Advertisement

Electron Transfer Reactions in Multicopper Oxidases

  • Lilia Calabrese
Part of the Electronics and Biotechnology Advanced (EL.B.A.) Forum Series book series (ELBA, volume 3)

Abstract

The copper ion is essential for all biological systems and, with the only exception of storage proteins, all copper proteins are involved in electron transfer (ET) processes. Electron transfer in proteins shares common features with that occurring in small molecules, however some features distinguish the two systems. Small molecules exchange electrons in solution at close proximity or direct contact to afford inner sphere mechanisms. In proteins redox partners are held in fixed positions and in case of long donor-acceptor distances for long range electron transfer, the intervening medium is the protein matrix. ET in proteins is characterized by a weak interaction between electron donors and acceptors, prevented from coming in contact by the polypeptide chain. Different evolutionary mechanisms have evolved to overcome this hindrance in the different classes of proteins. The blue multicopper oxidases use a structural motif of the polypeptide chain to provide efficient electronic coupling between two redox partners, a mononuclear copper site, referred to as the blue site, and a trinuclear copper site. Blue sites have evolved in blue copper proteins as fast one electron transfer device, while the trinuclear cluster is specially suited to oxygen binding and reduction. The efficient catalytic function of multicopper oxidases results from the synergistic use of these two sites in an intramolecular electron transfer process which couples one electron oxidation of substrates to four electron reduction of dioxygen. Therefore they are among the few enzymes that utilize the full oxidizing capacity of oxygen, which is reduced to two water molecules.

