Analysis of Ligand Binding and Cross-Linking of Receptors in Solution and on Cell Surfaces

Immunoglobulin E as a Model Receptor


Fluorescence measurements are among the most powerful methods for investigating structure and structural changes on cell surfaces. The basic strength of this method is that nanomolar concentrations of fluorophores can be detected in the presence of a high level of background noise provided by the cells. An ideal fluorescent probe absorbs and emits at wavelengths not in common with the cellular components, has a high quantum yield, and can be placed specifically into a location such that it is sensitive to the structural aspect of interest. Recently there has been a great expansion in the commercial availability of fluorescent probes with a broad range of fluorescent properties and reactive groups for conjugation (e.g., Haugland, 1989). The requirement for specific placement on a macromolecular/cellular complex remains the most challenging experimentally. In this regard, specific ligands and specific monoclonal antibodies that can be fluorescently modified are valuable reagents. In this chapter we describe our use of quantitative fluorescence measurements to investigate the binding properties of cell surface receptors.


Ligand Binding Forward Rate Constant Bivalent Ligand Multivalent Ligand Fluorescein Fluorescence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baird, B., and Holowka, D., 1988, in Spectroscopic Membrane Probes (L. Loew, ed.), CRC Press, Boca Raton, pp. 93–116.Google Scholar
  2. Baird, B., Erickson, J., Goldstein, B., Kane, P., Menon, A. K., Robertson, D., and Holowka, D., 1988, in Theoretical Immunology (A. Perelson, ed.), Addison-Wesley, Reading, Mass., pp. 41–59.Google Scholar
  3. Barsumian, E. L., Isersky, C., Petrino, M. G., and Siraganian, R. P., 1981, Eur. J. Immunol. 11:317–323.PubMedCrossRefGoogle Scholar
  4. Berg, H. C., and Purcell, E. M., 1977, Biophys. J. 20:193–219.PubMedCrossRefGoogle Scholar
  5. Carson, D., and Metzger, H., 1974, Immunochemistry 11:355–359.PubMedCrossRefGoogle Scholar
  6. Dembo, M., and Goldstein, B., 1978a, Immunochemistry 15:307–313.PubMedCrossRefGoogle Scholar
  7. Dembo, M., and Goldstein, B., 1978b, J. Immunol. 121:345–353.PubMedGoogle Scholar
  8. Dembo, M., Goldstein, B., Sobotka, A. K., and Lichtenstein, L. M., 1979, J. Immunol. 123:1864–1871.PubMedGoogle Scholar
  9. Eisen, H., and McGuigan, J., 1968, in Methods in Immunology and Immunochemistry (W. C. Williams and M. Chase, eds.), Academic Press, New York.Google Scholar
  10. Erickson, J. W., 1988, Equilibrium and kinetic studies of a model ligand-receptor system: Monovalent and bivalent ligand interactions with immunoglobulin E, Ph.D. thesis, Cornell University.Google Scholar
  11. Erickson, J., Kane, P., Goldstein, B., Holowka, D., and Baird, B., 1986, Mol. Immunol. 23:769–780.PubMedCrossRefGoogle Scholar
  12. Erickson, J., Goldstein, B., Holowka, D., and Baird, B., 1987, Biophys. J. 52:657–662.PubMedCrossRefGoogle Scholar
  13. Estes, K., Monfalcone, L., Hammes, S., Holowka, D., and Baird, B., 1987, J. Cell Biol. 105:747–755.PubMedCrossRefGoogle Scholar
  14. Fewtrell, C., 1985, in Calcium in Biological Systems (G. Weiss, J. Putney, and R. Rubin, eds.), Plenum Press, New York, pp. 129–136.CrossRefGoogle Scholar
  15. Fewtrell, C., Kessler, A., and Metzger, H., 1979, Adv. Inflam. Res. 1:205–221.Google Scholar
  16. Flory, P. J., 1953, Principles of Polymer Chemistry, Cornell University Press, Ithaca, N.Y.Google Scholar
  17. Goldstein, B., Posner, R. G., Torney, D. C., Erickson, J., Holowka, D., and Baird, B., 1989, Biophys. J. 56:955–966.PubMedCrossRefGoogle Scholar
  18. Haugland, R. P., 1989, Molecular Probes Handbook of Fluorescent Probes and Research Chemicals, Molecular Probes, Eugene, Ore.Google Scholar
  19. Holowka, D., and Baird, B., 1983, Biochemistry 22:3466–3474.PubMedCrossRefGoogle Scholar
  20. Ishizaka, T., Hirata, F., Ishizaka, K., and Axelrod, J., 1981, in Biochemistry of the Acute Allergic Reactions (E. Becker, A. Simon, and K. Austen, eds.), Liss, New York, pp. 213–227.Google Scholar
  21. Isersky, C., Rivera, J., Mims, S., and Triche, T., 1979, J. Immunol. 122:1926–1936.PubMedGoogle Scholar
  22. Kane, P., Erickson, J., Fewtrell, C., Baird, B., and Holowka, D., 1986, Mol. Immunol. 23:783–790.PubMedCrossRefGoogle Scholar
  23. Kane, P., Holowka, D., and Baird, B., 1988, J. Cell Biol. 107:969–980.PubMedCrossRefGoogle Scholar
  24. Liu, F. T., Bohn, J. W., Ferry, E. L., Yamamoto, H., Molinaro, C. A., Sherman, L. A., Klinman, N. R., and Katz, D., 1980, J. Immunol. 124:2728–2735.PubMedGoogle Scholar
  25. Menon, A. K., Holowka, D., and Baird, B., 1984, J. Cell Biol. 9:577–583.CrossRefGoogle Scholar
  26. Menon, A. K., Holowka, D., Webb, W. W., and Baird, B., 1986a, J. Cell Biol. 102:534–540.PubMedCrossRefGoogle Scholar
  27. Menon, A. K., Holowka, D., Webb, W. W., and Baird, B., 1986b, J. Cell Biol. 102:541–550.PubMedCrossRefGoogle Scholar
  28. Metzger, H., Alcaraz, G., Hohman, R., Kinet, J.-P., Pribluda, V., and Quarto, R., 1986, Annu. Rev. Immunol. 4:419–470.PubMedCrossRefGoogle Scholar
  29. Pecht, I., and Lancet, D., 1977, in Chemical Relaxation in Molecular Biology (I. Pecht and R. Rigler, eds.), Springer-Verlag, Berlin, pp. 306–338.CrossRefGoogle Scholar
  30. Perelson, A., and DeLisi, C., 1980, Math. Biosci. 48:71–110.CrossRefGoogle Scholar
  31. Robertson, D., Holowka, D., and Baird, B., 1986, J. Immunol. 136:4565–4572.PubMedGoogle Scholar
  32. Schweitzer-Stenner, R., Light, A., Luscher, I., and Pecht, I., 1987, Biochemistry 26:3602–3612.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  1. 1.Department of ChemistryCornell UniversityIthacaUSA
  2. 2.Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations