Biochemistry and Role of Sialic Acids

  • Roland Schauer
  • Sörge Kelm
  • Gerd Reuter
  • Peter Roggentin
  • Lee Shaw


Sialic acids mainly occur as terminal components of cell surface glycoproteins and glycolipids, playing as such a major role in the chemical and biological diversity of glycoconjugates. Cell-type-specific expression of glycosyltransferases, particularly of sialyltransferases (Paulson and Colley, 1989; van den Eijnden and Joziasse, 1993), leads to specific sialylation patterns of oligosaccharides which can be considered as key determinants in the makeup of cells. Striking differences have been found in the sialoglycosylation patterns of cells during development, activation, aging, and oncogenesis. Research on the structures, metabolism, and molecular biology, as well as on the biological and clinical importance of sialic acids as components of these glycoconjugates, has therefore intensified during the past several years.


Sialic Acid Clostridium Perfringens Trypanosoma Cruzi Polysialic Acid Neuraminic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdullah, K. M., Udoh, E. A., Shewen, P. E., and Mellors, A., 1992, A neutral glycoprotease of Pasteurella haemolytica Al specifically cleaves 0-sialoglycoproteins, Infect. Immun. 60: 5662.Google Scholar
  2. Ahmed, H., and Gabius, H.-J., 1989, Purification and properties of a Cat -independent sialic acid binding lectin from human placenta with preferential affinity to 0-acetylsialic acids, J. Biol. Chem. 264: 18673–18678.PubMedGoogle Scholar
  3. Air, G. M., Webster, R. G., Colman, P. M., and Laver, W. G., 1987, Distribution of sequence differences in influenza N9 neuraminidase of tern and whale viruses and crystallisation of the whale neuraminidase complexed with antibodies, Virology 160: 346–354.PubMedCrossRefGoogle Scholar
  4. Aisaka, K., Igarashi, A., and Uwajima, T., 1991, Purification, crystallization, and characterization of neuraminidase from Micromonospora viridifaciens, Agric. Biol. Chem. 55: 997–1004.CrossRefGoogle Scholar
  5. Allen, A., and Kent, P. W., 1968, Studies on the enzymic N-acylation of amino sugars in the sheep colonic mucosa, Biochem. J. 107: 589–598.PubMedGoogle Scholar
  6. Anderberg, M. R. (ed.), 1973, Cluster Analysis for Application, Academic Press, New York. Arinç, E., 1991, Essential features of NADH-dependent cytochrome b5 reductase and cytochrome b5 of liver and lung microsomes, in: Molecular Aspects of Monooxygenases and Bioactivation of Toxic Compounds (E. Arinç, J. B. Schenkman, and E. Hodgson, eds.), NATO ASI Series, Ser. A, Vol. 202, Plenum Press, New York, pp. 149–170.Google Scholar
  7. Bast, B.J.E.G., Zhou, L. J., Freeman, G. J., Colley, K. J., Ernst, T. J., Munro, J. M., and Tedder, T. F., 1992, The HB-6, CDw75, and CD76 and differentiation antigens are unique cell-surface carbohydrate determinants generated by the ß-galactoside a2,6-sialyltransferase, J. Cell Biol. 116: 423–435.PubMedCrossRefGoogle Scholar
  8. Baumhueter, S., Singer, M. S., Henzel, W., Hemmerich, S., Renz, M., Rosen, S. D., and Lasky, L. A., 1993, Binding of L-selectin to the vascular sialomucin CD34, Science 262: 436–438.CrossRefGoogle Scholar
  9. Berg, E. L., McEvoy, L. M., Berlin, C., Bargatze, R. F., and Butcher, E. C., 1993, L-Selectin-mediated lymphocyte rolling on MAdCAM-1, Nature 366: 695–698.PubMedCrossRefGoogle Scholar
  10. Bergwerff, A. A., Hulleman, S.H.D., Kamerling, J. P., Vliegenthart, J.F.G., Shaw, L., Reuter, G., and Schauer, R., 1992, Nature and biosynthesis of sialic acids in the starfish Asterias rubens. Identification of sialo-oligomers and detection of S-adenosyl-L-methionine:N-acylneuraminate 8–0-methyltransferase and CMP-N-acetylneuraminate monooxygenase activities, Biochimie 74: 25–37.PubMedCrossRefGoogle Scholar
  11. Bergwerff, A. A., Hulleman, S.H.D., Kamerling, J. P., Vliegenthart, J.F.G., Shaw, L., Reuter, G., and Schauer, R., 1993, Structural and biosynthetic aspects of N-glycoloyl-8-O-methylneuraminic acid-oligomers linked through their N-glycoloyl groups, isolated from the starfish Aste rias rubens, in: Polysialic Acids ( J. Roth, U. Rutishauser, and F. A. Troy II, eds.), Birkhäuser Verlag, Basel, pp. 201–212.Google Scholar
  12. Bevilacqua, M. P., 1993, Endothelial–leukocyte adhesion molecules, Annu. Rev. Immunol. 11: 767804.Google Scholar
  13. Bevilacqua, M. P., and Nelson, R. M., 1993, Selectins, J. Clin. Invest. 91: 379–387.PubMedCrossRefGoogle Scholar
  14. Bevilacqua, M. P., Stengelin, S., Gimbrone, M. A., Jr., and Seed, B., 1989, Endothelial leukocyte adhesion molecule 1: An inducible receptor for neutrophils related to complement regulatory proteins and lectins, Science 243: 1160–1165.PubMedCrossRefGoogle Scholar
  15. Bevilacqua, M., Butcher, E., Furie, B., Furie, B., Gallatin, M., Gimbrone, M., Harlan, J., Kishimoto, K., Lasky, L., McEver, R., Paulson, J., Rosen, S., Seed, B., Siegelman, M., Springer, T., Stoolman, L., Tedder, T., Varki, A., Wagner, D., Weissman, I., and Zimmerman, G., 1991, Selectins—A family of adhesion receptors, Cell 67: 233.PubMedCrossRefGoogle Scholar
  16. Boltz-Nitulescu, G., Ortel, B., Riedl, M., and Förster, 0., 1984, Ganglioside receptor of rat macrophages—Modulation by enzyme treatment and evidence for its protein nature, Immunology 51: 177–184.PubMedGoogle Scholar
  17. Bouhours, D., and Bouhours, J. F., 1983, Developmental changes of hematoside of rat small intestine. Postnatal hydroxylation of fatty acids and sialic acid, J. Biol. Chem. 258: 299–304.PubMedGoogle Scholar
  18. Bouhours, D., and Bouhours, J. F., 1988, Tissue-specific expression of GM3 (NeuGc) and GD3 (NeuGc) in epithelial cell of the small intestine of strains of inbred rats. Absence of NeuGc in intestine and presence in kidney gangliosides of brown Norway and spontaneously hypertensive rats, J. Biol. Chem. 263: 15540–15545.PubMedGoogle Scholar
  19. Bouhours, J.-F., and Bouhours, D., 1989, Hydroxylation of CMP-Neu5Ac controls the expression of N-glycolylneuraminic acid in GM3 ganglioside of the small intestine of inbred rats, J. Biol. Chem. 264: 16992–16999.PubMedGoogle Scholar
  20. Brennan, M. J., David, J. L., Kenimer, J. G., and Manclark, C. R., 1988, Lectin-like binding of pertussis toxin to a 165-kilodalton Chinese hamster ovary cell glycoprotein, J. Biol. Chem. 263: 4895–4899.PubMedGoogle Scholar
  21. Budd, T., Dolman, C. D., Lawson, A. M., Chai, W., Saxton, J., and Hemming, F. W., 1992, Comparison of the N-glycoloylneuraminic acid and N-acetylneuraminic acid content of platelets and their precursors using high-performance anion exchange chromatography, Glycoconjugate J. 9: 274–278.CrossRefGoogle Scholar
  22. Buscher, H.-P., Casals-Stenzel, J., Mestres-Ventura, P., and Schauer, R., 1977, Biosynthesis of N-glycoloylneuraminic acid in porcine submandibular glands. Subcellular site of hydroxylation of N-acetylneuraminic acid in the course of glycoprotein biosynthesis, Eur. J. Biochem. 77: 297–310.PubMedCrossRefGoogle Scholar
  23. Buschiazzo, A., Cremona, M. L., Campetella, 0., Frasch, A.C.C., and Sanchez, D. 0., 1993, Sequence of a Trypanosoma rangeli gene closely related to Trypanosoma cruzi trans-sialidase, Mol. Biochem. Parasitol. 62: 115–116.Google Scholar
