Advertisement

Chitin and Chitosan: Ecologically Bioactive Polymers

  • Shigehiro Hirano
  • Hiroshi Inui
  • Hideto Kosaki
  • Yoshitaka Uno
  • Tsuyoshi Toda

Abstract

Chitinase and lysozyme activities were stimulated by treating with chitin, chitosan, or derivatives in a culture of plant and animal cells. (1) Chitinase activity was stimulated about 1.5 times by treating with chitin or chitosan in the calluses of rice, cabbage leaves and soybean. (2) Two chitinase isozymes were detected in untreated rice callus, and an additional isozyme was detected in rice callus treated with o-carboxymethylchitin. (3) Radish seed chitinase was stimulated 1.3 times by coating with low-molecularchitosan (d.p. 20) or chitosan-oligosaccharides (d.p. 2–9) at the growing stage of germination. (4) Extracellular lysozyme activity was stimulated by chitin or chitin-oligosaccharides (d.p. 7,8) in the culture of chicken embryo fibroblast cells. (5) Serum lysozyme activity was enhanced by intravenous injection of chitosan-oligosaccharides (d.p. 2–9). A mechanism for the induction of chitinase isozyme in plant cells was proposed, its ecological significance was discussed, and some applications in the field of biotechnology were described.

Keywords

Chitinase Activity Lysozyme Activity Crude Enzyme Extract Chitosan Derivative Rice Callus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Knorr, Food Technol., 85, (1984).Google Scholar
  2. 2.
    S. Hirano, M. Hayashi, K. Murae, H. Tsuchida, & T. Nishida, in: “Applied Bioactive Polymeric Materials, C. G. Gebelein, C. E. Carraher, Jr., & V. R. Foster, Eds., Plenum Publ. Corp., New York, 1988, p. 45.Google Scholar
  3. 3.
    A. Schlumbaum, F. Mauch, U. Vogeli, & T. Boiler, Nature, 324, 365 (1986).CrossRefGoogle Scholar
  4. 4.
    S. Hirano, Y. Koishibara, S. Kitaura, T. Tanaka, H. Tsuchida, K. Murae & T. Yamamoto, Biochem. System. Ecol., 19, 379 (1991).CrossRefGoogle Scholar
  5. 5.
    S. Hirano, H. Seino, Y. Akiyama & I. Nonaka, in: “Progress in Biomedical Polymers, C. G. Gebelein & R. L. Dunn, Eds., Plenum Publ. Corp., New York, 1990, p. 283.Google Scholar
  6. 6.
    H. Lowry, N. J. Rosebrough, A. L. Farr & R. J. Randall, J. Biol. Chem., 193, 265 (1951).Google Scholar
  7. 7.
    T. Imoto & K. Yagishita, Agric. Biol. Chem., 35, 1154 (1971).CrossRefGoogle Scholar
  8. 8.
    R. A. Reisfeld, U. J. Lewis & D. E. Williams, Nature, 195, 281 (1962).PubMedCrossRefGoogle Scholar
  9. 9.
    D. E. Williams & R. A. Reisfeld, Ann. New York Acad. Sci., 121, 373 (1964).CrossRefGoogle Scholar
  10. 10.
    J. Trudel & A. Asselin, Anal. Biochem., 178, 362 (1989).PubMedCrossRefGoogle Scholar
  11. 11.
    S. Hirano & S. Okuno, to be published.Google Scholar
  12. 12.
    S. Hirano, C. Itakura, H. Seino, N. Kanbara, Y. Akiyama, I. Nonaka & T. Kawakami, J. Agr. Food Chem., 38, 1214 (1990).CrossRefGoogle Scholar
