Advertisement

Preparation, Structural Characterization and Functional Coupling of Tethered Membranes to Solid Substrates

  • Wolfgang Knoll
  • Natascha Bunjes
  • Morgan Denyer
  • Claudia Heibel
  • Mieko Matsuzawa
  • Renate Naumann
  • Andreas Offenhäusser
  • Jürgen Rühe
  • Eva-Katrin Schmidt
  • Axel Sinner
  • Christoph Sprößler
Part of the Electronics and Biotechnology Advanced (EL.B.A.) Forum Series book series (ELBA, volume 3)

Abstract

One of the remaining major challenges of current scientific “hot topics” at the boundary between physics, chemistry, biology, medicine, materials science, and mechanical and electrical engineering is the interface between the living world of biomolecules, cells and tissues and the technical world of implants, sensor surfaces or signal transducers in neuroelectronic circuits. The understanding, design, fabrication, control and modification of these “bio-interfaces” will be in the center of many scientific activities aiming at compatibilizing the two spheres in an effort to not only induce a passive mutual toleration, but rather generate an interactive network of components originating from living organisms and, e.g., microelectronic devices (Nicolini, 1996).

Keywords

Microelectronic Device Covalent Coupling Neutron Reflectometry Tethered Membrane Transistor Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Advincula, R., Knoll, W., Blinov, L., Frank, C., Langmuir and LBK films of poly(vinylidene fluoride) and poly(vinylidene fluoride-co-trifluoroethylene) alternated with poly(methyl methacrylate) or poly(octadecyl methacrylate), Langmuir, submitted.Google Scholar
  2. Aust, E., Ito, S., Sawodny, M., Knoll, W., 1994, Investigation of polymer thin filins using surface plasmon modes and optical waveguide modes, TRIP 2: 313.Google Scholar
  3. Beyer, D., Bohanon, T.M., Knoll, W., Ringsdorf, H., Elender, G., Sackmann, E., 1996b, Surface modification via reactive polymer interlayers, Langmuir 12: 2514.CrossRefGoogle Scholar
  4. Beyer, D., Elender, G., Knoll, W., Kühner, M., Maus, S., Ringsdorf, H., Sackmann, E., 1996a, Influence of anchoring lipids on the stability of lipid bilayers on thin polymer films, Angew. Chemie 108: 1791.CrossRefGoogle Scholar
  5. Beyer, D., Knoll, W., Ringsdorf, H., Wang, J.-H., Timmons, R.B., Sluka, P., 1997, Reduced protein adsorption on plastics via direct plasma deposition of triethylene glycol monoallyl ether. J. Biomed. Res. 36: 181.CrossRefGoogle Scholar
  6. Blankenburg, R., Metier, P.H., Ringsdorf, H., Salesse, C., 1989, Interaction between biotin lipids and streptavidin in monolayers: formation of oriented two-dimensional protein domains induced by surface recognition, Biochemistry 28: 8214.CrossRefGoogle Scholar
  7. Bunjes, N., Schmidt, E.-K., Jonczyk, A., Rippmann, F., Beyer, D., Ringsdorf, H., Gräber, P., Knoll, W., Naumann, R., Thiopeptide supported lipid layers on solid substrates, Langmuir,submitted.Google Scholar
  8. Chen, S.H., Frank, C.W., 1989, Infrared and fluorescence spectroscopic studies of self-assembled n-alkanoic acid monolayers, Langmuir 5: 978.CrossRefGoogle Scholar
  9. Cornell, B.A., Braach-Maksvytis, V.L.B., King, L.G., Osman, P.D.J., Raguse, B., Wieszorek, L., Pace, R.1., 1997A biosensor that uses ion-channel switches, Nature 387: 580.Google Scholar
  10. Decher, G., Hong, J.D., 1991, Buildup of ultrathin multilayer films by a self-assembly process, 1 consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces, Makromol. Chem. Makromol. Symp. 46: 321.CrossRefGoogle Scholar