  24. Butor, C., Diaz, S., and Varki, A., 1993a, High level 0-acetylation of sialic acids on N-linked oligosaccharides of rat liver membranes, J. Biol. Chem. 268: 10197–10206.PubMedGoogle Scholar
  25. Butor, C., Higa, H. H., and Varki, A., 1993b, Structural, immunological, and biosynthetic studies of a sialic acid-specific 0-acetylesterase from rat liver, J. Biol. Chem. 268: 10207–10213.PubMedGoogle Scholar
  26. Cabezas, J. A., 1991, Some questions and suggestions on the type references of the official nomen-clature (IUB) for sialidase(s) and endosialidase, Biochem. J. 278: 311–312.PubMedGoogle Scholar
  27. Caban, L. D., and Paulson, J. C., 1980, Polyoma virus adsorbs to specific sialyloligosaccharide receptors on erythrocytes, Virology 103: 505–509.CrossRefGoogle Scholar
  28. Canard, B., and Cole, S. T., 1990, Lysogenic phages of Clostridium perfringens: Mapping of the chromosomal attachment sites, FEMS Lett. 66: 323–326.CrossRefGoogle Scholar
  29. Carey, D. J., Sommers, L. W., and Hirschberg, C. B., 1980, CMP-N-acetylneuraminic acid: Isolation from and penetration into mouse liver microsomes, Cell 19: 597–605.PubMedCrossRefGoogle Scholar
  30. Carubelli, R., and Griffin, M. J., 1968, On the presence of N-glycoloylneuraminic acid in HeLa cells, Biochim. Biophys. Acta 170: 446–448.PubMedCrossRefGoogle Scholar
  31. Chakraborty, I., Mandal, C., and Chowdhury, M., 1993, Modulation of sialic acid-binding proteins of rat uterus in response to changing hormonal milieu, Mol. Cell. Biochem. 126: 77–86.PubMedCrossRefGoogle Scholar
  32. Chiang, J.Y.L., 1981, Interaction of purified microsomal cytochrome P-450 with cytochrome b5, Arch. Biochem. Biophys. 211: 662–673.PubMedCrossRefGoogle Scholar
  33. Corfield, A. P., and Schauer, R., 1982a, Occurrence of sialic acids, in: Sialic Acids ( R. Schauer, ed.), Springer, New York, pp. 5–55.CrossRefGoogle Scholar
  34. Corfield, A. P., and Schauer, R., 1982b, Metabolism of sialic acids, in: Sialic Acids ( R. Schauer, ed.), Springer, New York, pp. 195–261.CrossRefGoogle Scholar
  35. Corfield, A. P., Michalski, J.-C., and Schauer, R., 1981a, The substrate specificity of sialidases from microorganisms and mammals, in: Sialidases and Sialidoses Perspectives in Inherited Metabolic Diseases, Vol. 4 ( G. Tettamanti, P. Durand, and S. Di Donato, eds.), Edi Ermes, Milan, pp. 3–70.Google Scholar
  36. Corfield, A. P., Veh, R. W., Wember, M., Michalski, J.-C., and Schauer, R., 1981 b, The release of N-acetyl-and N-glycollylneuraminic acid from soluble complex carbohydrates and erythrocytes by bacterial, viral and mammalian sialidases, Biochem. J. 197: 293–299.Google Scholar
  37. Corfield, A. P., Lambré, C. R., Michalski, J.-C., and Schauer, R., 1992, Role of sialic acids and sialidases in molecular recognition phenomena, in: Conférences Philippe Laudat 1991, INSERM, Paris, pp. I II - 175.Google Scholar
  38. Corfield, A. P., Wagner, S. A., Safe, A., Mountford, R. A., Clamp, J. R., Kamerling, J. P., Vliegenthart, J.F.G., and Schauer, R., 1993, Sialic acids in human gastric aspirates. Detection of 9–0-lactyl-and 9-O-acetyl-N-acetylneuraminic acids in gastric aspirates and a decrease in total sialic acid concentration with age, Clin. Sci. 84: 573–579.PubMedGoogle Scholar
  39. Corfield, T., 1992, Bacterial sialidases—Roles in pathogenicity and nutrition, Glycobiology 2: 509521Google Scholar
  40. Corfield, T., 1993, Tailor made sialidase inhibitors home in on influenza virus, Glycobiology 3: 413415.Google Scholar
  41. Crocker, P. R., and Gordon, S., 1986, Properties and distribution of a lectin-like hemagglutinin differentially expressed by murine stromal tissue macrophages, J. Exp. Med. 164: 1862 1875.Google Scholar
  42. Crocker, P. R., and Gordon, S., 1989, Mouse macrophage hemagglutinin (sheep erythrocyte receptor) with specificity for sialylated glycoconjugates characterized by a monoclonal antibody, J. Exp. Med. 169: 1333–1346.PubMedCrossRefGoogle Scholar
  43. Crocker, P. R., Freeman, S., Gordon, S., and Kelm, S., 1995, Sialoadhesion binds preferentially to cells of the granulocytic lineage, J. Clin. Invest., 95: 635–643.PubMedCrossRefGoogle Scholar
  44. Crocker, P. R., Werb, Z., Gordon, S., and Bainton, D. F., 1990, Ultrastructural localisation of a macrophage-restricted sialic acid binding hemagglutinin, SER, in macrophage–hematopoietic cell clusters, Blood 76: 1131–1138.PubMedGoogle Scholar
  45. Crocker, P. R., Kelm, S., Dubois, C., Martin, B., McWilliam, B. S., Shotten, D. M., Paulson, J. C., and Gordon, S., 1991, Purification and properties of sialoadhesin, a sialic acid-binding receptor of murine tissue macrophages, EMBO J. 10: 1661–1669.PubMedGoogle Scholar
  46. Crocker, P. R., Kelm, S., Morris, L., Bainton, D. F., and Gordon, S., 1992, Cellular interactions between stromal macrophages and haematopoietic cells, in: Mononuclear Phagocytes ( R. v. Furth, ed.), Kluwer, Amsterdam, pp. 55–69.CrossRefGoogle Scholar
  47. Cummings, R. D., and Smith, D. F., 1992, The selectin family of carbohydrate-binding proteins: Structure and importance of carbohydrate ligands for cell adhesion, BioEssays 14: 849–856.Google Scholar
  48. Dabrowski, J., 1989, Two-dimensional proton magnetic resonance spectroscopy, Methods Enzymol. 179: 122–156.PubMedCrossRefGoogle Scholar
  49. de Freese, A., Shaw, L., Reuter, G., and Schauer, R., 1993, Characterization of S-adenosylmethionine:sialate 8–0-methyltransferase from gonads of the starfish Asterias rubens, Glycoconjugate J. 10: 330.CrossRefGoogle Scholar
  50. Dell, A., 1987, F.A.B.—mass spectrometry of carbohydrates, Adv. Carbohydr. Chem. Biochem. 45: 19–72.PubMedCrossRefGoogle Scholar
  51. den Besten, P. J., Herwig, H. J., van Donselaar, E. G., and Livingstone, D. R., 1990, Cytochrome P-450 monooxygenase system and benzo(a)pyrene metabolism in echinoderms, Mar. Biol. 107: 171–177.CrossRefGoogle Scholar
  52. Devine, P. L., Clark, B. A., Birrell, G. W., Layton, G. T., Ward, B. G., Alewood, P. F., and McKenzie, I.F.C., 1991, The breast tumor-associated epitope defined by monoclonal antibody 3E1–2 is an 0-linked mucin carbohydrate containing N-glycolylneuraminic acid, Cancer Res. 51: 5826–5836.PubMedGoogle Scholar
  53. Diaz, S., Higa, H. H., Hayes, B. K., and Varki, A., 1989, 0-Acetylation and de-0-acetylation of sialic acids. 7- and 9–0-acetylation of a2,6-linked sialic acids on endogenous N-linked glycans in rat liver Golgi vesicles, J. Biol. Chem. 264: 19416–19426.Google Scholar
  54. Drickamer, K., 1988, Two distinct classes of carbohydrate-recognition domains in animal lectins, J. Biol. Chem. 263: 9557–9560.PubMedGoogle Scholar
  55. Dutton, G.G.S., Parolis, H., and Parolis, L.A.S., 1987, The structure of the neuraminic acid-containing capsular polysaccharide of Escherichia coli serotype K9, Carbohyd. Res. 170: 193206.Google Scholar
  56. Egge, H., Peter-Katalinic, J., Reuter, G., Schauer, R., Ghidoni, R., Sonnino, S., and Tettamanti, G., 1985, Analysis of gangliosides using fast atom bombardment mass spectrometry, Chem. Phys. Lipids 37: 127–141.PubMedCrossRefGoogle Scholar
  57. Engel, P., Nojima, Y., Rothstein, D., Zhou, L. J., Wilson, G. L., Kehrl, J. H., and Tedder, T. F., 1993, The same epitope on CD22 of B-lymphocytes mediates the adhesion of erythrocytes, T-lymphocytes and B-lymphocytes, neutrophils, and monocytes, J. Immunol. 150: 4719–4732.PubMedGoogle Scholar
