Fluorescence Energy Transfer in Membrane Biochemistry



In the two decades since its first application to biological systems (Stryer and Haugland, 1967), fluorescence energy transfer has become a standard technique for measuring distances in biological systems. Early studies usually measured distances between a single donor and a single acceptor each at a specific location. The extension to transfer between multiple donors and multiple acceptors has proven quite useful for the study of multienzyme complexes (Hahn and Hammes, 1978; Angelides and Hammes, 1979). Most of the applications to membrane biochemistry also represent a situation in which multiple donors and multiple acceptors are present. These applications have a long history as well, starting with the initial study of energy transfer from chlorophyll in monomeric films (Tweet et al., 1964). This early work relied heavily on Foerster’s derivation of energy transfer between multiple acceptors and multiple donors in three dimensions (Foerster, 1949) and derived the appropriate expression for two dimensions. Unfortunately, these results went unnoticed and identical expressions have been derived in several subsequent works. The first studies on lipid bilayer systems were aimed at determining the depth of a chromophore in the membrane (Shaklai et al., 1977) or at determining the surface density of an acceptor (Fung and Stryer, 1978). These have been the two observables of major interest in membrane systems. Energy transfer has subsequently been used to monitor a variety of membrane processes and interactions. A representative example of the diversity of applications is given in Table I. Additional references may be found in recent reviews (Hammes, 1981; Blumberg, 1985; Tron et al., 1987).


Energy Transfer Quantum Yield Surface Density Close Approach Exciton State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angelides, K., and Hammes, G. G., 1979, Biochemistry 18:1223–1229.PubMedCrossRefGoogle Scholar
  2. Arvinte, T., Wahl, P., and Nicolau, C., 1987, Biochemistry 26:765–772.PubMedCrossRefGoogle Scholar
  3. Aso, Y., Kano, K., and Matsuo, T., 1980, Biochim. Biophys. Acta 599:403–416.PubMedCrossRefGoogle Scholar
  4. Baird, B. A., Pick, U., and Hammes, G. G., 1979, J. Biol. Chem. 254:3818–3825.PubMedGoogle Scholar
  5. Birks, J. B., Dyson, D. J., and Munro, I. H., 1963, Proc. R. Soc. London Ser A 275:575–588.CrossRefGoogle Scholar
  6. Blumberg, W. E., 1985, NATO ASI Ser., Ser. A 71:95–122.Google Scholar
  7. Chan, S. S., Arndt-Jovin, D. J., and Jovin, T. M., 1979, J. Histochem. Cytochem. 27:56–64.PubMedCrossRefGoogle Scholar
  8. Chatelier, R. C., Rogers, P. J., Ghiggino, K. P., and Sawyer, W. H., 1984, Biochim. Biophys. Acta 776:75–82.CrossRefGoogle Scholar
  9. Chejanovsky, N., Evtan, G. D., and Loyter, A., 1984, FEBS Lett. 174:304–309.PubMedCrossRefGoogle Scholar
  10. Cheng, K. H., Wiedmer, T., and Sims, P. J., 1985, J. Immunol. 135:459–464.PubMedGoogle Scholar
  11. Dangreau, H., Joniau, M., De Cuyper, M., and Hanssens, I., 1982, Biochemistry 21:3594–3598.PubMedCrossRefGoogle Scholar
  12. Davenport, L., Dale, R. E., Bisby, R. H., and Cundall, R. B., 1985, Biochemistry 24:4097–4108.PubMedCrossRefGoogle Scholar
  13. Dewey, T. G., 1987, Biophys. J. 51:809–815.PubMedCrossRefGoogle Scholar
  14. Dewey, T. G., and Datta, M., 1989, Biophys. J. 56:415–420.PubMedCrossRefGoogle Scholar
