Targeted Expression of Mammalian Cytochromes P450SCC and P4502B4 in Yeast Saccharomyces cerevisiae

  • Michael A. Eldarov
  • Vadim E. Sidorovich
  • Galina E. Pozmogova
  • Konstantim G. Skryabin
Part of the Electronics and Biotechnology Advanced (EL.B.A.) Forum Series book series (ELBA, volume 3)


Cytochrome P450-dependent electron transfer systems represent a diverse and important class of metalloproteins that show significant promise as a source of new materials for bioelectronics, design of new biosensors and multistage enzyme processing systems (for discussion see Nicolini et al., 1995; Pashkevitch et al., 1996).


Endoplasmic Reticulum Membrane Cytochrome P4502B4 Transform Yeast Cell Recombinant Yeast Strain Mammalian Cytochrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akiyoshi-Shibata, M., Sakaki, T., Yabusaki, Y., Murakami, H., Ohkawa, H., 1991, Expression of bovine adrenodoxin and NADPH-adrenodoxin reductase cDNAs in Saccharomyces cerevisiae, DNA Cel Biol. 10: 613.CrossRefGoogle Scholar
  2. Black, S.D., 1992, Membrane topology of the mammalian P450 cytochromes, FASEB J. 6: 680.Google Scholar
  3. Black, S.M., Harikrishna, J.A., Szklarz, G.D., Miller, W.L., 1994, The mitochondrial environment is required for activity of the cholesterol side-chain cleavage enzyme, cytochrome P450scc, Proc Natl Acad Sci USA. 91: 7247.ADSCrossRefGoogle Scholar
  4. Cullin, C., Pompon, D., 1988, Synthesis of functional mouse cytochromes P450P1 and chimeric P450P3–1 in the yeast Saccharomyces cerevisiae, Gene. 65: 203.CrossRefGoogle Scholar
  5. Degtyarenko, K.N., Archakov, A.I., 1993, Molecular evolution of P450 superfamily and P450-containing monooxygenase systems, FEBS Lett. 332: 1.CrossRefGoogle Scholar
  6. Dumas, B., Cauet, G., Lacour, T., Degryse, E., Laruelle, L., Ledoux, C., Spagnoli, R., Achstetter, T., 1996, 1113-Hydroxylase activity in recombinant yeast mitochondria. In vivo conversion of 11-deoxycortisol to hydrocortisone, Eur. J. Biochem. 238: 495.CrossRefGoogle Scholar
  7. Estabrook, R.W., Shet, M.S., Faulkner, K., Fisher, C.W., 1996, The use of electrochemistry for the synthesis of 17 alpha-hydroxyprogesterone by a fusion protein containing P450c17, Endocr Res. 22: 665.Google Scholar
  8. Fischer, C.W., Caudle, D.L., Martin-Wixtroin, C., Quattrochi, L.C., Tukey, R.H., Waterman, M.R., Estabrook, R.W., 1992, High-level expression of functional human cytochrome P450 1A2 in Escherichia coli, FASEB J. 6: 759.Google Scholar
  9. Gasser, R., Negishi, M., Philpot, R.M 1988, Primary structures of multiple forms of cytochrome P-450 isozyme 2 derived from rabbit pulmonary and hepatic cDNAs, Mol Pharmacol. 33: 22.Google Scholar
  10. Gonzalez, F.J., 1992, Human cytochromes P450: problems and prospects, Trends Pharmacol Sci. 13: 346.CrossRefGoogle Scholar
  11. Guengerich, F.P., 1992, Cytochrome P450: advances and prospects, FASEB J. 6: 667.Google Scholar
  12. Hovland, P., Flick, J., Johnston, M., Sclafani, R.A., 1989, Galactose as a gratuitous inducer of GAL gene expression in yeasts growing on glucose, Gene. 83: 57.CrossRefGoogle Scholar
  13. Kedzie, K.M., Philpot, R.M., Halpert, J.R., 1991, Functional expression of mammalian cytochromes P450IIB in the yeast Saccharomyces cerevisiae, Arch Biochem Biophys. 291: 176.CrossRefGoogle Scholar
  14. Kim, Y.C., Ariyoshi, N., Artemenko, I., Elliott, M.E., Bhattacharyya, K.K., Jefcoate, C.R., 1997, Control of cholesterol access to cytochrome P450scc in rat adrenal cells mediated by regulation of the steroidogenic acute regulatory protein, Steroids. 62: 10.CrossRefGoogle Scholar
  15. Li, H., Poulos, T.L., 1994, Structural variation in heure enzymes: a comparative analysis of peroxidase and P450 crystal structures, Structure. 2: 461.CrossRefGoogle Scholar
  16. Miller, W.L. 1988. Molecular biology of steroid hormone synthesis, Endocrine Rev., 9: 295.CrossRefGoogle Scholar
  17. Murakami, H., Yabusaki, Y., Sakaki, T., Shibata, M., Ohkawa, H., 1987, A genetically engineered P450 monooxygenase: construction of functional fused enzyme between rat cytochrome P450c and NADPH P450 reductase, DNA. 6: 189.CrossRefGoogle Scholar
  18. Murakami, H., Yabusaki, Y., Sakaki, T., Shibata, M., Ohkawa, H., 1990, Expression of cloned yeast NADPH P450 reductase gene in Saccjaromyces cerevisiae. J.Biochem. 87: 859.Google Scholar
  19. Nicolini, C., 1995, From neural chip and engineering biomolecules to bioelectronic devices: an overview, Biosens Bioelectron. 10: 37.Google Scholar
  20. Oeda, K., Sakaki, T., Ohkawa, H., 1985, Expression of rat liver cytochrome P450MC cDNA in Saccharomyces cerevisiae, DNA. 4: 203.CrossRefGoogle Scholar