  58. Engstler, M., and Schauer, R., 1993, Sialidases from African trypanosomes, Parasitol. Today 9: 222–225.PubMedCrossRefGoogle Scholar
  59. Engstler, M., Reuter, G., and Schauer, R., 1992, Purification and characterization of a novel sialidase found in procyclic culture forms of Trypanosoma brucei, Mol. Biochem. Parasitol. 54: 21–30.PubMedCrossRefGoogle Scholar
  60. Engstler, M., Reuter, G., and Schauer, R., 1993, The developmentally regulated trans-sialidase from Trypanosoma brucei sialylates the procyclic acidic repetitive protein, Mol. Biochem. Parasitol. 61: 1–14.PubMedCrossRefGoogle Scholar
  61. Engstler, M., Schauer, R., and Brun, R., 1994, Distribution of developmentally regulated transsialidase in kinetoplastida and identification of a procyclic Trypanosoma congolense shed transsialidase activity, Acta Trop in press.Google Scholar
  62. Evans, D. G., Evans, D. J., Moulds, J. J., and Graham, D. Y., 1988, N-acetylneuraminyllactosebinding fibrillar hemagglutinin of Campylobacter pylori: A putative colonization factor antigen, Infect. Immun. 56: 2896–2906.PubMedGoogle Scholar
  63. Ezepchuk, Y. V., Vertiev, Y. V., and Kostyukova, N. N., 1973, Neuraminidase of Corynebacterium diphtheriae as a factor of pathogenicity with a spreading function, Byull. Eksp. Biol. Med. 75: 63–65.CrossRefGoogle Scholar
  64. Fischer, C., Kelm, S., Ruch, B., and Schauer, R., 1991, Reversible binding of sialidase-treated rat lymphocytes by homologous peritoneal macrophages, Carbohydr. Res. 213: 263–273.PubMedCrossRefGoogle Scholar
  65. Förster, O., Boltz-Nitulescu, G., Holzinger, C., Wiltschke, C., Riedl, M., Ortel, B., Fellinger, A., and Bernheimer, H., 1986, Specificity of ganglioside binding to rat macrophages, Mol. Immunol. 23: 1267–1273.PubMedCrossRefGoogle Scholar
  66. Fujii, Y., Higashi, H., Ikuta, K., Kato, S., and Naiki, M., 1982, Specificities of human heterophilic Hanganutziu and Deicher (H-D) and avian antisera against H-D antigen-active glycosphingolipids, Mol. Immunol. 19: 87–94.PubMedCrossRefGoogle Scholar
  67. Fukui, Y., Maru, M., Ohkawara, K., Miyake, T., Osada, Y., Wang, D., Ito, T., Higashi, H., Naiki, M., Wakamiya, N., and Kato, S., 1989, Detection of glycoproteins as tumor-associated Hanganutziu—Deicher antigen in human gastric cancer cell line, NUGC4, Biochem. Biophvs. Res. Commun. 160: 1149–1154.CrossRefGoogle Scholar
  68. Gabriel, O., Heeb, M. J., and Hinrichs, M., 1984, Interaction of the surface adhesins of the oral Actinomyces ssp. with mammalian cells, in: ASM Molecular Basis of Oral Microbial Adhesion, Proceedings of a workshop held in Philadelphia, pp. 45–52.Google Scholar
  69. Galen, J. E., Ketley, J. M., Fasano, A., Richardson, S. H., Wasserman, S. S., and Kaper, J. B., 1992, Role of Vibrio cholerae neuraminidase in the function of cholera toxin, Infect. Immun. 60: 406–415.PubMedGoogle Scholar
  70. Gamian, A., Romanowska, E., Dabrowski, U., and Dabrowski, J., 1991, Structure of the O-specific, sialic acid-containing polysaccharide chain and its linkage to the core region in lipopolysaccharide from Hafnia alvei strain-2 as elucidated by chemical methods, gas—liquid chromatography/mass-spectrometry, and ‘H NMR spectroscopy, Biochemistry 30: 5032–5038.PubMedCrossRefGoogle Scholar
  71. Gibson, B. W., Melaugh, W., Phillips, N. J., Apicella, M. A., Campagnari, A. A., and Grifiss, J. M., 1993, Investigation of the structural heterogeneity of lipopolysaccharides from pathogenic Haemophilus and Neisseria species and of the R-type lipopolysaccharides from Salmonella typhimurium by electrospray mass spectrometry, J. Bacteriol. 175: 2702–2712.PubMedGoogle Scholar
  72. Gillespie, W., Kelm, S., and Paulson, J. C., 1992, Cloning and expression of the Ga1131, 3GaINAca2,3-sialyltransferase, J. Biol. Chem. 267: 21004–21010.PubMedGoogle Scholar
  73. Godoy, V. G., Miller Dallas, M., Russo, T. A., and Malamy, M. H., 1993, A role for Bacteroides fragilis neuraminidase in bacterial growth in two model systems, Infect. Immun. 61: 4415–4426.PubMedGoogle Scholar
  74. Gottschalk, A., 1960, The Chemistry and Biology of Sialic Acids and Related Substances, Cambridge University Press, London.Google Scholar
  75. Graves, B. J., Crowther, R. L., Chandran, C., Rumberger, J. M., Li, S., Huang, K.-S., Presky, D. H., Familletti, P. C., Wolitzky, B. A., and Bums, D. K., 1994, Insight into E-selectin/ ligand interaction from the crystal structure and mutagenesis of the Lec/EGF domains, Nature 367: 532–538.PubMedCrossRefGoogle Scholar
  76. Green, P. J., Tamatani, T., Watanabe, T., Miyasaka, M., Hasegawa, A., Kiso, M., Yuen, C. T., Stoll, M. S., and Feizi, T., 1992, High affinity binding of the leucocyte adhesion molecule L-selectin to 3’-sulphated-Lea and 3’-sulphated-Le“ oligosaccharides and the predominance of sulphate in this interaction demonstrated by binding studies with a series of lipid-linked oligosaccharides, Biochem. Biophys. Res. Commun. 188: 244–251.PubMedCrossRefGoogle Scholar
  77. Grundmann, U., Nerlich, C., Rein, T., and Zettlmeissl, G. 1990, Complete cDNA sequence encoding human (3-galactoside a-2,6-sialyltransferase, Nucleic Acids Res. 18: 667.PubMedCrossRefGoogle Scholar
  78. Handa, K., Nudelman, E. D., Stroud, M. R., Shiozawa, T., and Hakomori, S.-i., 1991, Selectin GMP-140 (CD62; PADGEM) binds to sialosyl-Le’ and sialosyl-Le“, and sulfated glycans modulate this binding, Biochem. Biophys. Res. Commun. 181: 1223–1230.PubMedCrossRefGoogle Scholar
  79. Hanisch, F.-G., Witter, B., Crombach, G. A., Schänzer, W., and Uhlenbruck, G., 1992, N-Glycolylneuraminic acid is a chemical marker of gangliosides from human breast carcinoma, in: Tumor-Associated Antigens, Oncogenes, Receptors, Cytokines in Tumor Diagnosis and Therapy at the Beginning of the Nineties. Cancer of the Breast—State and Trends in Diagnosis and Therapy ( R. Klapdor, ed.), Zuckschwerdt, Munich, pp. 367–370.Google Scholar
  80. Hanisch, F.-G., Hacker, J., and Schroten, H., 1993, Specificity of S-fimbriae on recombinant Escherichia cols: Preferential binding to gangliosides expressing NeuGca(2,3)Gal and NeuAca(2,8)NeuAc, Infect. Immun. 61: 2108–2115.PubMedGoogle Scholar
  81. Hara, S., Yamaguchi, M., Takemori, Y., and Nakamura, M., 1986, Highly sensitive determination of N-acetyl-and N-glycolyl-neuraminic acids in human serum and rat serum by reversed phase liquid chromatography with fluorescence detection, J. Chromatogr. 377: 111–119.PubMedCrossRefGoogle Scholar
  82. Hara, S., Takemori, Y., Yamaguchi, M., Nakamura, M., and Ohkura, Y., 1987, Fluorimetric high-performance liquid chromatography of N-acetyl-and N-glycolylneuraminic acids and its application to their microdetermination in human and animal sera, glycoproteins, and glycolipids, Anal. Biochem. 164: 138–145.PubMedCrossRefGoogle Scholar
  83. Hara, S., Yamaguchi, M., Takemori, Y., Furuhata, K., Ogura, H., and Nakamura, M., 1989, Determination of mono-O-acetylated N-acetylneuraminic acids in human and rat sera by fluorimetric high-performance liquid chromatography, Anal. Biochem. 179: 162–166.PubMedCrossRefGoogle Scholar
  84. Harford, J., Klausner, R. D., and Ashwell, G., 1984, Inhibition of the endocytic pathway for asialoglycoprotein catabolism, Biol. Cell 51: 173–179.PubMedCrossRefGoogle Scholar
  85. Harms, G., Corfield, A. P., Schauer, R., and Reuter, G., 1993, Recognition of 0-acetylated sialic acids by influenza C virus, Biol. Chem. Hoppe-Seyler 374: 946–947.Google Scholar
