Sialic Acid as Receptor Determinant of Ortho- and Paramyxoviruses

  • Georg Herrler
  • Jürgen Hausmann
  • Hans-Dieter Klenk


The designation myxoviruses has been chosen historically for a group of viruses comprising influenza viruses, Newcastle disease virus, and mumps virus, because they were able to interact with mucins (see Chapter 5). A characteristic feature of these viruses was the presence of two activities that appeared to counteract each other. On the one hand, the viruses bind to receptors present on erythrocytes, resulting in a hemagglutination reaction. On the other hand, they contain a receptor-destroying enzyme rendering erythrocytes resistant to the viral agglutinating activity. The receptor determinant recognized by this group of viruses turned out to be sialic acid, and the receptor-destroying enzyme has been characterized as a sialidase and a sialate O-acetylesterase. Despite the similarities, members of the myxovirus group differ in several fundamental aspects, e.g., the presence of a segmented or a nonsegmented genome. Therefore, they have been grouped into two taxonomic families. Influenza A, B, and C viruses belong to the family Orthomyxoviridae. Viruses such as mumps virus, Newcastle disease virus, Sendai virus, and other parainfluenza viruses are members of the family Paramyxoviridae. In addition to the receptor-binding and the receptor-destroying activity, these viruses have a fusion activity. They differ, however, in the distribution of the three activities on the viral surface glycoproteins. With influenza A and B viruses, receptor-binding and fusion activity are functions of the hemagglutinin (HA). A second glycoprotein (NA) is responsible for the sialidase activity. In the case of paramyxoviruses, the receptor-binding and the sialidase activity are combined on one type of glycoprotein designated HN, whereas the fusion activity is localized on a separate glycoprotein (F). Influenza C viruses have only a single glycoprotein that is responsible for all three activities. They also differ from the other viruses in that they recognize N-acetyl-9-O-acetylneuraminic acid (Neu5,9Ac2) rather than N-acetylneuraminic acid (Neu5Ac) as receptor determinant. Furthermore, the receptor-destroying enzyme of influenza C viruses is a sialate 9-O-acetylesterase. In this chapter, the interaction of viral proteins with sialic acid and the biological significance of the receptor-binding and the receptor-destroying activity are discussed.


Influenza Virus Sialic Acid Newcastle Disease Virus Sendai Virus Fusion Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, A. T., Varghese, J. N., Laver, W. G., Air, G. M., and Colman, P. M., 1987, Three-dimensional structure of neuraminidase of subtype N9 from an avian influenza virus, Proteins 2: 111–117.PubMedCrossRefGoogle Scholar
  2. Baum, L. G., and Paulson, J. C., 1991, The N2 neuraminidase of human influenza virus has acquired a substrate specificity complementary to the hemagglutinin receptor specificity, Virology 180: 10–15.PubMedCrossRefGoogle Scholar
  3. Bilsel, P., Castrucci, M., and Kawaoka, Y., 1993, Mutations in the cytoplasmatic tail of influenza A virus neuraminidase affect incorporation into virions, J. Virol. 67: 6762–6767.PubMedGoogle Scholar
  4. Blok, J., Air, G. M., Laver, W. G., Ward, C. W., Lilley, G. G., Woods, E. F., Roxburgh, C. M., and Inglis, E. S., 1982, Studies on the size, chemical composition and partial sequence of the neuraminidase (NA) from type A influenza virus show that the N-terminal region of the NA is not processed and serves to anchor the NA in the viral membrane, Virology 119: 109–121.PubMedCrossRefGoogle Scholar
  5. Bos, T. J., Davis, A. R., and Nayak, D. P., 1984, NH2-terminal hydrophobic region of influenza virus neuraminidase provides the signal function in translocation, Proc. Natl. Acad. Sci. USA 81: 2327–2331.PubMedCrossRefGoogle Scholar
  6. Bossart-Whitaker, P., Carson, M., Babu, J. S., Smith, C. D., Laver, W. G., and Air, G. M., 1993, Three-dimensional structure of influenza A N9 neuraminidase and its complex with the inhibitor 2-deoxy 2,3-dehydro-N-acetyl neuraminic acid, J. Mol. Biol. 232: 1069–1083.PubMedCrossRefGoogle Scholar
  7. Both, G. M., Shi, C. H., and Kilboume, E. D., 1983, The hemagglutinin of swine influenza virus: A single amino acid change pleiotropically affects viral antigenicity and replication, Proc. Natl. Acad. Sci. USA 80: 6996–7000.PubMedCrossRefGoogle Scholar
  8. Burmeister, W. P., Ruigrok, R.W.H., and Cusack, S., 1992, The 2.2.E resolution crystal structure of influenza B neuraminidase and its complex with sialic acid, EMBO J. 11: 49–56.PubMedGoogle Scholar
  9. Burnet, F. M., and Bull, D. R., 1943, Changes in influenza virus associated with adaptation to passage in chick embryo, Aust. J. Exp. Med. Sci. 21: 55–69.CrossRefGoogle Scholar
  10. Carr, C. M., and Kim, P. S., 1993, A spring-loaded mechanism for the conformational change of influenza hemagglutinin, Cell 73: 823–832.PubMedCrossRefGoogle Scholar
  11. Carroll, S. M., and Paulson, J. C., 1985, Differential infection of receptor-modified host cells by receptor-specific influenza viruses, Virus Res. 3: 165–179.PubMedCrossRefGoogle Scholar
  12. Carroll, S. M., Higa, H. H., Paulson, J. C., 1981, Different cell-surface receptor determinants of antigenically similar influenza virus hemagglutinins, J. Biol. Chem., 256: 8357–8363.PubMedGoogle Scholar
  13. Castrucci, M. R., and Kawaoka, Y., 1993, Biologic importance of neuraminidase stalk length in influenza A virus, J. Virol. 67: 759–764.PubMedGoogle Scholar
  14. Chong, A. K., Pegg, M. S., and von Itzstein, M., 1991, Characterisation of an ionisable group involved in binding and catalysis by sialidase from influenza virus, Biochem. Int. 24: 165–171.PubMedGoogle Scholar
  15. Chong, A. K., Pegg, M. S., Taylor, N. R., and von Itzstein, M., 1992, Evidence for sialosyl cation transition-state complex in the reaction of sialidase from influenza virus, Eur. J. Biochem. 207: 335–343.PubMedCrossRefGoogle Scholar
  16. Choppin, P. W., and Tamm, I., 1960, Studies of two kinds of virus particles which comprise influenza A2 virus strains. I. Characterization of stable homogenous substrains in reactions with specific antibody, mucoprotein inhibitors, and erythrocytes, J. Exp. Med. 112: 895–920.PubMedCrossRefGoogle Scholar
  17. Colman, P. M., 1989, Neuraminidase: Enzyme and antigen, in: The Influenza Viruses, ( R. M. Krug, ed.), Plenum Press, New York, pp. 175–218.CrossRefGoogle Scholar
  18. Colman, P. M., Varghese, J. N., and Laver, W. G., 1983, Structure of the catalytic and antigenic sites in influenza virus neuraminidase, Nature 303: 41–44.PubMedCrossRefGoogle Scholar