Keywords

Copper Atom Reorganization Energy Copper Site Multicopper Oxidase Copper Binding Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beratan, D. N:, Onuchic, J. N., Betts, J. N., Bower, B. E., and Gray, H. B.,1990, J. Am. Chem. Soc., 112: 7915Google Scholar
  2. Calabrese, L., Carbonaro, M., and Musci, G., 1988, J. Biol. Chem., 263: 6480Google Scholar
  3. Calabrese, L., Carbonaro, M., and Musci, G., 1989, J. Biol. Chem., 264: 6183Google Scholar
  4. Carrico,R. J.,Malmstrom, B. G., and Vanngard, T., 1971, Eur. J. Biochem., 22: 127CrossRefGoogle Scholar
  5. Cole, J. L., Ballou,D. P., and Solmon, E. I., 1991, J Am. Chem. Soc., 113: 8544CrossRefGoogle Scholar
  6. Deinum, J., and Vanngard, T., 1973, Biochim Biophys Acta, 310: 321CrossRefGoogle Scholar
  7. Farver, O., Wherland, S., and Pecht, I., 1994, J.Biol. Chem., 269: 22933Google Scholar
  8. Harris, Z.L., Takahashi, Y., Miyajima, H., Serizawa, M., Macgillivray, R. T. A., and Gitlin,J. D., 1995, Proc. Natl. Acad. Sci., 92: 2539Google Scholar
  9. Holm, R. H., Kennepolh, P., and Solomon, E. I., 1996, Chem. Rev., 96: 2239Google Scholar
  10. Huber, C.T., and Frieden, E., 1970, J. Biol. Chem., 245: 3973Google Scholar
  11. Guss, J. M., Harrowell, P. R., Murato, M., Norris, V. A., and Freeman, H. C., 1986, J. Mol. Biol., 192: 361CrossRefGoogle Scholar
  12. Kawahara, K., Suzuki, S., Sakurai, T., and Nakahara, N., 1985, Arch. Biochem. Biophys., 241: 179CrossRefGoogle Scholar
  13. Kyritsis, A., Messerschmidt, A., Huber, R., Salmon, G. A., and Sykes, A. G., 1992, Chem. Soc. Dalton Trans.,73Google Scholar
  14. Lindley, P.F., Card, G., Zaitseva, I., Zaitsev, V., Reinhammar, B., Selin-Lindgren, E., and Yoshida, K., 1997, J. Biol. Inorg. Chem., 2: 454.CrossRefGoogle Scholar
  15. Lowery, M. D., Guckert, J. A., Gebhard, M. S., Solomon, E. I., 1993, J. Am. Chem. Soc., 115: 3012CrossRefGoogle Scholar
  16. Malkin, R., and Malmstrom, B. G., 1970, Adv. Enzymol., 33: 77Google Scholar
  17. Malmstrom, B. G., 1994, Eur. J. Bioche., 223: 711CrossRefGoogle Scholar
  18. Malmstrom, B. G., 1997, in Multi-Copper Oxidases, A. Messerschmidt, ed., World Scientific, SingaporeGoogle Scholar
  19. Marcus, R. A., and Sutin, N., 1985, Biochim. Biophys. Acta, 811: 265CrossRefGoogle Scholar
  20. Messerschmidt, A., Rossi, A., Ladenstein, R., Huber, R., Bolognesi, M., Gatti, G., Marchesini, A., Petruzzelli, and Finazzi-Agrò, A., 1989, J. Mol. Biol., 206: 513CrossRefGoogle Scholar
  21. Messerschmidt, A., Ladenstein, R., Huber, R., Bolognesi, M., Avigliano, L., Petruzzelli, R., Rossi, a., and Finazzi-Agrò, A., 1992, J. Mol. Biol., 2224: 179CrossRefGoogle Scholar
  22. Messrschmidt, A., Luecke, H., and Huber, R., 1993, J. Mol. Biol., 230: 997CrossRefGoogle Scholar
  23. Messerschmidt, A., 1997, in Multi-Copper Oxidases, A. Messerschmidt, ed., World Scientific, SingaporeGoogle Scholar
  24. Musci, G., Bonaccorsi di Patti, M.C., and Calabrese, L., 1993, Arch. Biochem. Biophys., 306: 111CrossRefGoogle Scholar
  25. Musci,G., Bonaccorsi di Patti, M. C., Fagiolo, U., 1993, J. Biol. Chem., 268: 13388Google Scholar
  26. Musci, G., Bonaccorsi di Patti, M.C., and Calabrese, L., 1995, J Prot. Chem., 14: 611CrossRefGoogle Scholar
  27. Musci, G., Polticelli, F., and Calabrese, L., 1998 in press, in Copper Transport and its Disorders: Molecular and Cellular Aspects, A. Leone and J. F. B. Mercer, eds.Google Scholar
  28. Osaki, S., and Walaas, O., 1967, J. Biol. Chem., 242: 2653Google Scholar
  29. Patel, B.N., and David, S., 1997, J. Biol. Chem., 272: 20185CrossRefGoogle Scholar
  30. Reinhammar, B., 1972, Biochim. Biophys. Acta, 275: 274Google Scholar
  31. Reinhammar, B., 1997, in Multi-Copper Oxidases, A. Messerschmidt, ed., World Scientific, SingaporeGoogle Scholar
  32. Ryde, U., Olsson, M. H. M., Pierloot, K., and Roos, B. O., 1996, J. Mol. Biol., 261: 586CrossRefGoogle Scholar
  33. Ryden, L., 1984, in Copper Proteins and Copper Enzymes, R. Lontie, ed., CRC Press, BocaGoogle Scholar
  34. Raton, FL Ryden, L., 1988, in Oxidases and Related Redox Systems, T. S. King, H. M. Mason and M. Morrison, eds., A. R. Liss, New YorkGoogle Scholar
  35. Solomon, E. I., and Lowery, M. D., 1993, Science, 259: 1575Google Scholar
  36. Solomon, E.I., Sundaram, U.M., and Machonkin, T.E., 1996, Chem. Rev., 96: 2563CrossRefGoogle Scholar
  37. Williams, R. J. P., 1995, Eur. J. Biochem., 234: 363CrossRefGoogle Scholar
  38. Zaitseva, I., Zaitsev, V., Card, G., Moshkov, K., Bax, B., Ralph, A., and Lindley, P., 1996, J. Biol. Inorg. Chem., 1: 15CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Lilia Calabrese
    • 1
  1. 1.Department of BiologyUniversity of Roma TRERomeItaly

Personalised recommendations