Advertisement

Luminescent Trivalent Lanthanides in Studies of Cation Binding Sites

  • Matthew Petersheim

Abstract

Although the trivalent lanthanides are found at low levels throughout the biosphere and have been found to have some biological activity such as analgesia (Zuxuan et al., 1985) and amino acid cotransport (Birnir et al., 1987; Stevens and Kneer, 1988), there are no known metabolic processes in which they are essential. They are of interest in biochemistry for two general reasons. The lanthanides are a series of hard Lewis acids varying slightly in effective radius and, as such, are useful as steric probes of systems such as ion channels. Second, their paramagnetic and luminescent properties make them versatile spectroscopic probes of cation binding sites.

Keywords

Excitation Spectrum Phosphatidic Acid Excitation Band Ligand Field Electric Dipole Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albin, M., and Horrocks, W. D., Jr., 1985, Inorg. Chem. 24:895–900.CrossRefGoogle Scholar
  2. Birnir, B., Hirayama, B., and Wright, E. M., 1987, J. Membr. Biol. 100:221–227.CrossRefGoogle Scholar
  3. Blasse, G., 1979, in Handbook on the Physics and Chemistry of Rare Earths, Vol. 4 (K. A. Gschneidner, Jr., and L. R. Eyring, eds.), North-Holland, Amsterdam, pp. 237–274.Google Scholar
  4. Breen, P. J., Hild, E. K., and Horrocks, W. D., Jr., 1985a, Biochemistry 24:4991–4997.PubMedCrossRefGoogle Scholar
  5. Breen, P. J., Johnson, K. A., and Horrocks, W. D., Jr., 1985b, Biochemistry 24:4997–5004.PubMedCrossRefGoogle Scholar
  6. Brittain, H. G., 1980, Inorg. Chem. 19:2136.Google Scholar
  7. Brittain, H. G., 1981, Inorg. Chem. 20:3007.CrossRefGoogle Scholar
  8. Brittain, H. G., Richardson, F. S., and Martin, R. B., 1976a, J. Am. Chem. Soc. 98:8255–8260.PubMedCrossRefGoogle Scholar
  9. Brittain, H. G., Richardson, F. S., Martin, R. B., Burtnick, L. D., and Kay, C. M., 1976b, Biochem. Biophys. Res. Commun. 68:1013–1019.PubMedCrossRefGoogle Scholar
  10. Carnall, W. T., 1979, in Handbook on the Physics and Chemistry of Rare Earths, Vol. 3 (K. A. Gschneidner, Jr., and L. R. Eyring, eds.), North-Holland, Amsterdam, pp. 171–208.Google Scholar
  11. Carnall, W. T., Fields, P. R., and Rajnak, K., 1968a, J. Chem. Phys. 49:4447–4449.CrossRefGoogle Scholar
  12. Carnall, W. T., Fields, P. R., and Rajnak, K., 1968b, J. Chem. Phys. 49:4450–4455.CrossRefGoogle Scholar
  13. Conti, J., Halladay, H. N., and Petersheim, M., 1987, Biochim. Biophys. Acta 902:53–64.PubMedCrossRefGoogle Scholar
  14. Copeland, B. R., and Andersen, H. C., 1982, Biochemistry 21: 2811–2820.PubMedCrossRefGoogle Scholar
  15. De Jersey, J., Jeffers-Morley, P., and Martin, R. B., 1981, Biophys. Chem. 13:233–243.PubMedCrossRefGoogle Scholar
  16. Dexter, D. L., 1953, J. Chem. Phys. 21:836.CrossRefGoogle Scholar
  17. Dieke, G. H., 1968, Spectra and Energy Levels of Rare Earth Ions in Crystals, Wiley, New York.Google Scholar