  86. Haverkamp, J., Schauer, R., Wember, M., Farriaux, J.-P., Kamerling, J. P., Versluis, C., and Vliegenthart, J.F.G., 1976, Neuraminic acid derivatives newly discovered in humans: NAcetyl-9-O-L-lactoylneuraminic acid, N,9-O-diacetyl-neuraminic acid and N-acetyl-2,3-dehydro-2-deoxyneuraminic acid, Hoppe-Seyler’s Z. Physiol. Chem. 357: 1699–1705.PubMedCrossRefGoogle Scholar
  87. Hayaishi, O. (ed.), 1974, Molecular Mechanisms of Oxygen Activation, Academic Press, New York.Google Scholar
  88. Henningsen, M., Roggentin, P., and Schauer, R., 1991, Cloning, sequencing and expression of the sialidase gene from Actinomyces viscosus DSM 43798, Biol. Chem. Hoppe-Seyler 372: 1065–1072.PubMedCrossRefGoogle Scholar
  89. Herrler, G., Rott, R., Klenk, H.-D., Müller, H. P., Shukla, A. K., and Schauer, R., 1985, The receptor-destroying enzyme of influenza C virus is neuraminate 0-acetylesterase, EMBO J. 4: 1503–1506.Google Scholar
  90. Herrler, G., Reuter, G., Rott, R., Klenk, H.-D., and Schauer, R., 1987, N-Acetyl-9-O-acetylneuraminic acid, the receptor determinant for influenza C virus, is a differentiation marker on chicken erythrocytes, Biol. Chem. Hoppe-Seyler 368: 451–454.PubMedCrossRefGoogle Scholar
  91. Heuermann, D., Roggentin, P., Kleineidam, R. G., and Schauer, R., 1991, Purification and charac- terization of a sialidase from Clostridium chauvoei NC08596, Glycoconj. J. 8: 95–101.PubMedCrossRefGoogle Scholar
  92. Higa, H. H., and Varki, A., 1988, Acetyl-coenzyme A: polysialic acid 0-acetyltransferase from KI positive Escherichia coli: The enzyme responsible for the 0-acetyl plus phenotype and for 0-acetyl form variation, J. Biol. Chem. 263: 8872–8878.PubMedGoogle Scholar
  93. Higa, H. H., Rogers, G. N., and Paulson, J. C., 1985, Influenza virus hemagglutinins differentiate between receptor determinants bearing N-acetyl, N-glycollyl and N,O-diacetylneuraminic acids, Virology 144: 279–282.PubMedCrossRefGoogle Scholar
  94. Higa, H. H., Butor, C., Diaz, S., and Varki, A., 1989a, 0-Acetylation and de-O-acetylation of sialic acids. 0-Acetylation of sialic acids in rat liver Golgi apparatus involves an acetyl intermediate and essential histidine and lysine residues—A transmembrane reaction? J. Biol. Chem. 264: 19427–19434.Google Scholar
  95. Higa, H. H., Manzi, A., and Varki, A., 1989b, 0-Acetylation and de-O-acetylation of sialic acids. Purification, characterization, and properties of a glycosylated rat liver esterase specific for 9–0acetylated sialic acids, J. Biol. Chem. 264: 19435–19442.Google Scholar
  96. Higashi, H., 1990, N-Glycolylneuraminic acid-containing glycoconjugate as tumor-associated antigen: Hanganutziu–Deicher antigen, Trends Glycosci. Glycotechnol. 2: 7–15.CrossRefGoogle Scholar
  97. Higashi, H., Nishi, Y., Fukui, Y., Kazuyoshi, I., Ueda, S., Kato, S., Fujita, M., Nakano, Y.. Taguchi, T., Sakai, S., Sako, M., and Naiki, M., 1984, Tumor-associated expression of glycosphingolipid Hanganutziu—Deicher antigen in human cancers, Jpn. J. Cancer Res. (Gann) 75: 1025–1029.Google Scholar
  98. Higashi, H., Hirabayashi, Y., Fukui, Y., Naiki, M., Matsumoto, M., Ueda, S., and Kato, S., 1985, Characterization of N-glycolylneuraminic acid-containing gangliosides as tumor-associated Hanganutziu—Deicher antigen in human colon cancer, Cancer Res. 45: 3796–3802.PubMedGoogle Scholar
  99. Higashi, H., Sasabe, T., Fukui, Y., Maru, M., and Kato, S., 1988, Detection of gangliosides as N-glycolylneuraminic acid-specific tumor-associated Hanganutziu—Deicher antigen in human retinoblastoma cells, Jpn. J. Cancer Res. (Gann) 79: 952–956.CrossRefGoogle Scholar
  100. Hirabayashi, Y., Kasakura, H., Matsumoto, M., Higashi, H., Kato, S., Kasai, N., and Naiki, M., 1987a, Specific expression of unusual GM2 ganglioside with Hanganutziu—Deicher antigen activity on human colon cancers, Jpn. J. Cancer Res. (Gann) 78: 251–260.Google Scholar
  101. Hirabayashi, Y., Higashi, H., Kato, S., Taniguchi, M., and Matsumoto, M., 1987b, Occurrence of tumor-associated ganglioside antigens with Hanganutziu—Deicher antigenic activity on human melanomas, Jpn. J. Cancer Res. (Gann) 78: 614–620.Google Scholar
  102. Hoyer, L. L., Roggentin, P., Schauer, R., and Vimr, E. R., 1991, Purification and properties of cloned Salmonella typhimurium LT2 sialidase with virus-typical kinetic preference for sialyl a2–3 linkages, J. Biochem. 110: 462–467.PubMedGoogle Scholar
  103. Hoyer, L. L., Hamilton, A. C., Steenbergen, S. M., and Vimr, E. R., 1992, Cloning, sequencing and distribution of the Salmonella typhimurium LT-2 sialidase gene, nanH, provides evidence for interspecies gene transfer, Mol. Microbiol. 6: 873–884.PubMedCrossRefGoogle Scholar
  104. Hutchins, J. T., Reading, C. L., Giavazzi, R., Hoaglund, J., and Jessup, J. M., 1988, Distribution of mono-O-acetylated, di-O-acetylated, and tri-O-acetylated sialic acids in normal and neoplastic colon, Cancer Res. 48: 483–489.PubMedGoogle Scholar
  105. Imai, Y., and Rosen, S. D., 1993, Direct demonstration of heterogeneous, sulfated 0-linked carbohydrate chains on an endothelial ligand for L-selectin, Glvcoconj. J. 10: 34–39.CrossRefGoogle Scholar
  106. Imai, Y., Singer, M. S., Fennie, C., Lasky, L. A., and Rosen, S. D., 1991, Identification of a carbohydrate-based endothelial ligand for a lymphocyte homing receptor, J. Cell Biol. 113: 1213–1221.PubMedCrossRefGoogle Scholar
  107. Imai, Y., Lasky, L. A., and Rosen, S. D., 1993, Sulphation requirement for GIyCAM-1, an endothelial ligand for L-selectin, Nature 361: 555–557.PubMedCrossRefGoogle Scholar
  108. Inoue, S., Iwasaki, M., Kitajima, K., Kanamori, A., Kitazume, S., and Inoue, Y., 1993, Analytical methods for identifying and quantitating poly (a2—s8Sia) structures containing Neu5Ac, Neu5Gc, and KDN, in: Polysialic Acid ( J. Roth, U. Rutishauser, and F. A. Troy II, eds.), Birkhäuser, Basel, pp. 183–189.Google Scholar
  109. Inoue, Y., 1993, Glycobiology of fish egg polysialoglycoproteins (PSGP) and deaminated neuraminic acid-rich glycoproteins (KDN-gp), in: Polysialic Acid ( J. Roth, U. Rutishauser, and F. A. Troy II, eds.), Birkhäuser, Basel, pp. 171–181.Google Scholar
  110. Ishikawa, H., and Isayama, Y., 1987, Evidence for sialyl glycoconjugates as receptors for Bordetella bronchiseptica on swine nasal mucosa, Infect. Immun. 55: 1607–1609.PubMedGoogle Scholar
  111. Jaenicke, R., 1993, What does protein refolding in vitro tell us about protein folding in the cell? Philos. Trans. R. Soc. London Ser. B 339: 287–295.CrossRefGoogle Scholar
  112. Johnston, G. 1., Cook. R. G., and McEver, R. P., 1989, Cloning of GMP-140, a granule membrane protein of platelets and endothelium: Sequence similarity to proteins involved in cell adhesion and inflammation, Cell 56: 1033–1044.PubMedCrossRefGoogle Scholar
  113. Jourdian, G. W., and Roseman, S., 1962, The sialic acids: II. Preparation of N-glycolylhexosamines, N-glycolylhexosamine-6-phosphates, glycolyl-CoA and glycolylglutathione, J. Biol. Chem. 237: 2442–2446.PubMedGoogle Scholar
  114. Kamerling, J. P., and Vliegenthart, J.F.G., 1982, Gas—liquid chromatography and mass spectrome- try of sialic acids, in: Sialic Acids ( R. Schauer, ed.), Springer, New York, pp. 95–125.CrossRefGoogle Scholar