  15. Dewey, T. G., and Hammes, G. G., 1980, Biophys. J. 32:1023–1036.PubMedCrossRefGoogle Scholar
  16. Dexter, D. L., 1953, J. Chem. Phys. 21:836–849.CrossRefGoogle Scholar
  17. Dissing, S., Jesaitis, A. J., and Fortes, P. A. G., 1979, Biochim. Biophys. Acta 553:66–83.PubMedCrossRefGoogle Scholar
  18. Ediger, M. D., and Fayer, M. D., 1983, J. Chem. Phys. 78:2518–2524.CrossRefGoogle Scholar
  19. Ediger, M. D., and Fayer, M. D., 1984, J. Phys. Chem. 88:6108–6116.CrossRefGoogle Scholar
  20. Eisinger, J., and Flores, J., 1982, Biophys. J. 37:6–7.PubMedCrossRefGoogle Scholar
  21. Estep, T. N., and Thompson, T. E., 1979, Biophys. J. 26:195–207.PubMedCrossRefGoogle Scholar
  22. Fagan, M. H., and Dewey, T. G., 1986, J. Biol. Chem. 261:3654–3660.PubMedGoogle Scholar
  23. Fleming, P. J., Koppel, D. E., Lau, A. L. Y., and Strittmatter, P., 1979, Biochemistry 18:5458–5464.PubMedCrossRefGoogle Scholar
  24. Foerster, T., 1949, Z. Naturforsch. A 4:321–323.Google Scholar
  25. Foerster, T., 1965, Mod. Quant. Chem. 3:93–117.Google Scholar
  26. Fung, B. K., and Stryer, L., 1978, Biochemistry 17:5241–5248.PubMedCrossRefGoogle Scholar
  27. Gibson, G. A., and Loew, L. M., 1979, Biochem. Biophys. Res. Commun. 88:135–140.PubMedCrossRefGoogle Scholar
  28. Gordon, R. G., 1968, J. Math. Phys. 9:655–663.CrossRefGoogle Scholar
  29. Graue, C., and Klingenberg, M., 1979, Biochim. Biophys. Acta 546:539–550.PubMedCrossRefGoogle Scholar
  30. Grzesiek, S., and Dencher, N. A., 1986, FEBS Lett. 208:337–342.CrossRefGoogle Scholar
  31. Grochanour, C. R., Andersen, H. C., and Fayer, M. D., 1979, J. Chem. Phys. 70:4254–4271.CrossRefGoogle Scholar
  32. Gutierrez-Merino, C., Munkonge, F., Mata, A. M., East, J. M., Levinson, B. L., Napier, R. M., and Lee, A. G., 1987, Biochim. Biophys. Acta 897:207–216.PubMedCrossRefGoogle Scholar
  33. Hahn, L.-H. E., and Hammes, G. G., 1978, Biochemistry 17:2423–2429.PubMedCrossRefGoogle Scholar
  34. Haigh, E. A., Thulborn, K. R., and Sawyer, W. H., 1979, Biochemistry 18:3525–3532.PubMedCrossRefGoogle Scholar
  35. Hammes, G. G., 1981, Protein-Protein Interactions, Wiley, New York, pp. 257–287.Google Scholar
  36. Hasselbacher, C. A., and Dewey, T. G., 1986, Biochemistry 25:6236–6243.CrossRefGoogle Scholar
  37. Hasselbacher, C. A., Street, T. L., and Dewey, T. G., 1984, Biochemistry 23:6445–6452.CrossRefGoogle Scholar
  38. Hasselbacher, C. A., Preuss, D. K., and Dewey, T. G., 1986, Biochemistry 25:668–676.CrossRefGoogle Scholar
  39. Herman, B. A., and Fernandez, S. M., 1982, Biochemistry 21:3275–3283.PubMedCrossRefGoogle Scholar
  40. Heyn, M. P., Blume, A., Rehorek, M., and Dencher, N. A., 1981a, Biochemistry 20:7109–7115.PubMedCrossRefGoogle Scholar
  41. Heyn, M. P., Cherry, R. J., and Dencher, N. A., 1981b, Biochemistry 20:840–849.PubMedCrossRefGoogle Scholar
  42. Highsmith, S., and Cohen, J. A., 1987, Biochemistry 26:154–161.PubMedCrossRefGoogle Scholar
  43. Holowka, D., and Baird, B., 1983, Biochemistry 22:3466–3474.PubMedCrossRefGoogle Scholar
  44. Hresko, R. C., Sugar, I. P., Barenholz, Y., and Thompson, T. E., 1986, Biochemistry 25:3813–3823.PubMedCrossRefGoogle Scholar
  45. Hyono, A., Kuriyama, S., and Masui, M., 1985, Biochim. Biophys. Acta 813:111–116.PubMedCrossRefGoogle Scholar
  46. Isaacs, B. S., Husten, E. J., Esmon, C. T., and Johnson, A. E., 1986, Biochemistry 25:4958–4969.PubMedCrossRefGoogle Scholar
