Advertisement

Clinical Application of Transcranial Magnetic Stimulation for Intraoperative Monitoring of the Spinal Cord and Mapping of the Motor Cortex

  • Karl H. Kraus
  • Walter J. Levy
  • Lavern D. Gugino
  • Rhamsis Ghaly
  • Vahe Amassian
  • John Cadwell

Abstract

Since the first descriptions of the use of time-varying magnetic fields for non-invasive stimulation of nervous structures, this modality has been suggested as a versatile tool for studying and monitoring the nervous system [1, 2]. Much has been recently learned about the mechanisms of magnetic stimulation, its safety, and its potential applications. Studies in normal volunteers and those with neurologic disorders have led to important findings of the organization of the motor system in health and disease [3–13].

Keywords

Transcranial Magnetic Stimulation Motor Cortex Compound Muscle Action Potential Clinical Neurophysiology Magnetic Coil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.T. Barker, R. Jalinous, and I.L. Freeston, Non-invasive magnetic stimulation of human motor cortex, Lancet 1: 1106–1107 (1985).PubMedCrossRefGoogle Scholar
  2. 2.
    A.T. Barker, J.L. Freeston, R. Jalinous, and J.A. Jarratt, Noninvasive stimulation of motor pathways within the brain using time-varying magnetic fields, Electroencephalography and Clinical Neurophysiology 61: 245–246 (1985).CrossRefGoogle Scholar
  3. 3.
    V.E. Amassian, G.J. Quirk, and M. Stewart, A comparison of corticospinal activation by magnetic coil and electrical stimulation of monkey motor cortex, Electroencephalography and Clinical Neurophysiology 77: 390–401 (1990).PubMedCrossRefGoogle Scholar
  4. 4.
    V.E. Amassian, R.Q. Cracco, and P.J. Maccabee, A sense of movement elicited in paralyzed distal arm by focal magnetic coil stimulation of human motor cortex, Brain Research 479: 355–360 (1989).PubMedCrossRefGoogle Scholar
  5. 5.
    V.E. Amassian, R.Q. Cracco, and P.J. Maccabee, Focal stimulation of human cerebral cortex with the magnetic coil: a comparison with electrical stimulation, Electroencephalography and Clinical Neurophysiology 74: 401–416 (1989).PubMedCrossRefGoogle Scholar
  6. 6.
    R.Q. Cracco, V.E. Amassian, P.J. Maccabee, and J.B. Cracco, Comparison of human transcallosal responses evoked by magnetic coil and electrical stimulation, Electroencephalography and Clinical Neurophysiology 74: 417–424 (1989).PubMedCrossRefGoogle Scholar
  7. 7.
    P.J. Maccabee, V.E. Amassian, R.Q. Cracco, and J.A. Cadwell, An analysis of peripheral motor nerve stimulation in humans using the magnetic coil, Electroencephalography and Clinical Neurophysiology 70: 524–533 (1988).PubMedCrossRefGoogle Scholar
  8. 8.
    V.E. Amassian, R.Q. Cracco, P.J. Maccabee, J.B. Cracco, A. Rudell, and L. Eberle, Suppression of visual perception by magnetic coil stimulation of human occipital cortex, Electroencephalography and Clinical Neurophysiology 74: 458–462 (1989).PubMedCrossRefGoogle Scholar
  9. 9.
    R.Q. Cracco, V.E. Amassian, P.J. Maccabee, and J.B. Cracco, Excitatory and inhibitory effects of magnetic coil stimulation of human cortex, Electroencephalography and Clinical Neurophysiology–Supplement 41: 134–139 (1990).PubMedGoogle Scholar
  10. 10.
    P.J. Maccabee, L. Eberle, V.E. Amassian, R.Q. Cracco, A. Rudell, and M. Jayachandra, Spatial distribution of the electric field induced in volume by round and figure-eight magnetic coils: relevance to activation of sensory nerve fibers, Electroencephalography and Clinical Neurophysiology 76: 131141 (1990).Google Scholar
  11. 11.
    V.E. Amassian, P.J. Maccabee, and R.Q. Cracco, Focal stimulation of human peripheral nerve with the magnetic coil: a comparison with electrical stimulation, Experimental Neurology 103: 282–289 (1989).PubMedCrossRefGoogle Scholar
  12. 12.