  115. Kamerling, J. P., Schauer, R., Shukla, A. K., Stoll, S., van Halbeek, H., and Vliegenthart, J.F.G., 1987, Migration of 0-acetyl groups in N,0-acetylneuraminic acids, Eur. J. Biochem. 162: 60 1607.Google Scholar
  116. Kanamori, A., Inoue, S., Iwasaki, M., Kitajima, K., Kawai, G., Yokoyama, S., and Inoue, Y., 1990, Deaminated neuraminic acid rich glycoprotein of rainbow trout egg vitelline envelope: Occurrence of a novel a-2,8-linked oligo (deaminated neuraminic acid) structure in 0-linked glycan chains, J. Biol. Chem. 265: 21811–21819.PubMedGoogle Scholar
  117. Karlsson, K. A., 1989, Animal glycosphingolipids as membrane attachment sites for bacteria, Annu. Rev. Biochem. 58: 309–350.PubMedCrossRefGoogle Scholar
  118. Kawai, T., Kato, A., Higashi, H., Kato, S., and Naiki, M., 1991, Quantitative determination of N-glycolylneuraminic acid expression in human cancerous tissues and avian lymphoma cell lines as a tumor-associated sialic acid by gas chromatography—mass spectrometry, Cancer Res. 51: 1242–1246.PubMedGoogle Scholar
  119. Kawano, T., Kozutsumi, Y., Takematsu, H., Kawasaki, T., and Suzuki, A., 1993a, Regulation of biosynthesis of N-glycolylneuraminic acid-containing glycoconjugates: Characterization of factors required for NADH-dependent cytidine 5’-monophosphate-N-acetylneuraminic acid hydroxylation, Glycoconj. J. 10: 109–115.PubMedCrossRefGoogle Scholar
  120. Kawano, T., Kozutsumi, Y., Kawasaki, T., and Suzuki, A., 19936, The key enzyme which regulates CMP-N-acetylneuraminic acid hydroxylation is a novel protein, Glycoconj. J. 10: 331.Google Scholar
  121. Kelm, S., Schauer, R., Manuguerra, J.-C., Gross, H.-J., and Crocker, P. R., 1994, Modifications of cell surface sialic acids modulate cell adhesion mediated by sialoadhesion and CD22, Glycoconj. J. 11: 576–585.PubMedCrossRefGoogle Scholar
  122. Kelm, S., Dubois, C., Müthing, J., Schauer, R., and Crocker, P. R., 1993, Gangliosides as ligands for sialoadhesin, a cell adhesion receptor on macrophages, J. Cell Biochem. Suppl. 17A: 372.Google Scholar
  123. Kiehne, K., and Schauer, R., 1992, The influence of a-and 0-galactose residues and sialic acid 0-acetyl groups of rat erythrocytes on the interaction with peritoneal macrophages, Biol. Chem. Hoppe-Seyler 373: 1117–1123.PubMedCrossRefGoogle Scholar
  124. Kitagawa, H., and Paulson, J. C., 1993, Cloning and expression of human Ga101,3(4)-GIcNAc a2,3-sialyltransferase, Biochem. Biophys. Res. Commun. 194: 375–382.PubMedCrossRefGoogle Scholar
  125. Kitagawa, H., and Paulson, J. C., 1994, Cloning of a novel a2,3-sialyltransferase that sialylates glycoprotein and glycolipid carbohydrate groups, J. Biol. Chem. 269: 1394–1401.PubMedGoogle Scholar
  126. Kitajima, K., Inoue, S., Inoue, Y., and Troy, F. A., 1988, Use of a bacteriophage-derived endoN-acetylneuraminidase and an equine antipolysialyl antibody to characterise the polysialyl residues in salmonid fish egg polysialoglycoproteins: Substrate and immunospecificity studies, J. Biol. Chem. 263: 18269–18276.PubMedGoogle Scholar
  127. Kitazume, S., Kitajima, K., Inoue, S., and Inoue, Y., 1992, Detection, isolation, and characterization of oligo/poly(sialic acid) and oligo/poly(deaminoneuraminic acid) units in glycoconjugates, Anal. Biochem. 202: 25–34.PubMedCrossRefGoogle Scholar
  128. Kleineidam, R. G., Furuhata, K., Ogura, H., and Schauer, R., 1990, 4-Methylumbelliferyl-aglycosides of partially O-acetylated N-acetylneuraminic acids as substrates of bacterial and viral sialidases, Biol. Chem. Hoppe-Seyler 371: 715–719.Google Scholar
  129. Kleineidam, R. G., Hofmann, 0., Reuter, G., and Schauer, R., 1993, Indications for the enzymic synthesis of 9–0-lactoyl-N-acetylneuraminic acid in equine liver, Glycoconj. J. 10: 116–119.Google Scholar
  130. Klotz, F. W., Orlandi, P. A., Reuter, G., Cohen, S. J., Haynes, J. D., Schauer, R., Howard, R. J., Palese, P., and Miller, L. H., 1992, Binding of Plasmodium falciparum 175kilodalton erythrocyte binding antigen and invasion of murine erythrocyte requires N-acetylneuraminic acid but not its O-acetylated form, Mol. Biochem. Parasitol. 51: 49–54.PubMedCrossRefGoogle Scholar
  131. Kluge, A., Reuter, G., Lee, H., Ruch-Heeger, B., and Schauer, R., 1992, Interaction of rat peritoneal macrophages with sialidase-treated thrombocytes in vitro: Biochemical and morphological studies. Detection of N-(0-acetyl)-glycoloyl-neuraminic acid, Eur. J. Cell Biol. 59: 12–20.PubMedGoogle Scholar
  132. Knirel, Y. A., Vinogradov, E. V., Shashkov, A. S., and Kochetkov, N. K., 1985, Identification of 5-acetamido-3,5,7,9-tetradeoxy-7-[(R)3-hydroxybutyramido)-L-glycero-L-manno-nonulosonic acid as a component of bacterial polysaccharide, Carbohydr. Res. 141: C1 — C3.PubMedCrossRefGoogle Scholar
  133. Knirel, Y. A., Kocharova, N. A., Shashkov, A. S., and Kochetkov, N. K., 1986, The structure of Pseudomonas aeruginosa immunotype 6 0-antigen: Isolation and identification of 5-acetamido 3,5,7,9-tetradeoxy 7-muramido L-glycero-L-manno nonulosonic acid, Carbohydr. Res. 145: Cl—C4.Google Scholar
  134. Knirel, Y. A., Vinogradov, E. V., Shashkov, A. S., Dimitriev, B. A., Kochetkov, N. K., Stanislaysky, E. S., and Mashilova, G. M., 1987a, Somatic antigens of Pseudomonas aeruginosa. The structure of the 0-specific polysaccharide chain of the lipopolysaccharide from P. aeruginosa 013 (Lanyi), Eur. J. Biochem. 163: 627–637.PubMedCrossRefGoogle Scholar
  135. Knirel, Y. A., Kocharova, N. A., Shashkov, A. S., Dimitriev, B. A., Kochetkov, N. K., Stanislaysky, E. S., and Mashilova, G. M., 1987b, Somatic antigens of Pseudomonas aeruginosa. The structure of 0-specific polysaccharide chains of the lipopolysaccharides from P. aeruginosa 05 (Lanyi) and immunotype 6 (Fisher), Eur. J. Biochem. 163: 639–652.PubMedCrossRefGoogle Scholar
  136. Knirel, Y. A., Rietschel, E. T., Marre, R., and Zähringer, U., 1994, The structure of the 0-specific chain of Legionella pneumophila serogroup 1 lipopolysaccharide, Eur. J. Biochem. 221: 239–245.PubMedCrossRefGoogle Scholar
  137. Ko, H. L., Beuth, J., Sölter, J., Schroten, H., Uhlenbruck, G., and Pulverer, G., 1987, In vitro and in vivo inhibition of lectin mediated adhesion of Pseudomonas aeruginosa by receptor blocking carbohydrates, Infection 15: 237–240.Google Scholar
  138. Kotovuori, P., Tontti, E., Pigott, R., Shepherd, M., Kiso, M., Hasegawa, A., Renkonen, R., Nortamo, P., Altieri, D. C., and Gahmberg, C. G., 1993, The vascular E-selectin binds to the leukocyte integrins CD11/CD18, Glycobiology 3: 131–136.PubMedCrossRefGoogle Scholar
  139. Kozutsumi, Y., Kawano, T., Yamakawa, T., and Suzuki, A., 1990, Participation of cytochrome b5 in CMP-N-acetylneuraminic acid hydroxylation in mouse liver cytosol, J. Biochem. 108: 704–706.PubMedGoogle Scholar
  140. Kozutsumi, Y., Kawano, T., Kawasaki, H., Suzuki, K., Yamakawa, T., and Suzuki, A., 1991, Reconstitution of CMP-N-acetylneuraminic acid hydroxylation activity using a mouse liver cytosol fraction and soluble cytochrome b5 purified from horse erythrocytes, J. Biochem. 110: 429–435.PubMedGoogle Scholar
  141. Krauss, J. H., Reuter, G., Schauer, R., Weckesser, J., and Mayer, H., 1988, Sialic acid-containing lipopolysaccharide of purple nonsulfur bacteria, Arch. Microbiol. 150: 584–589.CrossRefGoogle Scholar