  18. Epstein, M., Levitzki, A., and Reuben, J., 1974, Biochemistry 13:1777.PubMedCrossRefGoogle Scholar
  19. Fischer, R. D., 1973, in NMR of Paramagnetic Molecules (G. N. La Mar, W. D. Horrocks, Jr., and R. H. Holm, eds.), Academic Press, New York, pp. 522–555.Google Scholar
  20. Foerster, T., 1948, Ann. Phys. 2:55.CrossRefGoogle Scholar
  21. Guggenberger, L. J., and Muetterties, I. L., 1976, J. Am. Chem. Soc. 98:7221–7225.CrossRefGoogle Scholar
  22. Halladay, H. N., 1989, Ph.D. dissertation, Seton Hall University, South Orange, N.J.Google Scholar
  23. Halladay, H. N., and Petersheim, M., 1988, Biochemistry 27:2120–2126.CrossRefGoogle Scholar
  24. Henrie, D. E., Fellows, R. L., and Choppin, G. R., 1976, Coordination Chemistry Reviews, Vol. 18, Elsevier, Amsterdam, pp. 199–224.Google Scholar
  25. Herrmann, T. R., Jayaweera, A. R., and Shamoo, A. E., 1986, Biochemistry 25:5834–5838.PubMedCrossRefGoogle Scholar
  26. Hofmann, T., Eng, S., Lilja, H., Drakenberg, T., Vogel, H. J., and Forsen, S., 1988, Eur. J. Biochem. 172:307–313.PubMedCrossRefGoogle Scholar
  27. Horrocks, W. D., Jr., and Albin, M., 1984, Prog. Inorg. Chem. 31:1–104.CrossRefGoogle Scholar
  28. Horrocks, W. D., Jr., and Collier, W. E., 1981, J. Am. Chem. Soc. 103:2856–2862.CrossRefGoogle Scholar
  29. Horrocks, W. D., Jr., and Sudnick, D. R., 1979, J. Am. Chem. Soc. 101:335–340.CrossRefGoogle Scholar
  30. Horrocks, W. D., Jr., and Sudnick, D. R., 1981, Acc. Chem. Res. 14:384–392.CrossRefGoogle Scholar
  31. Horrocks, W. D., Jr., and Tingey, J. M., 1988, Biochemistry 27:413–419.PubMedCrossRefGoogle Scholar
  32. Horrocks, W. D., Jr., Rhee, M.-J., Snyder, A. P., and Sudnick, D. R., 1980, J. Am. Chem. Soc. 102:3652–3653.CrossRefGoogle Scholar
  33. Hüfner, S., 1978, Optical Spectra of Transparent Rare Earth Compounds, Academic Press, New York.Google Scholar
  34. Iben, I. E. T., MacGregor, R. B., Shyamsunder, E., Stavola, M., and Friedman, J. M., 1989, Biophys. J. 55:519a (abstract W-Pos162).CrossRefGoogle Scholar
  35. Jesson, J. P., 1973, in NMR of Paramagnetic Molecules (G. N. La Mar, W. D. Horrocks, Jr., and R. H. Holm, eds.), Academic Press, New York, pp. 1–52.Google Scholar
  36. Jørgensen, C. K., 1975, in Structure and Bonding, Vol. 22 (J. D. Dunitz, P. Hemmerich, R. H. Holm, J. A. Ibers, C. K. Jørgensen, J. B. Neilands, D. Reinen, and R. J. P. Williams, eds.), Springer-Verlag, Berlin, pp. 49–81.Google Scholar
  37. Joshi, N. B., and Shamoo, A. E., 1987, Biophys. J. 51:185–191.PubMedCrossRefGoogle Scholar
  38. Kupke, D. W., and Fox, J. W., 1989, Biochemistry 28:4409–4415.PubMedCrossRefGoogle Scholar
  39. La Mar, G. N., 1973, in NMR of Pramagnetic Molecules (G. N. La Mar, W. D. Horrocks, Jr., and R. H. Holm, eds.), Academic Press, New York, pp. 85–126.Google Scholar