  21. Parikh, A. Guengerich, F.P., 1997, Expression, purification, and characterization of a catalytically active human cytochrome P450 1A2:rat NADPH-cytochrome P450 reductase fusion protein, Protein Expr Purif. 9: 346.CrossRefGoogle Scholar
  22. Pashkevitch, P., Sivozhelezov, V., Vakula, S., Sidorovich, V., Eldarov, M., Nozza, F., Nicolini, C., 1995, High yield recombinant cytochrome P450SCC and its optimisation for Bioelectronics from Ab initio considerations, In: Molecular Manufacturing, EL.B.A. Forum Proceedings, 2: 119, C.Nicolini, ed., Plenum Publishing Corp., New York-London.Google Scholar
  23. Pernecky, S.J., Larson, J.R., Philpot, R.M., Coon, M.J., 1993, Expression of truncated forms of liver microsomal P450 cytochromes 2B4 and 2E1 in Escherichia coli: influence of NH2-terminal region on localization in cytosol and membranes, Proc Natl Acad Sci USA. 90: 2651.ADSCrossRefGoogle Scholar
  24. Pernecky, S.J., Coon, M.J., 1996, N-terminal modifications that alter P450 membrane targeting and function, Methods Enzymol. 272: 25.CrossRefGoogle Scholar
  25. Pompon, D., Louerat, B., Bronine, A., Urban, P., 1996, Yeast expression of animal amd plant P450s in optimized redox environments, Methods Enzymol., 272: 51.CrossRefGoogle Scholar
  26. Pritchard, M.P., Ossetian, R., Li, D.N., Henderson, C.J., Burchell, B., Wolf, C.R., Friedberg, T., 1997, A general strategy for the expression of recombinant human cytochrome P450s in Escherichia coli using bacterial signal peptides: expression of CYP3A4, CYP2A6, and CYP2E1, Arch Biochem Biophys. 345: 342.CrossRefGoogle Scholar
  27. Ramsden, J.J., Bachmanova, G.I., Archakov, A.I., 1996, Immobilization of proteins to lipid bilayers, Biosens Bioelectron. 11: 523.CrossRefGoogle Scholar
  28. Ravichandran, K.G., Boddupali, S.S., Hasemann, C.A., Peterson, J.A., Deisenhofer, J., 1993. Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450’s, Science. 261: 731.ADSCrossRefGoogle Scholar
  29. Saier, M.H., Werner, P.K., Muller, M., 1989, Insertion of proteins into bacterial membranes: mechanism, characteristics, and comparison with the eukaryotic process, Microbiol. Rev. 53: 333.Google Scholar
  30. Sakaki, T., Akiyoshi-Shibata, M., Yabusaki, Y., Ohkawa, H., 1992, Organella-targeted expression of rat liver cytochrome P450c27 in yeast. Genetically engineered alteration of mitochondria! P450 into a microsomal form creates a novel functional electron transport chain, J Biol Chem. 267: 16497.Google Scholar
  31. Sakaki, T., Kominami, S., Takemori, S., Ohkawa, H., Akioyoshi-Shibata, M., Yabusaki Y., 1994, Kinetic studies on a genetically engineered fused enzyme between rat cytochrome P4501A1 and yeast NADPH-P450 reductase, Biochemistry, 33: 4933.CrossRefGoogle Scholar
  32. Sakaki, T., Kominami, S., Hayashi, K., Akiyoshi-Shibata, M., Yabusaki, Y., 1996, Molecular engineering study on electron transfer from NADPH-P450 reductase to rat mitochondrial P450c27 in yeast microsomes, J. Biol. Chem., 271: 26209.CrossRefGoogle Scholar
  33. Shet, M.S., Fisher, C.W., Ariotto, M.P., Shackleton, C.H., Holmans, P.L., Martin-Wixtrom, C.A., Saeki, Y. Estabrook, R.W., 1994, Purification and enzymatic properties of a recombinant fusion protein, expressed in Escherichia coli, containing the domains of bovine P450 17A and rat NADPH-P450 reductase, Arch Biochem Biophys, 311: 402.Google Scholar
  34. Shinabarger, D.L., Keesler, G.A., Parks, L.W., 1989, Regulation by heure of sterol uptake in Saccharomyces cerevisiae, Steroids. 53: 607.CrossRefGoogle Scholar
  35. Sugano, S., Morishima, N., Ikeda, H., Horie, S., 1989, Sensitive assay of cytochrome P450scc activity by high-performance liquid chromatography, Anal Biochem. 182: 327.CrossRefGoogle Scholar
  36. Usanov, S.A., Chashchin, V.L., Akhrem, A.A., 1990, Cytochrome P450-dependent pathways in steroid hormones biosynthesis, in: Frontiers in Biotransformation, 3: 1, K.Ruckpaul, ed., Taylor & Francis, Berlin-London.Google Scholar
  37. Waterman, M.R. 1994. Heterologous expression of mammalian P450 enzymes. Advances Enzymol. Relat. Areas Mol.Biol. 68: 37.Google Scholar
  38. White, R.E. Coon, M.J., 1980, Oxygen activation by cytochrome p450, Ann. Rev. Biochem. 49: 315.CrossRefGoogle Scholar
  39. Zhang, Z., Nassar, A-E.F., Lu, Z., Schenkman, J.B., and Rusting, J.F. 1997, Direct electron injection from electrodes to cytochrome P450cam in biomembrane-like films, J.Chem.Soc., Faraday Trans., 93: 1769.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Michael A. Eldarov
    • 1
  • Vadim E. Sidorovich
    • 1
  • Galina E. Pozmogova
    • 1
  • Konstantim G. Skryabin
    • 1
  1. 1.Center “Bioengineering” Russian Academy of SciencesMoscowRussia

Personalised recommendations