  11. Duschl, C., Liley, M., Corradin, G., Vogel, H., 1994, Biologically addressable monolayer structures formed by templates of sulfer-bearing molecules, Biophys. J. 67: 1229.ADSCrossRefGoogle Scholar
  12. Erdelen, C., Häussling, L., Naumann, R., Ringsdorf, H., Wolf, H., Yang, J., Liley, M., Spinke, J., Knoll, W., 1994, Self-assembled disulfide-functionalized amphiphilec copolymers on gold, Langmuir 10: 1246.CrossRefGoogle Scholar
  13. Feng, Z.Q., Imabayashi, S., Kakiuchi, T., Niki, K., 1995, Electroreflectance spectroscopic study of the electron transfer rate of cytochrome c electrostatically immobilized on the n-carboxyl alkanethiol monolayer modified gold electrode, J. Electroanal. Chem. 394: 149.CrossRefGoogle Scholar
  14. Fromherz, P., Offenhäusser, A., Vetter, T., Weis, J., 1991, A neuron-silicon junction: a Retzius cell of the Leech on an insulated-gate field effect transistor, Science 252: 1290.ADSCrossRefGoogle Scholar
  15. Gross, G.W., Rieske, E., Kreutzberg, G.W., Meyer, A., 1977, A new fixed-array multi-microelectrode system designed for long-term monitoring of extracellular single unit neuronal activity in vitro, Neurosci. Lett. 6: 101.CrossRefGoogle Scholar
  16. Groves, J.T., Boxer, S.G., 1995, Electric field-induced concentration gradients in planar supported bilayers, Biophys. J. 69: 1972.ADSCrossRefGoogle Scholar
  17. Groves, J.T., Ulman, N., Boxer, S.G., 1997, Micropatterning fluid lipid bilayers on solid supports, Science 275: 651.CrossRefGoogle Scholar
  18. Habicht, J., Schmidt, M., Rühe, J., Johannsmann, D., Swelling of thick polymer brushes investigated with ellipsometry, submitted.Google Scholar
  19. Hagenhoff, B., Benninghoven, A., Spinke, J., Liley, M., Knoll, W., 1993, Time-of-flight secondary ion mass spectrometry investigations of self-assembled monolayers of organic thiols, sulfides, and disulfides on gold surfaces, Langmuir 9: 1622.CrossRefGoogle Scholar
  20. Hara, M., Sasabe, H., Knoll, W., 1996, Ordered nucleation of a self-assembled monolayer on Au(111) studied by scanning tunneling microscopy, Thin Solid Films 273: 66.CrossRefGoogle Scholar
  21. Häussling, L., Ringsdorf, H., Schmitt, F.J., Knoll, W., 1991, Biotin-functionalized self-assembled monolayers on gold: surface plasmon optical studies of specific recognition reactions, Langmuir 7: 1837.CrossRefGoogle Scholar
  22. Heibel, C., 1996, PhD Thesis, Johannes Gutenberg-Universität Mainz, Mainz, Germany.Google Scholar
  23. Hickel, W., Duda, G., Jurich, M., Kröhl, T., Rochford, K., Stegeman, G.I., Swalen, J.D., Wegner, G., Knoll, W., 1990, Optical waveguides from novel polymeric Langmuir-Blodgett multilayer assemblies, Langmuir 6: 1403.CrossRefGoogle Scholar
  24. Kienle, S., Lingler, S., Kraas, W., Offenhäusser, A., Knoll, W., Jung, G., 1997, Electropolymerization of a phenol-modified peptide for use in receptor-ligand interactions studied by surface plasmon resonance, Biosensors and Bioelectronics 12: 779.CrossRefGoogle Scholar
  25. Knoll, W., 1994, Dynamical lateral order in binary lipid alloys and its coupling to membrane functions, Ber. Bunsenges. Phys. Chem. 98: 512.CrossRefGoogle Scholar
  26. Knoll, W., 1996, Self-assembled microstructures at interfaces, Current Opinion in Colloid & Interface Sci. 1: 137.CrossRefGoogle Scholar
  27. Knoll, W., 1997, Guided wave optics for the characterization of polymeric thin filins and interfaces. In: Handbook of Optical Properties II - Optics of Small Paricles, Interfaces, and Surfaces, RE. Hummel, P. Wißmann (eds.) CRC Press, Boca Raton, II, 373.Google Scholar
  28. Knoll, W., Liley, M., Piscevic, D., Spinke, J., Tarlov, M.J., 1997, Supramolecular architectures for the frmctionalization of solid surfaces, Adv. Biophys. 34: 231.CrossRefGoogle Scholar