  40. La Mar, G. N., Horrocks, W. D., Jr., and Holm, R. H. (eds.), 1973, NMR of Paramagnetic Molecules, Academic Press, New York.Google Scholar
  41. Luk, C. K., 1971, Biochemistry 10:2838–2843.CrossRefGoogle Scholar
  42. Madras, J. S., and Brittain, H. G., 1980, Inorg. Chem. 19:3841.CrossRefGoogle Scholar
  43. Martin, R. B., and Richardson, F. S., 1979, Q. Rev. Biophys. 12:181–209.PubMedCrossRefGoogle Scholar
  44. Matthews, B. W., and Weaver, L. H., 1974, Biochemistry 13:1719–1725.PubMedCrossRefGoogle Scholar
  45. Meares, C. F., and Rice, L. S., 1981, Biochemistry 20:610–617.PubMedCrossRefGoogle Scholar
  46. Meares, C. F., and Wensel, T. G., 1984, Acc. Chem. Res. 17:202–209.CrossRefGoogle Scholar
  47. Meares, C. F., Yeh, S. M., and Stryer, L., 1981, J. Am. Chem. Soc. 103:1607–1609.CrossRefGoogle Scholar
  48. Mikkelsen, R. B., and Wallach, D. F. H., 1974, Biochim. Biophys. Acta 363:211–218.PubMedCrossRefGoogle Scholar
  49. Morley, J. P., Saxe, J. D., and Richardson, F. S., 1982, Mol. Phys. 379:407.Google Scholar
  50. Muetterties, E. L., and Wright, C. W., 1967, Q. Rev. Chem. Soc. 21:109.CrossRefGoogle Scholar
  51. Mulqueen, P., Tingey, J. M., and Horrocks, W. D., Jr., 1985, Biochemistry 24:6639–6645.PubMedCrossRefGoogle Scholar
  52. Navon, S., Stavola, M., and Skeats, M. G., 1981, J. Inorg. Nucl Chem. 43:575–578.CrossRefGoogle Scholar
  53. Nieboer, E., 1975, in Structure and Bonding, Vol. 22 (J. D. Dunitz, P. Hemmerich, R. H. Holm, J. A. Ibers, C. K. Jørgensen, J. B. Neilands, D. Reinen, and R. J. P. Williams, eds.), Springer-Verlag, Berlin, pp. 1–47.Google Scholar
  54. Patil, G. S., Dorman, N. J., and Cornwell, D. G., 1979, J. Lipid Res. 20:663–668.PubMedGoogle Scholar
  55. Peacock, R. D., 1975, in Structure and Bonding, Vol. 22 (J. D. Dunitz, P. Hemmerich, R. H. Holm, J. A. Ibers, C. K. Jørgensen, J. B. Neilands, D. Reinen, and R. J. P. Williams, eds.), Springer-Verlag, Berlin, pp. 83–122.Google Scholar
  56. Petersheim, M., and Sun, J., 1989, Biophys. J. 55:631–636.PubMedCrossRefGoogle Scholar
  57. Petersheim, M., Blodnieks, J., and Halladay, H. N., 1989a, in Biological and Synthetic Membranes (A. R. Butterfield, ed.), Liss, New York, pp. 87–96.Google Scholar
  58. Petersheim, M., Halladay, H. N., and Blodnieks, J., 1989b, Biophys. J. 56:551–557.PubMedCrossRefGoogle Scholar
  59. Reid, M. F., and Richardson, F. S., 1985, J. Phys. Chem. 88:3579–3586.CrossRefGoogle Scholar
  60. Reisfeld, R., 1975, in Structure and Bonding, Vol. 22 (J. D. Dunitz, P. Hemmerich, R. H. Holm, J. A. Ibers, C. K. Jørgensen, J. B. Neilands, D. Reinen, and R. J. P. Williams, eds.), Springer-Verlag, Berlin, pp. 123–175.Google Scholar
  61. Reisfeld, R., 1976, in Structure and Bonding, Vol. 30 (J. D. Dunitz, P. Hemmerich, R. H. Holm, J. A. Ibers, C. K. Jørgensen, J. B. Neilands, D. Reinen, and R. J. P. Williams, eds.), Springer-Verlag, Berlin, pp. 65–97.Google Scholar
