Covalent Bonding of Collagen and Acrylic Polymers

  • Douglas R. Lloyd
  • Charles M. Burns
Chapter
Part of the Polymer Science and Technology book series (POLS, volume 14)

Abstract

The ability to establish chemical bonding between biological substrates and polymeric prosthetic devices has long been a goal of biomedical researchers. Although significant advancements have been made towards improved biocompatibility of synthetic polymeric materials and biomedical adhesives, the ability to establish permanent bonding under physiological conditions is a goal yet to be fully realized. Attempts to provide the desired adhesion through mechanical bonding have proven to be neither convenient nor permanent (1). For this reason attention has turned to adhesion by chemical bonds. One approach to this problem has been to establish secondary chemical bonds (2–6). These bonds, however, usually do not provide as strong or as permanent a bond as does the establishment of primary chemical bonds (5). We report here the initial stages of work designed to develop an adhesive agent capable of establishing primary chemical bonding between biological substrates and synthetic polymers of biomedical interest.

Keywords

Titration Carboxyl Immobilization Lysine Anhydride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Buonocore, In: “Adhesion in Biological Systems”, R. S. Manly, ed., Academic, New York, 1970, Chap. 15Google Scholar
  2. 2.
    R. L. Bowen, J. Dent. Res., 44, 895 (1965)CrossRefGoogle Scholar
  3. 3.
    D. C. Smith, Br. Dent. J., 125, 381 (1968)Google Scholar
  4. 4.
    T. Tosa, T. Mori, N. Fuse, and I. Chibata, Biotech. Bioeng., 9, 603 (1967)CrossRefGoogle Scholar
  5. 5.
    G. Baum, F. B. Ward, and H. H. Weetall, Biochim. Biophys. Acta, 268, 411 (1972)CrossRefGoogle Scholar
  6. 6.
    R. S. Manly, ed., “Adhesion in Biological Systems”, Academic, New York, 1970, Chaps. 15–17Google Scholar
  7. 7.
    D. C. Smith, J. Can. Dent. Assoc., 37, 22 (1971)Google Scholar
  8. 8.
    E. Masuhara, M. Ilido, E. Furuya, S. Kawachi, and J. Tarumi, Clin. Orthoped. Rel. Res., 100, 279 (1974)Google Scholar
  9. 9.
    R. L. Bowen, J. Dent. Res., 58, 1493 (1979)CrossRefGoogle Scholar
  10. 10.
    A. D. Wilson, Organic Coatings and Plastic Chemistry, 42, 215 (1980)Google Scholar
  11. 11.
    J. F. Glenn, Organic Coatings and Plastic Chemistry, 42, 186 (1980)Google Scholar
  12. 12.
    B. D. Halpern and W. Karo, Organic Coatings and Plastic Chemistry, 42, 315 (1980)Google Scholar
  13. 13.
    J. Gross, In: “Comparative Biochemistry”, Vol. V., M. Florkin and H. S. Mason, eds., Academic, New York, 1963Google Scholar
  14. 14.
    R. G. Carbonell and M. D. Kostin, AIChE J., 18, 1 (1972)CrossRefGoogle Scholar
  15. 15.
    K. L. Smiley and G. W. Standberg, Adv. Appl. Microbiol., 15, 13 (1972)CrossRefGoogle Scholar
  16. 16.
    O. R. Zaborsky, “Immobilized Enzymes”, C.R.C. Press, Cleveland, 1973Google Scholar
  17. 17.
    R. Goodman, L. Goldstein, and E. Katchalski, In: “Biochemical Aspects of Reactions on Solid Supports”, G. R. Stark, ed., Academic, New York, 1971, Chap. 1Google Scholar
  18. 18.
    R. C. Page and E. P. Benditt, FEBS Lett., 9, 49 (1970)CrossRefGoogle Scholar
  19. 19.
    Y. Nayudamma, R. Hemalatha, and K. T. Joseph, J. Am. Leather Chem. Assoc., 64, 444 (1969)Google Scholar
  20. 20.
    T. J. Munton and A. D. Russell, Br. Med. J., 3, 372 (1971)CrossRefGoogle Scholar
  21. 21.
    H. G. Khorana, Chem. Rev., 53, 145 (1953)CrossRefGoogle Scholar
  22. 22.
    F. Kurzer and K. Douraghi-Zadeh, Chem Rev., 67, 107 (1967)CrossRefGoogle Scholar
  23. 23.
    D. G. Hoare and D. E. Koshland, J. Biol. Chem., 242, 2447 (1967)Google Scholar
  24. 24.
    C. P. Joshua, J. Ind. Chem. Soc., 37, 621 (1960)Google Scholar
  25. 25.
    L. E. A. Godfrey and F. Kurzer, J. Chem. Soc., 35, 61 (1962)Google Scholar
  26. 26.
    K. L. Carraway and D. E. Koshland, Biochim. Biophys. Acta, 160, 272 (1968)CrossRefGoogle Scholar
  27. 27.
    B. Adcock, A. Lawson, and D. Miles, J. Chem. Soc., 51, 20 (1961)Google Scholar
  28. 28.
    K. L. Carraway and R. B. Triplett, Biochim. Biophys. Acta, 200, 564 (1970)CrossRefGoogle Scholar
  29. 29.
    D. G. Hoare and D. E. Koshland, J. Am. Chem. Soc., 88, 2057 (1966)CrossRefGoogle Scholar
  30. 30.
    A. Previero, J. Derancourt, M. A. Coletti-Previero, and R. A. Laursen, FEBS Lett., 33, 135 (1973)CrossRefGoogle Scholar
  31. 31.
    O. H. Lowry, N. J. Rosenbrough, A. L. Farr, and R. J. Randall, J. Biol. Chem., 193, 265 (1951)Google Scholar
  32. 32.
    R. E. Burge and R. D. Hynes, J. Molec. Biol., 1, 155 (1959)CrossRefGoogle Scholar
  33. 33.
    P. H. von Hippel and K. Y. Wong, Biochemistry, 2, 1387 (1963)CrossRefGoogle Scholar
  34. 34.
    H. R. Mahler and E. H. Cordes, “Biological Chemistry, 2nd ed.”, Harper and Row, New York, 1971, Chaps. 3, 4Google Scholar
  35. 35.
    C. Franzblau, P. M. Gallop, and S. Seifter, Biopolymers, 1, 79 ( 1963CrossRefGoogle Scholar
  36. 36.
    K. D. Hapner and P. E. Wilcox, Biochemistry, 9, 4470 ( 1970CrossRefGoogle Scholar
  37. 37.
    E. G. Frame, In: “Standard Methods of Clinical Chemistry”, D. Seligson, ed., Academic, New York, 1963, Vol 4, p. 1Google Scholar
  38. 38.
    M. Schubert and D. Humerman, “A Primer on Connective Tissue Biochemistry”, Lee and Febiger, Philadelphia, 1968, Chap. 2Google Scholar
  39. 39.
    A. Veis, In: “Treatise on Collagen”, Vol. 1, G. N. Ramachandran, ed., Academic, New York, 1968Google Scholar
  40. 40.
    K. Martensson and K. Mosback, Biotechnol. Bioeng., 14, 715 (1972)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Douglas R. Lloyd
    • 1
    • 2
  • Charles M. Burns
    • 1
    • 2
  1. 1.Department of Chemical Engineering Virginia Polytechnic InstituteState UniversityBlacksburgUSA
  2. 2.University of WaterlooWaterlooCanada

Personalised recommendations