  19. Colman, P. M., Hoyne, P. A., and Lawrence, M. C., 1993, Sequence and structure alignment of paramyxovirus hemagglutinin-neuraminidase with influenza neuraminidase, J. Virol. 67: 2972–2980.PubMedGoogle Scholar
  20. Corfield, A. P., and Schauer, R., 1982, Metabolism of sialic acids, in: Sialic Acids—Chemistry, Metabolism and Function, ( R. Schauer, ed.), Springer-Verlag, Berlin, pp. 195–261.Google Scholar
  21. Corfield, A. P., Higa, H., Paulson, J. C., and Schauer, R., 1983, The specificity of viral and bacterial sialidases for a2–3 and a2–6 linked sialic acids in glycoproteins, Biochim. Biophys. Acta 744: 121–126.PubMedCrossRefGoogle Scholar
  22. Daniels, R. S., Jeffries, S., Yates, P., Schild, G. C., Rogers, G. N., Paulson, J. C., Wharton, S. A., Douglas, A. R., Skehel, J. J., and Wiley, D. C., 1987, The receptor binding and membrane fusion properties of influenza virus variants selected using anti-haemagglutinin monoclonal antibodies, EMBO J. 6: 1459–1465.PubMedGoogle Scholar
  23. Dimmock, N. J., 1971, Dependence of the activity of an influenza virus neuraminidase upon Ca2+, J. Gen. Virol. 13: 481–483.PubMedCrossRefGoogle Scholar
  24. Drzeniek, R., 1972, Substrate specificities of neuraminidases, Histochem. J. 5: 271–290.CrossRefGoogle Scholar
  25. Gottschalk, A., 1957, Neuraminidase: The specific enzyme of influenza virus and Vibrio cholerae, Biochim. Biophys. Acta 23: 645–646.PubMedCrossRefGoogle Scholar
  26. Haussman, J., Kretzshcmear, E., Garten, W., and Klenk, H. D., 1995, NI neuraminidase of influenza virus AIFPV1Rostock134 has hem-adsorbing activity, J. Gen. Virol.,in press.Google Scholar
  27. Haywood, A. M., and Boyer, A. P., 1985, Fusion of influenza virus membranes with liposomes of pH 7.5, Proc. Natl. Acad. Sci. USA 82: 4611–4615.PubMedCrossRefGoogle Scholar
  28. Herrler, G., and Klenk, H.-D., 1987, The surface receptor is a major determinant of the cell tropism of influenza C virus, Virology 159: 102–108.PubMedCrossRefGoogle Scholar
  29. Herrler, G., and Klenk, H.-D., 1991, Structure and function of the HEF glycoprotein of influenza C virus, Adv. Virus Res. 40: 213–234.PubMedCrossRefGoogle Scholar
  30. Herder, G., Rott, R., Klenk, H.-D., Müller, H.-P., Shukla, A. K., and Schauer, R., 1985, The receptor-destroying enzyme of influenza C virus is neuraminate-O-acetylesterase, EMBO J. 4: 1503–1506.Google Scholar
  31. Herrler, G., Dürkop, I., Becht, H., and Klenk, H.-D., 1988a, The glycoprotein of influenza C virus is the haemagglutinin, esterase and fusion factor, J. Gen. Virol. 69: 839–846.PubMedCrossRefGoogle Scholar
  32. Herrler, G., Multhaup, G., Beyreuther, K., and Klenk, H.-D., 1988b, Serine 71 of the glycoprotein HEF is located at the active site of the acetylesterase of influenza C virus, Arch. Virol. 102: 269–274.PubMedCrossRefGoogle Scholar
  33. Higa, H. H., Rogers, G. N., and Paulson, J. C., 1985, Influenza virus hemagglutinins differentiate between receptor determinants bearing N-acetyl-, N-glycolyl-, and N,O-diacetylneuraminic acids, Virology 144: 279–282.PubMedCrossRefGoogle Scholar
  34. Huang, R.T.C., Rott, R., Wahn, K., Klenk, H.-D., and Kohama, T., 1980, The function of the neuraminidase in membrane fusion induced by myxoviruses, Virology 107: 313–319.PubMedCrossRefGoogle Scholar
  35. Huang, R.T.C., Dietsch, E., and Rott, R., 1985, Further studies on the role of neuraminidase and the mechanism of low pH dependence in influenza virus-induced membrane fusion, J. Gen. Virol. 66: 295–301.PubMedCrossRefGoogle Scholar