  29. Kuhn, H., Möbius, D., Bücher, H., 1972, in: Physical methods of chemistry, A. Weissberger and B.W. Rossiter, eds. Wiley, New York, Part III B, Chap. V II.Google Scholar
  30. Liebermann, T., Knoll, W., in preparation.Google Scholar
  31. Lingler, S., Rubinstein, I., Knoll, W., Offenhäusser, A., 1997, The fusion of small unilamellar lipid vesicles to alkanethiol and thiolipid self-assembled monolayers on gold, Langmuir 13: 7085.CrossRefGoogle Scholar
  32. Matsuzawa, M., Liesi, P., Knoll, W., 1996, Chemically modifying glass surfaces to study substratum-guided neurite outgrowth in culture, J. Neurosci. Meth. 69, 189–196.CrossRefGoogle Scholar
  33. Matsuzawa, M., Umemura, K., Beyer, D., Sugioka, K., Knoll, W., 1997, Micropatterning of neurons using organic substrates in culture, Thin Solid Films 305: 74–79.ADSCrossRefGoogle Scholar
  34. Naumann, R., Jonczyk, A., Hampel, C., Ringsdorf, H., Knoll, W., Bunjes, N., Gräber, P., 1997, Coupling of proton translocation through atpase incorporated into supported lipid bilayers to an electrochemical process, Bioelectrochem. Bioenerg. 42: 241.CrossRefGoogle Scholar
  35. Naumann, R., Jonczyk, A., Kopp, A., van Esch, J., Ringsdorf, H., Knoll, W., Gräber, P., 1995, Solidsupported lipid layers for the reconstitution of membrane proteins, Angew. Chem. Intl. Ed. 34: 2056.CrossRefGoogle Scholar
  36. Nemetz, A., Knoll, W., 1996, Raman spectroscopy and microscopy with plasmon surface polaritons. J. Raman Spectroscopy 27: 587.ADSCrossRefGoogle Scholar
  37. Nicolini, C., 1996, Molecular Bioelectronics, World Scientific, Singapore.CrossRefGoogle Scholar
  38. Offenhäusser, A., Sprößler, C., Matsuzawa, M., Knoll, W., 1997, Electrophysical development of embryonic hippocampal neurons from the rat grown on synthetic thin filins, Neurosci. Lett. 223: 9.CrossRefGoogle Scholar
  39. Offenhäusser, A., Sprößler, C., Matsuzawa, M., Knoll, W., 1997a, Electrophysical development of embryonic hippocampal neurons from the rat grown on synthetic thin films, Neurosci. Lett. 223: 9.CrossRefGoogle Scholar
  40. Offenhäusser, A., Sprößler, C., Matsuzawa, M., Knoll, W., 1997b, Field-effect transistor array for monitoring electrical activity from mammalian neurons in culture, Biosensors and Bioelectronics 12: 819.CrossRefGoogle Scholar
  41. Petty, M.C., 1996, Langmuir-Blodgett films, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  42. Reiter, R., Motschmann, H., Knoll, W., 1993, Ellipsometric characterization of streptavidin binding to biotin-functionalized lipid monolayers at the water/air interface, Langmuir 9: 2430.CrossRefGoogle Scholar
  43. Ruhe, J., 1994, Maßgeschneiderte oberflächen. nachr, Chem. Techn. Lab. 42: 1237.CrossRefGoogle Scholar
  44. Sackmann, E., 1996, Supported membranes: scientific and practical applications, Nature 271: 43.Google Scholar
  45. Schmidt, A., Spinke, J., Bayerl, T., Knoll, W., 1992, Streptavidin binding to biotinylated lipid layers on solid supports - a neutron reflection and surface plasmon optical study, Biophys. J. 63: 1385.ADSCrossRefGoogle Scholar
  46. Schmidt, R., Nees, B., Schoppmann, C., Brandt, D., Ostrowski, A., Voit, H., Johannsmann, D., Knoll, W., 199lb, Langmuir-Blodgett films investigated by means of the spontaneous desorption mass spectrometry, Thin Solid Films 195: 307.Google Scholar
  47. Schmidt, R., Schoppmann, C., Brandt, D., Ostrowski, A., Voit, H., Johannsmann, D., Knoll, W., 1991a, Heavy-ion-induced desorption of organic molecules studied with langmuir-blodgett multilayer systems. Phys. Rev. B 44: 560.ADSCrossRefGoogle Scholar