  47. Kampmann, L., 1977, Biophys. Struct. Mech. 3:239–257.CrossRefGoogle Scholar
  48. Kano, K., Yamaguchi, T., and Matsuo, T., 1980, J. Phys. Chem. 84:72–76.CrossRefGoogle Scholar
  49. Kano, K., Kawazumi, H., and Ogawa, T., 1981, J. Phys. Chem. 85:2998–3003.CrossRefGoogle Scholar
  50. Keller, P. M., Person, S., and Snipes, W., 1977, J. Cell Sci. 28:167–177.PubMedGoogle Scholar
  51. Kirchanski, S., and Branton, D., 1980, Proc. Annu. Meet. Electron Microsc. Soc. Am. 38th, pp. 756-759.Google Scholar
  52. Klafter, J., and Blumen, A., 1984, J. Chem. Phys. 80:875–877.CrossRefGoogle Scholar
  53. Klausner, R. D., and Wolf, D. E., 1980, Biochemistry 19:6199–6203.PubMedCrossRefGoogle Scholar
  54. Kleinfeld, A. M., 1985, Biochemistry 24:1874–1882.PubMedCrossRefGoogle Scholar
  55. Kleinfeld, A. M., and Lukacovic, M. F., 1985, Biochemistry 24:1883–1890.PubMedCrossRefGoogle Scholar
  56. Kometani, T., Kinosita, K., Jr., Furuno, T., Kouyama, T., and Ikegami, A., 1987, Biophys. J. 52:509–517.PubMedCrossRefGoogle Scholar
  57. Koppel, D. E., Fleming, P. J., and Strittmatter, P., 1979, Biochemistry 18:5450–5457.PubMedCrossRefGoogle Scholar
  58. Kouyama, T., Kinosita, K., Jr., and Ikegami, A., 1983, J. Mol. Biol. 165:91–107.PubMedCrossRefGoogle Scholar
  59. Kunitake, T., Shimomura, M., Hashiguchi, Y., and Kawanaka, T., 1985, J. Chem. Soc. Chem. Commun. 12:833–835.CrossRefGoogle Scholar
  60. MacDonald, R. I., and MacDonald, R. C., 1983, Biochim. Biophys. Acta 735:243–251.PubMedCrossRefGoogle Scholar
  61. Mani, J. C., Dornand, J., and Mousseron-Canet, M., 1975, Biochimie 57:629–635.PubMedCrossRefGoogle Scholar
  62. Miller, R. J. D., Pierre, M., and Fayer, M. D., 1983, J. Chem. Phys. 78:5138–5146.CrossRefGoogle Scholar
  63. Morris, S. J., and Bradley, D., 1984, Biochemistry 23:4642–4650.PubMedCrossRefGoogle Scholar
  64. Morris, S. J., Suedhof, T. C., and Haynes, D. H., 1982, Biochim. Biophys. Acta 693:425–436.PubMedCrossRefGoogle Scholar
  65. Nagata, L., Li, R., Banks, E., and Okamoto, Y., 1983, Macromolecules 16:903–905.CrossRefGoogle Scholar
  66. Nakajima, M., Yoshimoto, R., Irimura, T., and Osawa, T., 1979, J. Biochem. 86:583–586.PubMedGoogle Scholar
  67. Nakashima, N., Kimizuka, N., and Kunitake, T., 1985, Chem. Lett. 12:1817–1820.CrossRefGoogle Scholar
  68. Nakashima, N., Ando, R., and Kunitake, T., 1987, Bull. Chem. Soc. Jpn. 60:1967–1973.CrossRefGoogle Scholar
  69. Oesterhelt, D., Schreckenbach, T., and Walckhoff, B., 1981, Comm. Eur. Communities, [Rep.] EUR, EUR 7591. Google Scholar
  70. Omata, Y., Aibara, K., and Ueno, Y., 1987, Biochim. Biophys. Acta 912:115–123.PubMedCrossRefGoogle Scholar
  71. Ort, D. R., and Parsons, W. W., 1979, Biophys. J. 25:341–354.PubMedCrossRefGoogle Scholar
  72. Ottolenghi, M., 1980, Adv. Photochem. 12:97–200.CrossRefGoogle Scholar
  73. Peerce, B. E., and Wright, E. M., 1986, Proc. Natl. Acad. Sci. USA 83:8092–8096.PubMedCrossRefGoogle Scholar
  74. Peters, R., 1971, Biochim. Biophys. Acta 233:465–468.PubMedCrossRefGoogle Scholar
  75. Rehorek, M., Dencher, N. A., and Heyn, M. P., 1983, Biophys. J. 43:39–45.PubMedCrossRefGoogle Scholar
  76. Rogers, J., Lee, A. G., and Wilton, D. C., 1979, Biochim. Biophys. Acta 552:23–37.PubMedCrossRefGoogle Scholar
  77. Rundell, K. A., 1988, Master’s thesis, University of Denver.Google Scholar
  78. Shaklai, N., Yquaribide, J., and Ranney, H. M., 1977, Biochemistry 16:5585–5592.PubMedCrossRefGoogle Scholar