  36. Kilbourne, E. D., 1978, Genetic dimorphism in influenza viruses: Characterization of stably associated hemagglutinin mutants differing in antigenicity and biological properties, Proc. Natl. Acad. Sci. USA 75: 6258–6262.PubMedCrossRefGoogle Scholar
  37. Kitame, F., Sugawara, K., Ohwada, K., and Homma, M., 1982, Proteolytic activation of hemolysis and fusion by influenza C virus, Arch. Virol. 73: 357–361.PubMedCrossRefGoogle Scholar
  38. Klenk, E., Fallard, H., and Lempfrid, H., 1955, Über die enzymatische Wirkung von Influenzaviren, Hoppe-Seyler’s Z. Physiol. Chem. 301: 235–246.PubMedCrossRefGoogle Scholar
  39. Klenk, H.-D., and Garten, W., 1994, Host cell proteases controlling virus pathogenicity, Trends Microbiol. 2: 39–42.PubMedCrossRefGoogle Scholar
  40. Klenk, H.-D., Compans, R. W., and Choppin, P. W., 1970, An electron microscopic study of the presence or absence of neuraminic acid in enveloped viruses, Virology 42: 1158–1162.PubMedCrossRefGoogle Scholar
  41. Lamb, R. A., 1989, Genes and proteins of the influenza viruses, in: The Influenza Viruses, ( R. M. Krug, ed.), Plenum Press, New York, pp. 1–87.CrossRefGoogle Scholar
  42. Laver, W. G., Colman, P. M., Webster, R. G., Hinshaw, V. S., and Air, G. M., 1984, Influenza virus neuraminidase with hemagglutinin activity, Virology 137: 314–323.PubMedCrossRefGoogle Scholar
  43. Lentz, M. R., Air, G. M., and Webster, R. G., 1987, Site-directed mutation of the active site of influenza neuraminidase and implications for the catalytic mechanism, Biochemistry 26: 5351–5358.PubMedCrossRefGoogle Scholar
  44. Li, S., Schulman, J. L., Itamura, S., and Palese, P., 1993, Glycosylation of neuraminidase determines the neurovirulence of influenza A/WSN/33 virus, J. Virol. 67: 6667–6673.PubMedGoogle Scholar
  45. Luo, G., Chung, J., and Palese, P., 1993, Alterations of the stalk of the influenza virus neuraminidase: Deletions and insertions, Virus Res. 29: 141–153.PubMedCrossRefGoogle Scholar
  46. Luytjes, W., Krystal, M., Enami, M., Parvin, J. D., and Palese, P., 1989, Amplification, expression, and packaging of a foreign gene by influenza virus, Cell 59: 1107–1113.PubMedCrossRefGoogle Scholar
  47. Marchesi, V. T., and Andrews, E. P., 1971, Glycoproteins: Isolation from cell membranes with lithium diiodosalicylate, Science 174: 1247–1248.PubMedCrossRefGoogle Scholar
  48. Markwell, M.A.K., and Paulson, J. C., 1980, Sendai virus utilizes specific sialyloligosaccharides as host cell receptor determinants, Proc. Natl. Acad. Sci. USA 77: 5693–5697.PubMedCrossRefGoogle Scholar
  49. Markwell, M.A.K., Svennerholm, L., and Paulson, J. C., 1981, Specific gangliosides function as host cell receptors for Sendai virus, Proc. Natl. Acad. Sci. USA 78: 5406–5410.PubMedCrossRefGoogle Scholar
  50. Markwell, M.A.K., Fredman, P., and Svennerholm, L., 1984, Receptor ganglioside content of three hosts for Sendai virus MDBK, HeLa, and MDCK cells, Biochim. Biophys. Acta 775: 7–16.PubMedCrossRefGoogle Scholar
  51. Matsuzaki, M., Sugawara, K., Adachi, K., Hongo, S., Nishimura, H., Kitame, F., and Nakamura, K., 1992, Location of neutralizing epitopes on the hemagglutinin-esterase protein of influenza C virus, Virology 189: 79–89.PubMedCrossRefGoogle Scholar