  142. Krauss, J. H., Himmelspach, K., Reuter, G., Schauer, R., and Mayer, H., 1992, Structural analysis of a novel sialic acid-containing trisaccharide from Rhodobacter capsulatus 37b4 lipopolysaccharide, Eur. J. Biochem. 204: 217–223.PubMedCrossRefGoogle Scholar
  143. Kurosawa, N., Hamamoto, T., Lee, Y.-L., Nakaoka, T., and Tsuji, S., 1993, cDNA Cloning of three groups of sialyltransferase from chick embryo, Glycoconj. J. 10: 236.Google Scholar
  144. Kurosawa, N., Hamamoto, T., Lee, Y.-L., Nakaoka, T., Kojima, N., and Tsuji, S., 1994, Molecular cloning and expression of GaINAc a2,6-sialyltransferase, J. Biol. Chem. 269: 1402–1409.PubMedGoogle Scholar
  145. Kyogashima, M., Ginsburg, V., and Krivan, H., 1989, Escherichia coli K99 binds to N-glycolylsialoparagloboside and N-glycolyl-GM3 found in piglet small intestine, Arch. Biochem. Biophys. 270: 391–397.Google Scholar
  146. Larsen, E., Celi, A., Gilbert, G. E., Furie, B. C., Erban, J. K., Bonfanti, R., Wagner, D. D., and Furie, B., 1989, PADGEM protein: A receptor that mediates the interaction of activated platelets with neutrophils and monocytes, Cell 59: 305–312.PubMedCrossRefGoogle Scholar
  147. Lasky, L. A., 1992, Selectins: Interpreters of cell-specific carbohydrate information during inflammation, Science 258: 964–969.PubMedCrossRefGoogle Scholar
  148. Lasky, L. A., Singer, M. S., Yednock, T. A., Dowbenko, D., Fennie, C., Rodriguez, H., Nguyen, T., Stachel, S., and Rosen, S. D., 1989, Cloning of a lymphocyte homing receptor reveals a lectin domain, Cell 56: 1045–1055.PubMedCrossRefGoogle Scholar
  149. Lasky, L. A., Singer, M. S., Dowbenko, D., Imai, Y., Henzel, W. J., Grimley, C., Fennie, C., Gillett, N., Watson, S. R., and Rosen, S. D., 1992, An endothelial ligand for L-selectin is a novel mucin-like molecule, Cell 69: 927–938.PubMedCrossRefGoogle Scholar
  150. Law, C.-L., Torres, R. M., Sundberg, H. A., Parkhouse, R.M.E., Brannan, C. I., Copeland, N. G., Jenkins, N. A., and Clark, E. A., 1993, Organization of the murine Cd22 locus—Mapping to chromosome 7 and characterization of two alleles, J. Immunol. 151: 175–187.PubMedGoogle Scholar
  151. Lawrence, M. B., and Springer, T. A., 1991, Leukocytes roll on a selectin at physiological flow rates: Distinction from and prerequisite for adhesion through integrins, Cell 65: 859–873.PubMedCrossRefGoogle Scholar
  152. Ledeen, R. W., and Yu, R. W., 1976, Chemistry and analysis of sialic acids, in: Biological Roles of Sialic Acid ( A. Rosenberg and C. L. Schengrund, eds.), Plenum Press, New York, pp. 1–48.CrossRefGoogle Scholar
  153. Lee, Y-C., Kurosawa, N., Hamamoto, T., Nakaoka, T., and Tsuji, S., 1993, Molecular cloning and expression of Gal13l,3Ga1NAca2,3-sialyltransferase from mouse brain, Eur. J. Biochem. 216: 377–385.PubMedCrossRefGoogle Scholar
  154. Lepers, A., Shaw, L., Cacan, R., Schauer, R., Montreuil, J., and Verbert, A., 1989, Transport of CMP-N-glycoloylneuraminic acid into mouse liver Golgi vesicles, FEBS Lett. 250: 245–250.PubMedCrossRefGoogle Scholar
  155. Lepers, A., Shaw, L., Schneckenburger, P., Cacan, R., Verbert, A., and Schauer, R., 1990, A study on the regulation of N-glycoloylneuraminic acid biosynthesis and utilization in rat and mouse liver, Eur. J. Biochem. 193: 715–723.PubMedCrossRefGoogle Scholar
  156. Leprince, C., Drayes, K. E., Geahlen, R. L., Ledbetter, J. A., and Clark, E. A., 1993, CD22 associates with the human surface IgM B cell antigen receptor complex, Proc. Natl. Acad. Sci. USA 90: 3236–3240.PubMedCrossRefGoogle Scholar
  157. Levinovitz, A., Mühlhoff, J., Isenmann, S., and Vestweber, D., 1993, Identification of a glycoprotein ligand for E-selectin on mouse myeloid cells, J. Cell Biol. 121: 449–459.PubMedCrossRefGoogle Scholar
  158. Lewinsohn, D. M., Bargatze, R. F., and Butcher, E. C., 1987, Leukocyte–endothelial cell recognition: Evidence for a common molecular mechanism shared by neutrophils, lymphocytes and other leukocytes, J. Immunol. 138: 4313–4321.PubMedGoogle Scholar
  159. Li, Y.-T., Yuziuk, J. A., Li, S.-C., Nematalla, A., Hasegawa, A., Tsutsumi, M., and Nakagawa, H., 1993, A novel sialidase capable of cleaving 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (KDN), Glycobiology 10: 525.Google Scholar
  160. Liukkonen, J., Haataja, S., Tikkanen, K., Kelm, S., and Finne, J., 1992, Identification of N-acetylneuraminyl a-2,3 poly-N-acetyllactosamine glycans as the receptors of sialic acid binding Streptococcus suis strains, J. Biol. Chem. 267: 21105–21111.PubMedGoogle Scholar
  161. Livingston, B. D., and Paulson, J. C., 1993, Polymerase chain reaction cloning of a developmentally regulated member of the sialyltransferase gene family, J. Biol. Chem. 268: 11504–11507.PubMedGoogle Scholar
  162. Long, G. S., Taylor, P. W., and Luzio, J. P., 1993, Characterization of bacteriophage E endosialidase specific for alpha-2,8-linked polysialic acid, in: Polysialic Acid ( J. Roth, U. Rutishauser, and F. A. Troy II, eds.), Birkhäuser Verlag, Basel, pp. 137–144.Google Scholar
  163. Loomes, L. M., Uemura, K.-I., Childs, R. A., Paulson, G. N., Rogers, G. N., Scudder, P. R., Michalski, J.-C., Hounsell, E. F., Taylor-Robinson, D., and Feizi, T., 1984, Erythrocyte receptors for Mycoplasma pneumoniae are sialylated oligosaccharides of li antigen type, Nature 307: 560–563.PubMedCrossRefGoogle Scholar
  164. Lowe, J. B., Stoolman, L. M., Nair, R. P., Larsen, R. D., Berhend, T. L., and Marks, R. M., 1990, ELAM- I -dependent cell adhesion to vascular endothelium determined by a transfected human fucosyltransferase cDNA, Cell 63: 475–484.PubMedCrossRefGoogle Scholar
  165. McEver, P. R., 1992, Leukocyte–endothelial interactions, Curr. Opin. Cell Biol. 4:840–849. Markwcll, M. A. K., and Paulson, J. C., 1980, Sendai virus utilizes specific sialyloligosaccharides as host cell receptor determinants, Proc. Natl. Acad. Sci. USA 77: 5693–5697.Google Scholar
  166. Mayadas, T. N., Johnson, R. C., Rayburn, H., Hynes, R. O., and Wagner, D. D., 1993, Leukocyte rolling and extravasation are severely compromised in P-selectin-deficient mice, Cell 74: 54 1554.Google Scholar
  167. Meri, S., and Pangburn, M. K., 1990, Discrimination between activators and nonactivators of the alternative pathway of complement: Regulation via sialic acid/polyanion binding site of factor H, Proc. Natl. Acad. Sci. USA 87: 3982–3986.PubMedCrossRefGoogle Scholar
  168. Miyagi, T., Konno, K., Emori, Y., Kawasaki, H., Suzuki, K., Yasui, A., and Tsuiki, S., 1993, Molecular cloning and expression of eDNA encoding rat skeletal muscle cytosolic sialidase, J. Biol. Chem. 268: 26435–26440.PubMedGoogle Scholar
  169. Moore, K. L., Stults, N. L., Diaz, S., Smith, D. F., Cummings, R. D., Varki, A., and McEver, R. P., 1992, Identification of a specific glycoprotein ligand for P-selectin (CD62) on myeloid cells, J. Cell Biol. 118: 445–456.PubMedCrossRefGoogle Scholar
  170. Moran, P., Raab, H., Kohr, W. J., and Caras, I. W., 1991, Glycophospholipid membrane anchor attachment—Molecular analysis of the cleavage/attachment site, J. Biol. Chem. 266: 1250 1257.Google Scholar
  171. Muchmore, E. A., 1992, Developmental sialic acid modifications in rat organs, Glycobiologv 2: 337–343.CrossRefGoogle Scholar
  172. Muchmore, E., Varki, N., Fukuda, M., and Varki, A., 1987, Developmental regulation of sialic acid modifications in rat and human colon, FASEB J. 1: 229–235.PubMedGoogle Scholar
