ends. Actin filaments are in equilibrium with the surrounding monomeric actin and undergo treadmilling, i.e., continuous polymerization at the plus end and depolymerization at the minus end which allows their spacial movement without changing the filament length. Tubulin is a larger globular protein (dimer) with a molecular weight of 100,000 which exhibits similar polymerization behavior. Microtubulin filaments, however, characterize with dynamic instability, i.e., they polymerize slower but undergo very fast depolymerization. Cell utilization and regulation of actin and tubulin polymerization is briefly reviewed as well.

Keywords

Actin Filament Sperm Cell Actin Polymerization Dynamic Instability Tubulin Polymerization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. W. Webster, Science, 251, 887 (1991). Google Scholar
  2. 2.
    T. D. Pollard and J. A. Cooper, Ann. Rev. Biochem., 55, 987 (1986).PubMedCrossRefGoogle Scholar
  3. 3.
    E. D. Korn,Physiol. Rev., 62, 672 (1982). Google Scholar
  4. 4.
    T. D. Pollard and S. W. Craig, Trends Biochem. Sci., 7, 55 (1987).CrossRefGoogle Scholar
  5. 5.
    E. D. Kron, D. J. Fishkind and D. Pantalomi, Science, 238, 638 (1983).CrossRefGoogle Scholar
  6. 6.
    E. M. Bomder, D.J. Fishkind and M. S. Mooseker, cell, 34, 491 (1983).Google Scholar
  7. 7.
    R. Cooke, CRC Crit. Rev. Biochem., 21,53 (1986). Google Scholar
  8. 8.
    H. E. Huxley,Science, 164, 1356 (1969). Google Scholar
  9. 9.
    M. Schliwa,“The Cytoskeleton –An Introductory Survey,” Springer Verlag, New York, 1986.Google Scholar
  10. 10.
    T. P. Stossel, C. Chaponnier, R. M. Ezzell, J. H. Hartwig, P. A. Janmey, D. J. Kwiatkowski, S. E. Lind, D. B. Smith, F. S. Southwick, H. L. Yin and K. S. Zaner, Ann. Rev. Cell Biol., 1, 353 (1985).PubMedCrossRefGoogle Scholar
  11. 11.
    Y. Wang, J. Cell Biol., 101, 597 (1985).PubMedCrossRefGoogle Scholar
  12. 12.
    L. G. Tilney, E. M. Bonder and D. J. DeRosier, J. Cell Biol., 90, 485 (1981).PubMedCrossRefGoogle Scholar
  13. 13.
    J. Boyles and D. F. Bainton, Cell, 24, 905 (1981).PubMedCrossRefGoogle Scholar
  14. 14.
    L. G. Tilney and S. Inoue, J. Cell Biol., 93, 820 (1982).PubMedCrossRefGoogle Scholar
  15. 15.
    P. Dustin, “Microtubules, 2nd. Ed., Springer Verlag, Berlin, (1984).Google Scholar
  16. 16.
    P. Dustin, Scient. Amer., 243 (8), 66 (1980).CrossRefGoogle Scholar
  17. 17.
    D. W. Cleveland and K. F. Sullivan, Ann. Rev. Biochem., 54, 331 (1985).PubMedCrossRefGoogle Scholar
  18. 18.
    E. C. Raff, J. Cell Biol., 99, 1 (1984).PubMedCrossRefGoogle Scholar
  19. 19.
    E.-M. Mandelkow, R. Schultheiss, R. Rapp, M. Muller and E. MandelkowGoogle Scholar
  20. 20.
    J. Cell Biol., 102, 1067 (1986).CrossRefGoogle Scholar
  21. 20.
    L. A. Amos and T. S. Baker, Nature, 279, 607 (1979).PubMedCrossRefGoogle Scholar
  22. 21.
    M. Kirschner and T. Mitchison, Cell, 45, 329 (1986).PubMedCrossRefGoogle Scholar
  23. 22.
    D. N. Wheatley, “The Centriole: A Central Enigma of Cell Biology, Elsevier, New York, 1982.Google Scholar
  24. 23.
    B. R. Brinkley, Ann. Rev. Cell Biol., 1, 145 (1985).PubMedCrossRefGoogle Scholar
  25. 24.
    J. R. McIntosh, Mod. Cell Biol., 2, 115 (1983).Google Scholar
  26. 25.
    M.-F. Carlier, Cell Biophys., 12, 105 (1988).PubMedGoogle Scholar
  27. 26.
    T. Mitchison and M. Kirschner, Nature, 312, 237 (1984).PubMedCrossRefGoogle Scholar
  28. 27.
    K. W. Farrell, M. A. Jordan, H. P. Miller and L. Wilson, J. Cell Biol., 104, 1035 (1987).PubMedCrossRefGoogle Scholar
  29. 28.
    T. Horio and H. Hotani, Nature, 321, 605 (1986).PubMedCrossRefGoogle Scholar
  30. 29.
    M. de Brabander, Endeavor, 6, 124 (1982).CrossRefGoogle Scholar
  31. 30.
    R. D. Allen, Scient. Amer., 256 (2), 42 (1987).CrossRefGoogle Scholar
  32. 31.
    I. R. Gibbons, J. Cell Biol., 91, 107s (1981).Google Scholar
  33. 32.
    S. Inoue, J. Cell Biol., 91, 131s (1981).Google Scholar
  34. 33.
    L. T. Haimo and J. L. Rosenbaum, J. Cell Biol., 91, 125s (1981).Google Scholar
  35. 34.
    R. D. Sloboda, Am. Sci., 68, 290 (1980).PubMedGoogle Scholar
  36. 35.
    E. Schulze and M. Kirschner, J. Cell Biol., 102, 1010 (1986).CrossRefGoogle Scholar
  37. 36.
    J. S. Hyams and B. R. Brinkley, “Mitosis Molecules and Mechanism, Academic Press, London, 1989.Google Scholar
  38. 37.
    T. Mitchison and M. Kirschner, Nature, 312, 232 (1984).PubMedCrossRefGoogle Scholar
  39. 38.
    J. A. Cooper, J. Cell Biol., 105, 1473 (1987).PubMedCrossRefGoogle Scholar
  40. 39.
    A. Weeds, Nature, 296, 811 (1982).PubMedCrossRefGoogle Scholar
  41. 40.
    J. B. Olmstead, Ann. Rev. Cell Biol., 2, 421 (1986).CrossRefGoogle Scholar
  42. 41.
    L. Wilson, Life Sci., 17, 303 (1975).PubMedCrossRefGoogle Scholar
  43. 42.
    E. D. Salmon, M. McKeel and T. Hays, J. Cell Biol., 99, 1066 (1984).PubMedCrossRefGoogle Scholar
  44. 43.
    M. de Brabander, et al.,Int. Rev. Cytol., 101 215 (1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Stoil Dirlikov
    • 1
  1. 1.Coatings Research InstituteEastern Michigan UniversityYpsilantiUSA

Personalised recommendations