  52. Morrison, T., and Portner, A., 1991, Structure, function, and intracellular processing of the glycoproteins of Paramyxoviridae, in: The Paramyxoviruses, ( D. W. Kingsbury, ed.), Plenum Press, New York, pp. 347–382.CrossRefGoogle Scholar
  53. Muchmore, E. A., and Varki, A., 1987, Selective inactivation of influenza C esterase: A probe for detecting 9–0-acetylated sialic acids, Science 230: 1293–1295.CrossRefGoogle Scholar
  54. Munoz-Barroso, I., Garcia-Sastre, A., Villar, E., Manuguerra, J. C., Hannoun, C., and Cabezas, J. A., 1992, Increased influenza A virus sialidase activity with N-acetyl-9-O-acetylneuraminic acid-containing substrates resulting from influenza C virus O-acetylesterase action, Virus Res. 25: 145–153.PubMedCrossRefGoogle Scholar
  55. Nagai, Y., and Klenk, H.-D., 1977, Activation of precursors to both glycoproteins of Newcastle disease virus by proteolytic cleavage, Virology 77: 125–134.PubMedCrossRefGoogle Scholar
  56. Nobusawa, E., Aoyama, T., Kato, H., Suzuki, Y., Tateno, Y., and Nakajima, K., 1991, Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes of hemagglutinins of influenza A viruses, Virology 182: 475–485.PubMedCrossRefGoogle Scholar
  57. Nuss, J. M., and Air, G. M., 1991, Transfer of the hemagglutinin activity of influenza virus neuraminidase subtype N9 into an N2 neuraminidase background, Virology 183: 496–504.PubMedCrossRefGoogle Scholar
  58. Ohuchi, M., Ohuchi, R., and Mifune, K., 1982, Demonstration of hemolytic and fusion activities of influenza C virus, J. Virol. 42: 1076–1079.PubMedGoogle Scholar
  59. Palese, P., and Compans, R. W., 1976, Inhibition of influenza virus replication in tissue culture by 2-deoxy-2,3-dehydro-N-trifulone-acetyl-neuraminic acid (FANA): Mechanism of action, J. Gen. Virol. 33: 159–163.PubMedCrossRefGoogle Scholar
  60. Palese, P., Tobita, K., Ueda, M., and Compans, R. W., 1974, Characterization of temperaturesensitive influenza virus mutants defective in neuraminidase, Virology 61: 397–410.PubMedCrossRefGoogle Scholar
  61. Pritchett, T. J., and Paulson, J. C., 1989, Basis for the potent inhibition of influenza virus infection by equine and guinea pig a2 macroglobulin, J. Biol. Chem. 264: 9850–9858.PubMedGoogle Scholar
  62. Robertson, J. S., Naeve, C. W., Webster, R. G., Bootman, J. S., Newman, R., and Schild, G. C., 1985, Alterations in the hemagglutinin associated with adaptation of influenza B virus to growth in eggs, Virology 143: 166–174.PubMedCrossRefGoogle Scholar
  63. Rogers, G. N., and Paulson, J. C., 1983, Receptor determinants of human and animal influenza virus isolates: Differences in receptor specificity of the H3 hemagglutinin based on species of origin, Virology 127: 361–373.PubMedCrossRefGoogle Scholar
  64. Rogers, G. N., Paulson, J. C., Daniels, R. S., Skehel, J. J., and Wilson, D. C., 1983a, Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity, Nature 304: 76–78.PubMedCrossRefGoogle Scholar
  65. Rogers, G. N., Pritchett, T. J., Lane, J. L., and Paulson, J. C., 1983b, Differential sensitivity of human, avian, and equine influenza A viruses to a glycoprotein inhibitor of infection: Selection of receptor specific variants, Virology 131: 394–408.PubMedCrossRefGoogle Scholar
  66. Rogers, G. N., Herrler, G., Paulson, J. C., and Klenk, H.-D., 1986, Influenza C virus uses 9–0acetyl-N-acetylneuraminic acid as a high affinity receptor determinant for attachment to cells, J. Biol. Chem. 261: 5947–5951.PubMedGoogle Scholar