    V.E. Amassian, R.Q. Cracco, and P.J. Maccabee, Focal magnetic coil activation of human motor cortex elicits a sense of movement in ischaemically paralysed, distal arm, J Physiol (Lond) 403: 75 (1988).Google Scholar
  13. 13.
    V.E. Amassian, R.Q. Cracco, and P.J. Maccabee, Focal stimulation of human cerebral cortex with the magnetic coil: A comparison with electrical stimulation, Electroencephalography and Clinical Neurophysiology 74: 401–416 (1989).PubMedCrossRefGoogle Scholar
  14. 14.
    M. Machida, S.L. Weinstein, T. Yamada, J. Kimura, and S. Toriyama, Dissociation of muscle action potentials and spinal somatosensory evoked potentials after ischemic damage of spinal cord, Spine 13: 1119–1124 (1988).PubMedCrossRefGoogle Scholar
  15. 15.
    J.H. Owen, K.H. Bridwell, R. Grubb, A. Jenny, B. Allen, A.M. Padberg, and S.M. Shimon, The clinical application of neurogenic motor evoked potentials to monitor spinal cord function during surgery, Spine 16: S385 - S390 (1991).PubMedCrossRefGoogle Scholar
  16. 16.
    K. Tsuchida, A. Hashimoto, R. Seino, T. Hirayama, S. Aomi, and H. Koyanagi, Two case reports of neurologic complications after aortic aneurysm operation [Jpn], Nippon Kyobu Geka Gakkai Zasshi–Journal of the Japanese Association for Thoracic Surgery 37: 1995–2000 (1989).Google Scholar
  17. 17.
    M.H. Zornow, M.R. Grafe, C. Tybor, and M.R. Swenson, Preservation of evoked potentials in a case of anterior spinal artery syndrome, Electroencephalography and Clinical Neurophysiology 77: 137–139 (1990).PubMedCrossRefGoogle Scholar
  18. 18.
    M.H. Zomow and J.C. Drummond, Intraoperative somatosensory evoked responses recorded during onset of the anterior spinal artery syndrome [see comments], Journal of Clinical Monitoring 5: 243–245 (1989).CrossRefGoogle Scholar
  19. 19.
    R.F. Ghaly, J.L. Stone, A. Aldrete, and W.J. Levy, Motor evoked potentials in primates; anesthetic considerations, J Neuroanesthesia 2000: 182 (1991).Google Scholar
  20. 20.
    R.F. Ghaly, J.L. Stone, W.J. Levy, R. Kartha, and A. Aldrete, The effects of nitrous oxide on transcranial magnetic-induced electromyographic responses in the monkey, J. Neurosurg Anesth 2: 175–181 (1990).CrossRefGoogle Scholar
  21. 21.
    S.S. Haghighi, K.D. Green, J.J. Oro, R.K. Drake, and G.R. Kracke, Depressive effect of isofiurane anesthesia on motor evoked potentials, Neurosurgery 26: 993–997 (1990).PubMedCrossRefGoogle Scholar
  22. 22.
    S.S. Haghighi, R. Madsen, D. Green, J.J. Oro, and G. Kracke, Suppression of motor evoked potentials by inhalation anesthetics, J Neurosurg Anesth 2: 75–78 (1990).CrossRefGoogle Scholar
  23. 23.
    T.J. Lasasso, J.B. Boudreaux, D.A. Muzzi, R.F. Cuchiara, and J.R. Daube, The effect of anesthetic agents on transcranial magnetic motor evoked potentials (TMEP) in neurosurgical patients (Abstract), J Neurosurg Anesth 3: 200 (1991).CrossRefGoogle Scholar
  24. 24.
    T.B. Sloan and D. Levin, Effect of enflurane, halothane, isofiurane and nitrous oxide on cortical magnetic motor-evoked potentials (Abstract), J Neurosurg Anesth 3: 201 (1991).CrossRefGoogle Scholar
  25. 25.
    H.L. Edmonds, Jr., M.P. Paloheimo, M.H. Backman, J.R. Johnson, R.T. Holt, and C.B. Shields, Transcranial magnetic motor evoked potentials (tcMMEP) for functional monitoring of motor pathways during scoliosis surgery, Spine 14: 683–686 (1989).PubMedCrossRefGoogle Scholar
  26. 26.
    R.F. Ghaly, J.L. Stone, W.J. Levy, R. Kartha, and E.B. Brunner, The effect of an anesthetic induction dose of midazolam on motor evoked potentials evoked by transcranial magnetic stimulation in the monkey, J Neuroanesthesia 20: 183 (1991).Google Scholar
  27. 27.
    R.F. Ghaly, J.L. Stone, W.J. Levy, R. Kartha, E.A. Brunner, R.A. Aldrete, and R. Laige, The effect of neuroleptanalgesia (Droperidol-Fentanyl) on motor potentials evoked by transcranial magnetic stimulation in the monkey, J Neurosurg Anesth 3: 117–123 (1991).CrossRefGoogle Scholar