  13. 13.
    A. Tokoro, M. Kobayshi, N. Takewaki, K. Suzuki, Y. Okawa, T. Mikami & M. Suzuki, Microbiol. Immunol., 33, 357 (1989).PubMedGoogle Scholar
  14. 14.
    H. Shinnshi, J. M. Neuhaus, J. Ryals & F. Meins, Plant Mol. Biol., 14, 357 (1990).CrossRefGoogle Scholar
  15. 15.
    M. H. A. J. Joosteen & P. J. G. M. DeWitt, Plant Physiol., 89, 945 (1989).CrossRefGoogle Scholar
  16. 16.
    K. E. Broglie, J. J. Gaynor & R. M. Broglie, Proc. Natl. Acad. Sci. USA, 83, 6820 (1986).CrossRefGoogle Scholar
  17. 17.
    K. E. Broglie, P. Biddle, R. Cressman & R. Broglie, Plant Cell, 1, 599 (1989).PubMedGoogle Scholar
  18. 18.
    D. Keefe, U. Hinz & F. Meins, Plant, 182, 43 (1990).CrossRefGoogle Scholar
  19. 19.
    M. Legrand, S. Kauffmann, P. Geoffroy & B. Fritig, Proc. Natl. Acad. Sci. USA, 84, 6750 (1987).CrossRefGoogle Scholar
  20. 20.
    J. Malamy, J. P. Carr, D. F. Kleisig & I. Raskin, Science, 250, 1002 (1990).PubMedCrossRefGoogle Scholar
  21. 21.
    F. Mauch & L. A. Staehelin, Plant Cell. 1, 447 (1989).PubMedGoogle Scholar
  22. 22.
    T. Boiler & U. Vogeli, Plant Physiol., 74, 442 (1984).CrossRefGoogle Scholar
  23. 23.
    N. Benhamou, M. H. A. Joosteen & P. J. G. M. DeWitt, Plant Physiol., 92, 1108 (1990).PubMedCrossRefGoogle Scholar
  24. 24.
    R. S. Anderson & M. L. Cook, J. Invertebr. Pathol., 33, 197 (1979).CrossRefGoogle Scholar
  25. 25.
    K. Nishimura, S. Nishimura, N. Nishi, F. Numata, Y. Tone, S. Tokura & I. Azuma, Vaccine, 2, 93 (1984).PubMedCrossRefGoogle Scholar
  26. 26.
    L. A. Hadwiger & J. M. Beckman, Plant Physiol., 66, 205 (1980).PubMedCrossRefGoogle Scholar
  27. 27.
    G. P. Kaaya, C. Flyg & C. H. Boman, Insect Biochem., 17, 309 (1987).CrossRefGoogle Scholar
  28. 28.
    S. Hirano & N. Nagoa, Agric. Biol. Chem., 53, 3065 (1989).CrossRefGoogle Scholar
  29. 29.
    S. Hirano, T. Yamamoto, M. Hayashi, T. Nishida & H. Inui, Agric. Biol. Chem., 54, 2719 (1990).CrossRefGoogle Scholar
  30. 30.
    L. A. Hadwiger, R. Fristensky & R. C. Riggleman, in: “Chitin, Chitosan, and Related Enzymes, J. P. Zikakis, Ed., Academic Press, Orlando, 1984, p. 291.Google Scholar
  31. 31.
    S. Hirano, “Nogyogijutsutaikei (Japanese)”, 7, 156. 18 (1992).Google Scholar
  32. 32.
    S. Hirano, in: “A Hand-book for Novel Medical Materials, M. Seno & O. Otsubo, Eds., R & D Planning, Tokyo, 1986, p. 235.Google Scholar
  33. 33.
    P. R. Austin, C. J. Brine, J. E. Castle & J. P. Zikakis, Science, 212, 749 (1981).PubMedCrossRefGoogle Scholar
  34. 34.
    Y. Uchida, Food Chemicals (Japanese), February, p. 22 (1988).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Shigehiro Hirano
    • 1
  • Hiroshi Inui
    • 1
  • Hideto Kosaki
    • 1
  • Yoshitaka Uno
    • 1
  • Tsuyoshi Toda
    • 1
  1. 1.Department of Agricultural Biochemistry and BiotechnologyTottori UniversityTottoriJapan 680

Personalised recommendations