  67. Rosenberg, A., Howe, C., and Chargaff, E., 1956, Inhibition of influenza virus hemagglutination by a brain lipid fraction. Nature 177: 234–235.PubMedCrossRefGoogle Scholar
  68. Sauter, N. K., Hanson, J. E., Glick, G. D., Brown, J. H., Crowther, R. L., Park, S. J., Skehel, J. J., and Wiley, D. C., 1992, Binding of influenza virus hemagglutinin to analogs of its cell surface receptor, sialic acid: Analysis by proton nuclear magnetic resonance spectroscopy and X-ray crystallography, Biochemistry 31: 9601–9621.CrossRefGoogle Scholar
  69. Schild, G. C., Oxford, J. S., de Jong, J. C., and Webster, R. G., 1983, Evidence for host-cell selection of influenza virus antigenic variants, Nature 303: 706–709.PubMedCrossRefGoogle Scholar
  70. Scholtissek, C., Rhode, W., von Hoyningen, V., and Rott, R., 1978, Genetic relatedness between the new 1977 epidemic strain (H I N I) of influenza and human influenza strains isolated between 1947 and 1957, Virology 87: 13–20.Google Scholar
  71. Schulman, J. L.. and Palese, P., 1977, Virulence factors of influenza A viruses: WSN virus neuraminidase required for plaque production in MDBK cells, J. Virol. 24: 170–176.PubMedGoogle Scholar
  72. Schultze, B., Zimmer, G., and Herrler, G., 1993, Viral lectins for the detection of 9–0-acetylated sialic acid on glycoproteins and glycol ipids, in: Lectin.r and Glycobiology, (H. J. and S. Gabius, eds.), Springer-Verlag, Berlin, pp. 347–382.Google Scholar
  73. Suzuki, Y., Suzuki, T., and Matsumoto, M., 1983, Isolation and characterization of receptor sialoglycoprotein for hemagglutinating virus of Japan (Sendai virus) from bovine erythrocyte membranes, J. Biochem. 93: 1621–1633.PubMedCrossRefGoogle Scholar
  74. Suzuki, Y., Suzuki, T., Matsunaga, M., and Matsumoto, M., 1985, Gangliosides as paramyxovirus receptor. Structural requirement of sialo-oligosaccharides in receptors for hemagglutinating virus of Japan (Sendai virus) and Newcastle disease virus, J. Biochem. 97: 1189–1199.PubMedGoogle Scholar
  75. Suzuki, Y., Nagao, Y., Kato, H., Matsumoto, M., Nerome, K., Nakajima, K., and Nobusawa, E., 1986, Human influenza A virus hemagglutinin distinguishes sialyloligosaccharides in membrane-associated gangliosidcs as its receptor which mediates the adsorption and fusion processes of virus infection: Specificity for oligosaccharides and sialic acids and the sequence to which sialic acid is attached, J. Biol. Chem. 261: 17057–17061.PubMedGoogle Scholar
  76. Szepanski, S., Gross, H. J., Brossmer, R., Klenk, H.-D., and Herrler, G., 1992, A single point mutation of the influenza C glycoprotein (FIEF) changes the viral receptor binding activity, Virology 188: 85–92.PubMedCrossRefGoogle Scholar
  77. Szepanski, S., Veit, M., Pleschka, S., Klenk, H.-D., Schmidt, M.F.G., and Herrler, G., 1994, Posttranslational folding of the influenza C virus glycoprotein HEF: defective processing in cells expressing the cloned gene, J. Gen. Viral. 75: 1023–1030.CrossRefGoogle Scholar
  78. Tulip, W. R., Varghese, J. N., Baker, A. T., Van-Donkelaar, A., Laver, W. G., Webster, R. G., and Colman, P. M., 1991, Refined atomic structures of N9 subtype influenza virus neuraminidase and escape mutants. J. Mol. Biol. 221: 487–497.PubMedCrossRefGoogle Scholar