  28. 28.
    R.F. Ghaly, J.L. Stone, W.J. Levy, P. Roccaforte, and E.B. Brunner, The effect of etomidate on transcranial magnetic-induced motor evoked potentials in the monkey, Neurosurgery 20: 184 (1990).Google Scholar
  29. 29.
    R.F. Ghaly, J.L. Stone, A. Aldrete, and W.J. Levy, Effects of incremental ketamine hydrochloride doses on motor evoked potentials (MEPs) following transcranial magnetic stimulation: A primate study, J Neurosurg Anesth 2: 79–85 (1990).CrossRefGoogle Scholar
  30. 30.
    R.F. Ghaly, J.L. Stone, W.J. Levy, R. Kartha, M.L. Miles, and H.J. Jaster, The effect of etomidate or midazolam hypnotic doses on motor evoked potentials in the monkey, J Neurosurg Anesth 3: 20–27 (1991).CrossRefGoogle Scholar
  31. 31.
    T.B. Sloan, Vecuronium alters cortical magnetic motor evoked potentials, J Neurosurg Anesth 2: 251 (1990).CrossRefGoogle Scholar
  32. 32.
    S. Ueno, T. Tashiro and K. Harada, Localized stimulation of neural tissues in the brain by means of a paired configuration of time-varying magnetic fields, J Appl Phys 64: 5862–5864 (1988).CrossRefGoogle Scholar
  33. 33.
    V.E. Amassian, R.Q. Cracco, P.J. Maccabee, B. Bigland-Ritchie, and J.B. Cracco, Matching focal and non-focal magnetic coil stimulation to properties of human nervous system: mapping motor unit fields in motor cortex contrasted with altering sequential digit movements by premoter-SMA stimulation, Electroencephalography and Clinical Neurophysiology–Supplement 43: 3–28 (1991).PubMedGoogle Scholar
  34. 34.
    W.J. Levy, V.E. Amassian, U.D. Schmid, and C. Jungreis, Mapping of motor cortex gyral sites non-invasively by transcranial magnetic stimulation in normal subjects and patients, Electroencephalography and Clinical Neurophysiology–Supplement 43: 51–75 (1991).PubMedGoogle Scholar
  35. 35.
    B.U. Meyer, R. Diehl, H. Steinmetz, T.C. Britton, and R. Benecke, Magnetic stimuli applied over motor and visual cortex: influence of coil position and field polarity on motor responses, phosphenes, and eye movements, Electroencephalography and Clinical Neurophysiology -Supplement 43: 121–134 (1991).PubMedGoogle Scholar
  36. 36.
    W.J. Levy, Jr., V.E. Amassian, M. Traad, and J. Cadwell, Focal magnetic coil stimulation reveals motor cortical system reorganized in humans after traumatic quadriplegia, Brain Research 510: 130–134 (1990).PubMedCrossRefGoogle Scholar
  37. 37.
    L.G. Cohen, B.J. Roth, E.M. Wassermann, H. Topka, P. Fuhr, J. Schultz, and M. Hallett, Magnetic stimulation of the human cerebral cortex, an indicator of reorganization in motor pathways in certain pathological conditions, Journal of Clinical Neurophysiology 8: 56–65 (1991).PubMedCrossRefGoogle Scholar
  38. 38.
    L.G. Cohen and M. Hallett, Noninvasive mapping of human motor cortex, Neurology 38: 904–909 (1988).PubMedCrossRefGoogle Scholar
  39. 39.
    L.G. Cohen, S. Bandinelli, H.R. Topka, P. Fuhr, B.J. Roth, and M. Hallett, Topographic maps of human motor cortex in normal and pathological conditions: mirror movements, amputations and spinal cord injuries, Electroencephalography and Clinical Neurophysiology–Supplement 43: 36–50 (1991).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Karl H. Kraus
    • 1
  • Walter J. Levy
    • 2
  • Lavern D. Gugino
    • 1
  • Rhamsis Ghaly
    • 3
  • Vahe Amassian
    • 4
  • John Cadwell
    • 5
  1. 1.Brigham and Womens HospitalHarvard School of MedicineBostonUSA
  2. 2.Cleveland Clinic of FloridaFt. LauderdaleUSA
  3. 3.Dept. of Neurological SurgeryUniversity of IllinoisChicagoUSA
  4. 4.Dept. of PhysiologyState University of New YorkBrooklynUSA
  5. 5.Cadwell IndustriesKennewickUSA

Personalised recommendations