  173. Muchmore, E. A., Milewski, M., Varki, A., and Diaz, S., 1989, Biosynthesis of N-glycolylneuraminic acid: The primary site of hydroxylation of N-acetylneuraminic acid is the cytosolic sugar nucleotide pool, J. Biol. Chem. 264: 20216–20223.PubMedGoogle Scholar
  174. Müller, E., Schröder, C., Sharon, N., and Schauer, R., 1983, Binding and phagocytosis of sialidasetreated rat erythrocytes by a mechanism independent of opsonins, Hoppe-Seyler’s Z. Physiol. Chem. 364: 1410–1420.CrossRefGoogle Scholar
  175. Müller, H. E., 1974, Neuraminidases of bacteria and protozoa and their pathogenic role, Behring Inst. Mitt. 55: 34–56.Google Scholar
  176. Müller, H. E., 1992, Relationships between ecology and pathogenicity of microorganisms, B10- forum 1/2:16–22.Google Scholar
  177. Munro, S., Bast, B.J.E.G., Colley, K. J., and Tedder, T. F., 1992, The lymphocyte-B surface antigen CD75 is not an a-2,6-sialyltransferase but is a carbohydrate antigen, the production of which requires the enzyme, Cell 68: 1003–1004.PubMedCrossRefGoogle Scholar
  178. Murray, P. A., Levine, M. J., Tabak, L. A., and Reddy, M. S., 1982, Specificity of salivary–bacterial interactions: II. Evidence for a lectin on Streptococcus sanguis with specificity for a Neu5Aca2,3Ga1131,3GaINAc sequence, Biochem. Biophys. Res. Commun. 106: 390–396.PubMedCrossRefGoogle Scholar
  179. Nadano, D., Iwasaki, M., Endo, S., Kitajima, K., Inoue, S., and Inoue, Y., 1986, A naturally occurring deaminated neuraminic acid, 3-deoxy-D-glycero-D-galacto-nonulosonic acid (KDN). Its unique occurrence at the nonreducing ends of oligosialyl chains in polysialoglycoprotein of rainbow trout eggs, J. Biol. Chem. 261: 1 1550–11557.Google Scholar
  180. Nees, S., Veh, R. W., and Schauer, R., 1975, Purification and characterization of neuraminidase from Clostridium perfringens, Hoppe-Seyler’s Z. Physiol. Chem. 356: 1027–1042.Google Scholar
  181. Nöhle, U., Beau, J. M., and Schauer, R., 1982, Uptake metabolism and excretion of orally and intravenously administered double-labeled N-glycoloylneuraminic acid and single-labeled 2-deoxy-2,3-dehydro-N-acetylneuraminic acid in mouse and rat, Eur. J. Biochem. 126: 543–548.PubMedCrossRefGoogle Scholar
  182. Norgard, K. E., Han, H., Powell, L., Kriegler, M., Varki, A., and Varki, N. M., 1993a, Enhanced interaction of L-selectin with the high endothelial venule ligand via selectively oxidized sialic acids, Proc. Natl. Acad. Sci. USA 90: 1068–1072.PubMedCrossRefGoogle Scholar
  183. Norgard, K. E., Moore, K. L., Diaz, S., Stults, N. L., Ushiyama, S., McEver, R. P., Cummings, R. D., and Varki, A., 1993b, Characterization of a specific ligand for P-selectin on myeloid cells—A minor glycoprotein with sialylated 0-linked oligosaccharides, J. Biol. Chem. 268: 12764–12774.PubMedGoogle Scholar
  184. Ohashi, Y., Sasabe, T., Nishida, T., Nishi, Y., and Higashi, H., 1983, Hanganutziu—Deicher heterophile antigen in human retinoblastoma cells, Am. J. Ophthalmol. 96: 321–325.PubMedGoogle Scholar
  185. Ouadia, A., Karamanos, Y., and Julien, R., 1992, Detection of the ganglioside N-glycolylneuraminyl-lactosyl-ceramide by biotinylated Escherichia coli K99 lectin, Glycoconj. J. 9: 2126.CrossRefGoogle Scholar
  186. Parkkinen, A., Rogers, G. N., Korhonen, T., Dahr, W., and Finne, J., 1986, Identification of the 0-linked sialyloligosaccharides of glycophorin A as the erythrocyte receptors for S-fimbriated Escherichia coil, Infect. Immun. 54: 37–42.Google Scholar
  187. Paulson, J. C., 1985, Interactions of animal viruses with cell surface receptors, in: The Receptors, Vol. 2 ( M. Conn, ed.), Academic Press, New York, pp. 131–219.Google Scholar
  188. Paulson, J. C., and Colley, K. J., 1989, Glycosyltransferases: Structure, localization, and control of cell type-specific glycosylation, J. Biol. Chem. 264: 17615–17618.PubMedGoogle Scholar
  189. Pereira, M.E.A., Mejia, J. S., Ortega-Barria, E., Matzilevich, D., and Prioli, R., 1991, The Trypanosoma cruzi neuraminidase contains sequences similar to bacterial neuraminidases, to YWTD repeats of the LDL receptor, and to type III modules of fibronectin, J. Exp. Med. 174: 179–191.PubMedCrossRefGoogle Scholar
  190. Perkins, M. E., and Rocco, L. J., 1988, Sialic acid-dependent binding of Plasmodium falciparum merozoite surface antigen, Pf200, to human erythrocytes, J. Immunol. 141: 3190–3196.PubMedGoogle Scholar
  191. Phillips, M. L., Nudelman, E., Gaeta, F.C.A., Perez, M., Singhal, A. K., Hakomori, S.-i., and Paulson, J. C., 1990, ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-Le’, Science 250: 1130–1132.PubMedCrossRefGoogle Scholar
  192. Polley, M. J., Phillips, M. L., Wayner, E., Nudelman, E., Singhal, A. K., Hakomori, S.-i., and Paulson, J. C., 1991, CD62 and endothelial cell leukocyte adhesion molecule-1 (ELAM-1) recognize the same carbohydrate ligand, sialyl-Lewis’, Proc. Natl. Acad. Sci. USA 88: 62246228.Google Scholar
  193. Popoff, N. R., and Dodin, A., 1985, Survey of neuraminidase production by Clostridium butyricum, Clostridium beijerinckii and Clostridium difficile strains from clinical and nonclinical sources, J. Clin. Microbiol. 22: 873–876.PubMedGoogle Scholar
  194. Popoli, M., and Mengano, A., 1988, A hemagglutinin specific for sialic acids in a rat brain synaptic vesicle-enriched fraction, Neurochem. Res. 13: 63–67.PubMedCrossRefGoogle Scholar
  195. Powell, L. D., Sgroi, D., Sjoberg, E. R., Stamenkovic, I., and Varki, A., 1993, Natural ligands of the B-cell adhesion molecule CD22-ß carry N-linked oligosaccharides with a-2,6-linked sialic acids that are required for recognition, J. Biol. Chem. 268: 7019–7027.PubMedGoogle Scholar
  196. Prioli, R. P., Ortega-Barria, E., Mejia, J. S., and Pereira, M.E.A., 1992, Mapping of the B-cell epitope present in the neuraminidase of Trypanosoma cruzi, Mol. Biochem. Parasitol. 52: 85–96.CrossRefGoogle Scholar
  197. Rahmann, H., Hilbig, R., Marx, J., Beitinger, H., and Mehlfeld, R., 1987, Brain gangliosides and hibernation, J. Therm. Biol. 12: 81–85.CrossRefGoogle Scholar
  198. Reuter, G., and Schauer, R., 1986, Comparison of electron and chemical ionization mass spectrometry of sialic acids, Anal. Biochem. 157: 39–46.PubMedCrossRefGoogle Scholar
  199. Reuter, G., and Schauer, R., 1987, Isolation and analysis of gangliosides with 0-acetylated sialic acids, in: Gangliosides and Modulation of Neuronal Functions, NATO ASI Series, Vol. H7 ( H. Rahmann, ed.), Springer-Verlag, Berlin, pp. 155–165.Google Scholar
  200. Reuter, G., and Schauer, R., 1988, Nomenclature of sialic acids, Glycoconj. J. 5:133–135. Reuter, G., and Schauer, R., 1994, Determination of sialic acids, Methods Enzymol. 230: 168–199.CrossRefGoogle Scholar
  201. Reuter, G., Pfeil, R., Stoll, S., Schauer, R., Kamerling, J. P., Versluis, C., and Vliegenthart, J.F.G., 1983, Identification of new sialic acids derived from glycoprotein of bovine submandibular gland, Eur. J. Biochem. 134: 139–143.PubMedCrossRefGoogle Scholar
  202. Reuter, G., Schauer, R., Prioli, R., and Pereira, M.E.A., 1987, Isolation and properties of a sialidase from Trypanosoma rangeli, Glycoconj. J. 4: 339–348.CrossRefGoogle Scholar