  79. Shimomura, M., Hashimoto, H., and Kunitake, T., 1982, Chem. Lett. 8:1285–1288.CrossRefGoogle Scholar
  80. Sims, P. J., 1984, Biochemistry 23:3248–3260.PubMedCrossRefGoogle Scholar
  81. Sinton, M. H., and Dewey, T. G., 1988, Biophys. J. 53:153–162.PubMedCrossRefGoogle Scholar
  82. Sklar, L. A., Miljanich, G. P., Bursten, S. L., and Dratz, E. A., 1979, J. Biol. Chem. 254:9583–9591.PubMedGoogle Scholar
  83. Smith, C. M., Satoh, K., and Fork, D. C., 1986, Plant Physiol. 80:843–847.PubMedCrossRefGoogle Scholar
  84. Snyder, B., and Freire, E., 1982, Biophys. J. 40:137–148.PubMedCrossRefGoogle Scholar
  85. Somerharju, P. J., Virtanen, J. A., Edlund, K. K., Vainio, P., and Kinnunen, P. K. J., 1985, Biochemistry 24:2773–2781.PubMedCrossRefGoogle Scholar
  86. Struck, D. K., Hoekstra, D., and Pagano, R. E., 1981, Biochemistry 20:4093–4099.PubMedCrossRefGoogle Scholar
  87. Stryer, L., 1978, Annu. Rev. Biochem. 47:819–846.PubMedCrossRefGoogle Scholar
  88. Stryer, L., and Haugland, R. P., 1967, Proc. Natl. Acad. Sci. USA 98:719–726.CrossRefGoogle Scholar
  89. Stryer, L., Thomas, D. D., and Meares, C. F., 1982, Annu. Rev. Biophys. Bioeng. 11:203–222.PubMedCrossRefGoogle Scholar
  90. Takami, A., and Mataga, N., 1987, J. Phys. Chem. 91:618–622.CrossRefGoogle Scholar
  91. Talbot, J. C., Faucon, J. F., and Dufourcq, J., 1987, Eur. Biophys. J. 15:147–157.PubMedCrossRefGoogle Scholar
  92. Tamai, N., Yamazaki, T., Yamazaki, I., and Mataga, N., 1986, Springer Ser. Chem. Phys. 46:449–453.CrossRefGoogle Scholar
  93. Tamai, N., Yamazaki, T., Yamazaki, I., Mizuma, A., and Mataga, N., 1987, J. Phys. Chem. 91:3503–3508.CrossRefGoogle Scholar
  94. Tasaki, I., Warashina, A., and Pant, H., 1976, Biophys. Chem. 4:1–13.PubMedCrossRefGoogle Scholar
  95. Tinoco, I., 1970, Methods Biochem. Anal. 18:81–203.PubMedCrossRefGoogle Scholar
  96. Tron, L., Szollosi, J., and Damjanovich, S., 1987, Immunol. Lett. 16:1–9.PubMedCrossRefGoogle Scholar
  97. Trung Le Doan, Takasugi, M., Aragon, I., Boudet, G., Montenay-Garestier, T., and Helene, C., 1983, Biochim. Biophys. Acta 735:259–270.CrossRefGoogle Scholar
  98. Tweet, A. G., Bellamy, W. D., and Gaines, G. L., 1964, J. Chem. Phys. 41:2068–2077.CrossRefGoogle Scholar
  99. Uster, P. S., and Pagano, R. E., 1986, J. Cell Biol. 103:1221–1234.PubMedCrossRefGoogle Scholar
  100. Vanderkooi, J. M., Ierokamas, A., Nakamura, H., and Martonosi, A., 1977, Biochemistry 16:1262–1267.PubMedCrossRefGoogle Scholar
  101. Vanderwerf, P., and Ullman, E. F., 1980, Biochim. Biophys. Acta 596:302–314.PubMedCrossRefGoogle Scholar
  102. Veatch, W., and Stryer, L., 1977, J. Mol. Biol. 113:89–102.PubMedCrossRefGoogle Scholar
  103. Weber, G., and Daniel, E., 1966, Biochemistry 5:1900–1907.PubMedCrossRefGoogle Scholar
  104. White, T. E., and Dewey, T. G., 1987, Membr. Biochem. 7:67–72.PubMedCrossRefGoogle Scholar
  105. Wiener, J. R., Pal, R., Barenholz, Y., and Thompson, T. E., 1985, Biochemistry 24:7651–7658.PubMedCrossRefGoogle Scholar
  106. Wolber, P. K., and Hudson, B. S., 1979, Biophys. J. 28:197–210.PubMedCrossRefGoogle Scholar
  107. Womersley, C., Uster, P. S., Rudolph, A. S., and Crowe, J. H., 1986, Cryobiology 23:245–255.PubMedCrossRefGoogle Scholar
  108. Wu, X. L., and Dewey, T. G., 1987, Biochemistry 26:6914–6918.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of DenverDenverUSA

Personalised recommendations