  62. Reuben, J., 1979, in Handbook on the Physics and Chemistry of Rare Earths, Vol. 4 (K. A. Gschneidner, Jr., and L. R. Eyring, eds.), North-Holland, Amsterdam, pp. 515–552.Google Scholar
  63. Reuben, J., and Elgavish, G. A., 1979, in Handbook on the Physics and Chemistry of Rare Earths, Vol. 4 (K. A. Gschneidner, Jr., and L. R. Eyring, eds.), North-Holland, Amsterdam, pp. 483–514.Google Scholar
  64. Rhee, M.-J., Sudnick, D. R., Arkle, V. K., and Horrocks, W. D., Jr., 1981, Biochemistry 20:3328–3334.PubMedCrossRefGoogle Scholar
  65. Richardson, F. S., 1980, Inorg. Chem. 19:2806.CrossRefGoogle Scholar
  66. Richardson, F. S., 1982, Chem. Rev. 82:541–552.CrossRefGoogle Scholar
  67. Ryan, J. L., and Jørgensen, C. K., 1966, J. Phys. Chem. 70:2845.CrossRefGoogle Scholar
  68. Sen, A. C., Chowdhury, M., and Schwartz, R. W., 1981, J. Chem. Soc. Faraday Trans. II 77:1293.CrossRefGoogle Scholar
  69. Sinha, S. P., 1976a, in Structure and Bonding, Vol. 25 (J. D. Dunitz, P. Hemmerich, R. H. Holm, J. A. Ibers, C. K. Jørgensen, J. B. Neilands, D. Reinen, and R. J. P. Williams, eds.), Springer-Verlag, Berlin, pp. 69–149.Google Scholar
  70. Sinha, S. P., 1976b, in Structure and Bonding, Vol. 30 (J. D. Dunitz, P. Hemmerich, R. H. Holm, J. A. Ibers, C. K. Jørgensen, J. B. Neilands, D. Reinen, and R. J. P. Williams, eds.), Springer-Verlag, Berlin, pp. 1–64.Google Scholar
  71. Snyder, A. P., Sudnick, D. R., Arkle, R. K., and Horrocks, W. D., Jr., 1981, Biochemistry 20:3334–3339.PubMedCrossRefGoogle Scholar
  72. Sowadsky, J., Cornick, G., and Kretsinger, R. H., 1978, J. Mol. Biol. 124:123–132.CrossRefGoogle Scholar
  73. Stevens, B. R., and Kneer, C., 1988, Biochim. Biophys. Acta 942:205–208.PubMedCrossRefGoogle Scholar
  74. Sun, J., 1990, Master’s thesis, Seton Hall University, South Orange, N.J.Google Scholar
  75. Sun, J., and Petersheim, M, 1990, Biochim. Biophys. Acta 1024:159–166.PubMedCrossRefGoogle Scholar
  76. Svetashaev, A. G., and Tsvirko, M. P., 1984, Teor. Eksp. Khim. 20:696–701.Google Scholar
  77. Thomas, D. D., Carlsen, W. F., and Stryer, L., 1978, Proc. Natl. Acad. Sci. USA 75:5746–5760.PubMedCrossRefGoogle Scholar
  78. Thompson, L. C., 1979, in Handbook on the Physics and Chemistry of Rare Earths, Vol. 3 (K. A. Gschneidner, Jr., and L. R. Eyring, eds.), North-Holland, Amsterdam, pp. 209–297.Google Scholar
  79. Wybourne, B. G., 1965, Spectroscopic Properties of Rare Earths, Wiley, New York.Google Scholar
  80. Yan, F., Copeland, R. A., and Brittain, H. G., 1982, Inorg. Chem. 21:1180.CrossRefGoogle Scholar
  81. Zolin, V. F., Koreneva, L. G., and Tsaryuk, V. L., 1975, Biofizika 20:194.PubMedGoogle Scholar
  82. Zuxuan, Z., Yuanzhen, Z., Xinguang, W., Rongsan, C., and Zhenzhang, R., 1985, J. Less-Common Met. 112:401–409.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Matthew Petersheim
    • 1
  1. 1.Department of ChemistrySeton Hall UniversitySouth OrangeUSA

Personalised recommendations