  48. Schmitt, F.J., Weisenhorn, A.L., Hansma, P.K., Knoll, W., 1991, Interfacial recognition reactions as seen by fluorescence-, surface plasmon-and atomic force microscopies, A.fakromol. Chem. Macromol. Symp. 46: 133.CrossRefGoogle Scholar
  49. Spinke, J., Liley, M., Schmitt, F.J., Guder, H.J., Angermaier, L., Knoll, W., 1993, Molecular recognition at self-assembled monolayers: optimization of surface functionalization, J. Chem. Phys. 99: 7012.ADSCrossRefGoogle Scholar
  50. Spinke, J., Yang, J., Wolf, H., Liley, M., Knoll, W., 1992, Polymer-supported bilayer on a solid substrate, Biophys. J. 63: 1667.ADSCrossRefGoogle Scholar
  51. Sprößler, C., Denyer, M., Britland, S., Curtis, A., Knoll, W., Offenhäusser, A., Recording of Burst firing patterns from rat cardiac muscle cells using a field-effect transistor array, submitted.Google Scholar
  52. Steinem, C., Janshoff, A., Ulrich, W.-P., Sieber, M., Galla, H.-J., 1996, Impedance analysis of supported lipid bilayer membranes: a scrutiny of different preparation techniques. Biochim. Biophys. Acta 1279: 169.CrossRefGoogle Scholar
  53. Stelzte, M., Weissmtiller, G., Sackmann, E., 1993, On the application of supported bilayers as receptive layers for biosensors with electrical detection. J. Chem. Phys. 97: 2974.CrossRefGoogle Scholar
  54. Tamada, K., Hara, M., Sasabe, H., Knoll, W., 1997, Surface phase behavior of n-alkanethiol self-assembled monolayers adsorbed on Au(111): an atomic force microscope study, Langmuir 13: 1558.CrossRefGoogle Scholar
  55. Tannn, L.K., McConnell, H.M., 1985, Supported phospholid bilayers, Biophys. J. 47: 105.ADSCrossRefGoogle Scholar
  56. Ulman, A., 1996, Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533.CrossRefGoogle Scholar
  57. van Os, M., Menges, B., Timmons, R.B., Knoll, W., Förch R., 1997, Variations in the film chemistry of pulsed rf plasma deposited allylamine, Proc. 13th Intl. Symp. on Plasma Chemistry, Beijing.Google Scholar
  58. Weis, R., Fromherz, P., 1997, Frequency dependent signal transfer in neuron transistors, Phys. Rev. E. 55: 877.ADSCrossRefGoogle Scholar
  59. Weisenhorn, A.L., Schmitt, F.J., Knoll, W., Hansma, P.K., 1992, Streptavidin binding observed with an atomic force microscope, Ultrarnicroscopv 42–44: 1125.Google Scholar
  60. Weisser, M., Tovar, G., Mittler-Neher, S., Knoll, W., Brosinger, F., Freimuth, H., Lacher, M., Ehrfeld, W., Specific bio-recognition reactions observed with an integrated mach-zehnder interferometer. Biosensors and Bioelectronics,submitted.Google Scholar
  61. Zizlsperger, M., Knoll, W., Multispot parallel on-line monitoring of interfacial binding reactions by surface plasmon microscopy, Progr. Colloid Polymer Science,submitted.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Wolfgang Knoll
    • 1
    • 2
    • 3
  • Natascha Bunjes
    • 1
    • 3
  • Morgan Denyer
    • 1
    • 4
  • Claudia Heibel
    • 1
  • Mieko Matsuzawa
    • 2
  • Renate Naumann
    • 5
  • Andreas Offenhäusser
    • 1
    • 2
  • Jürgen Rühe
    • 1
  • Eva-Katrin Schmidt
    • 1
  • Axel Sinner
    • 1
  • Christoph Sprößler
    • 1
  1. 1.Max-Planck-Institut für PolymerforschungMainzGermany
  2. 2.Frontier Research ProgramThe Institute of Physical and Chemical Research (RIKEN)Wako, SaitamaJapan
  3. 3.Center on Polymer Interfaces and Macromolecular Assemblies, Department of Chemical EngineeringStanford UniversityStanfordUSA
  4. 4.The Centre for Cell EngineeringUniversity of GlasgowGlasgowUK
  5. 5.Merck KGaADarmstadtGermany

Personalised recommendations