  79. Umetsu, Y., Sugawara, K., Nishimura, H., Hongo, S., Matsuzaki, M., Kitame, F., and Nakamura, K., 1992, Selection of antigenically distinct variants of influenza C virus by host cell, Virology 189: 740–744.PubMedCrossRefGoogle Scholar
  80. Varghese, J. N., and Colman, P. M., 1991, Three-dimensional structure of the neuraminidase of influenza virus A/Tokyo/3/67 at 2.2À resolution, J. Mol. Biol. 221: 473–486.PubMedCrossRefGoogle Scholar
  81. Varghese, J. N., Laver, W. G., and Colman, P. M., 1983, Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9A resolution, Nature 393: 35–40.CrossRefGoogle Scholar
  82. Varghese, J. N., McKimm-Breschkin, J. L., Caldwell, J. B., Kortt, A. A., and Colman, P. M., 1992, The structure of the complex between influenza virus neuraminidase and sialic acid, the viral receptor, Proteins 14: 327–332.PubMedCrossRefGoogle Scholar
  83. Veit, M., Herrler, G., Schmidt, M.F.G., Rott, R., and Klenk, H.-D., 1990, The hemagglutinating glycoproteins of influenza B and C virus are acylated with different fatty acids, Virology 177: 807–811.PubMedCrossRefGoogle Scholar
  84. Vlasak, R., Muster, T., Lauro, A. M., Powers, J. C., and Palese, P., 1989, Influenza C esterase: Analysis of catalytic site, inhibition and possible function, J. Virol. 63: 2056–2062.PubMedGoogle Scholar
  85. von Itzstein, M., Wu, W. Y., Kok, G. B., Pegg, M. S., Dyason, J. C., Jin, B., Van Phan, T., Smythe, M. L., White, H. F., Oliver, S. W., Colman, P. M., Varghese, J. N., Ryan, D. M., Woods, J. M., Bethell, R. C., Hotham, V. J., Cameron, J. M., and Penn, C. R., 1993, Rational design of potent sialidase-based inhibitors of influenza virus replication, Nature 363: 418–423.Google Scholar
  86. Ward, C. W., Elleman, T. C., and Azad, A. A., 1982, Amino acid sequence of the pronase-released heads of neuraminidase subtype N2 from the asian strain A/Tokyo/3/67 of influenza virus, Biochem. J. 207: 91–95.PubMedGoogle Scholar
  87. Webster, R. G., Air, G. M., Metzger, D. W., Colman, P. M., Varghese, J. N., Baker, A. T., and Laver, W. G., 1987, Antigenic structure and variation in an influenza virus N9 neuraminidase, J. Virol. 61: 2910–2916.PubMedGoogle Scholar
  88. Weis, W., Brown, J. H., Cusack, S., Paulson, J. C., Skehel, J. J., and Wiley, D. C., 1988, Structure of the influenza virus haemagglutinin complexed with its receptor, Nature 333: 426–431.PubMedCrossRefGoogle Scholar
  89. Wharton, S. A., Weis, W., Skehel, J. J., and Wiley, D. C., 1989, Structure, function, and antigenicity of the hemagglutinin of influenza virus, in: The Influenza Viruses, ( R. M. Krug, ed.), Plenum Press, New York, pp. 153–173.CrossRefGoogle Scholar
  90. White, J., Helenius, A., and Gething, M.-J., 1982, Haemagglutinin of influenza virus expressed for a cloned gene promotes membrane fusion, Nature 300: 658–659.PubMedCrossRefGoogle Scholar
  91. Wilson, I. A., Skehel, J. J., and Wiley, D. C., 1981, Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution, Nature 289: 366–373.PubMedCrossRefGoogle Scholar
  92. Wilson, V. W., and Rafelson, M. E., Jr., 1967, Studies on the neuraminidases of influenza viruses. III. Stimulation of activity by bivalent cations, Biochim. Biophys. Acta 140: 160–166.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Georg Herrler
    • 1
  • Jürgen Hausmann
    • 1
  • Hans-Dieter Klenk
    • 1
  1. 1.Virology InstituteUniversity of MarburgMarburgGermany

Personalised recommendations