  203. Reuter, G., Stoll, S., Kamerling, J. P., Vliegenthart, J.F.G., and Schauer, R., 1988, Sialic acids on erythrocytes and in blood plasma of mammals, in: Sialic Acids 1988, Proceedings of the German-Japanese Symposium on Sialic Acids ( R. Schauer and T. Yamakawa, eds.), Verlag Wissenschaft + Bildung, Kiel, pp. 88–89.Google Scholar
  204. Riedl, M., Förster, O., Rumpold, H., and Bernheimer, H., 1982, A ganglioside-dependent cellular binding mechanism in rat macrophages, J. Immunol. 128: 1205–1210.PubMedGoogle Scholar
  205. Rogers, G. N., Herrler, G., Paulson, J. C., and Klenk, 1–1.-D., 1986, Influenza C virus uses 9–0acetyl-N-acetylneuraminic acid as high affinity receptor determinant for attachment to cells, J. Biol. Chem. 261: 5947–5951.PubMedGoogle Scholar
  206. Roggentin, P., Gutschker-Gdaniec, G., Schauer, R., and Hobrecht, R., 1985, Correlative properties for a differentiation of two Clostridium sordellii phenotypes and their distinction from Clostridium bifermentans, Zbl. Bakt. Hyg. A 260: 319–328.Google Scholar
  207. Roggentin, P., Berg, W., and Schauer, R., 1987, Purification and characterization of sialidase from Clostridium sordellii G12, Glycoconj. J. 4: 349–359.CrossRefGoogle Scholar
  208. Roggentin, P., Rothe, B., Lottspeich, F., and Schauer, R., 1988, Cloning and sequencing of a Clostridium perfringens sialidase gene, FEBS Lett. 238: 31–34.PubMedCrossRefGoogle Scholar
  209. Roggentin, P., Rothe, B., Kaper, J. B., Galen, J., Lawrisuk, L., Vimr, E. R., and Schauer, R., 1989, Conserved sequences in bacterial and viral sialidases, Glycoconj. J. 6: 349–353.PubMedCrossRefGoogle Scholar
  210. Roggentin, P., Schauer, R., Hoyer, L. L., and Vimr, E. R., 1993, The sialidase superfamily and its spread by horizontal gene transfer, Mol. Microbiol. 9: 915–921.PubMedCrossRefGoogle Scholar
  211. Roggentin, T., Kleineidam, R. G., Schauer, R., and Roggentin, P., 1992, Effects of site-specific mutations on the enzymic properties of a sialidase from Clostridium perfringens, Glycoconj. J. 9: 235–240.CrossRefGoogle Scholar
  212. Roggentin, T., Kleineidam, R. G., Majewski, D. M., Tirpitz, D., Roggentin, P., and Schauer, R., 1993, An immunoassay for the rapid and specific detection of three sialidase-producing clostridia causing gas gangrene, J. Immunol. Methods 157: 125–133.PubMedCrossRefGoogle Scholar
  213. Rosen, S. D., 1993, L-selectin and its biological ligands, Histochemistry 100: 185–191.PubMedCrossRefGoogle Scholar
  214. Rosen, S. D. Singer, M. S., Yednock, T. A., and Stoolman, L. M., 1985, Involvement of sialic acid on endothelial cells in organ-specific lymphocyte recirculation, Science 228: 1005–1007.Google Scholar
  215. Rosenberg, A., and Schengrund, C.-L. (eds.), 1976a, Biological Roles of Sialic Acid, Plenum Press, New York.Google Scholar
  216. Rosenberg, A., and Schengrund, C.-L., 1976b, Sialidases, in: Biological Roles of Sialic Acid ( A. Rosenberg and C.-L. Schengrund, eds.), Plenum Press, New York, pp. 295–359.CrossRefGoogle Scholar
  217. Roth, J., Kempf, A., Reuter, G., Schauer, R., and Gehring, W. J., 1992, Occurrence of sialic acids in Drosophila melanogaster, Science 256: 673–675.Google Scholar
  218. Rothe, B., Roggentin, P., Blöcker, H., Frank, R., and Schauer, R., 1989, Cloning, sequencing and expression of a sialidase gene of Clostridium sordellii, J. Gen. Microbiol. 135: 3087–3096.Google Scholar
  219. Rothe, B., Rothe, B., Roggentin, P., and Schauer, R., 1991, The sialidase gene from Clostridium septicum: Cloning, sequencing, expression in Escherichia coli, and identification of conserved sequences in sialidases and other proteins, Mol. Gen. Genet. 226: 190–197.PubMedCrossRefGoogle Scholar
  220. Russo, T. A., Thompson, J. S., Godoy, V. G., and Malamy, M. H., 1990, Cloning and expression of the Bacteroides fragilis TAL2480 neuraminidase gene, nanH, in Escherichia coli, J. Bacteriol. 172:2594–2600.Google Scholar
  221. Saida, T., Ikegawa, S., Takizawa, Y., and Kawachi, S., 1990, Immunohistochemical detection of heterophile Hanganutziu—Deicher antigen in human malignant melanoma, Arch. Dermatol. Res. 282: 179–182.PubMedCrossRefGoogle Scholar
  222. Saito, M., and Yu, R. K., 1993, Possible role of myelin-associated neuraminidase in membrane adhesion, J. Neurosci. Res. 36: 127–132.PubMedCrossRefGoogle Scholar
  223. Sako, D., Chang, X.-J., Barone, K. M., Vachino, G., White, H. M., Shaw, G., Veldman, G. M., Bean, K. M., Ahern, T. J., Furie, B., Cumming, D. A., and Larsen, G. R., 1993, Expression cloning of a functional glycoprotein ligand for P-selectin, Cell 75: 1179–1186.PubMedCrossRefGoogle Scholar
  224. Sakurada, K., Ohta, T., and Hasegawa, M., 1992, Cloning, expression, and characterization of the Micromonospora viridifaciens neuraminidase gene in Streptomyces lividans, J. Bacteriol. 174: 6896–6903.Google Scholar
  225. Sasaki, K., Watanabe, E., Kawashima, K., Sekine, S., Dohi, T., Oshima, M., Hanai, N., Nishi, T., and Hasegawa, M., 1993, Expression cloning of a novel Gal(3(1–3/1–4)GlcNAc a2,3sialyltransferase using lectin resistance selection, J. Biol. Chem. 268: 22782–22787.PubMedGoogle Scholar
  226. Savage, A. V., Koppen, P. L., Schiphorst, W. E. C. M., Trippelvitz, L. A. W., van Halbeek, H., Vliegenthart, J. F. G., and van den Eijnden, D. H., 1986, Porcine submaxillary mucin contains a2–3- and a2–06-linked N-acetyl-and N-glycolyl-neuraminic acid, Eur. J. Biochem. 160: 123–129.PubMedCrossRefGoogle Scholar
  227. Savill, J., Fadok, V., Henson, P., and Haslett, C., 1993, Phagocyte recognition of cells undergoing apoptosis, Immunol. Today 14: 131–136.PubMedCrossRefGoogle Scholar
  228. Schauer, R., 1970, Biosynthese der N-Glykoloylneuraminsäure durch eine von Ascorbinsäure bzw. NADPH abhängige N-Acetyl-hydroxylierende “N-Acetylneuraminat:02 Oxidoreduktase” in Homogenaten der Unterkieferspeicheldrüse vom Schwein, Hoppe-Seyler’s Z. Physiol. Chem. 351: 783–791.PubMedCrossRefGoogle Scholar
  229. Schauer, R., 1978a, Characterization of sialic acids, Methods Enzymol. 50: 64–89.PubMedCrossRefGoogle Scholar
  230. Schauer, R., 19786, Biosynthesis of sialic acids, Methods Enzymol. 50: 374–386.Google Scholar
  231. Schauer, R. (ed.), 1982a, Sialic Acids—Chemistry, Metabolism and Function, Springer, New York. Schauer, R., 1982b, Chemistry, metabolism and biological functions of sialic acids, Adv. Carbohydr. Chem. Biochem. 40: 131–234.Google Scholar
  232. Schauer, R., 1985, Sialic acids and their role as biological masks, Trends Biochem. Sci. 10: 357–360.CrossRefGoogle Scholar
  233. Schauer, R., 1987a, Analysis of sialic acids, Methods Enzymol 138: 132–161.PubMedCrossRefGoogle Scholar
  234. Schauer, R., 19876, Metabolism of 0-acetyl groups of sialic acids, Methods Enzymol. 138: 611–626.Google Scholar
  235. Schauer, R., 1988, Sialic acids as antigenic determinants of complex carbohydrates, Adv. Exp. Med. Biol. 228: 47–72.PubMedCrossRefGoogle Scholar
  236. Schauer, R., 1991, Biosynthesis and function of N- and 0-substituted sialic acids, Glycobiology 1: 449–452.PubMedCrossRefGoogle Scholar
  237. Schauer, R., 1992, Sialinsäurereiche Schleime–bioaktive Schmierstoffe, Nachr. Chem. Tech. Lab. 40: 1227–1231.CrossRefGoogle Scholar
  238. Schauer, R., and Corfield, A. P., 1982, Colorimetry and thin-layer chromatography of sialic acids, in: Sialic Acids—Chemistry, Metabolism and Function ( R. Schauer, ed.), Springer, New York, pp. 77–94.CrossRefGoogle Scholar
  239. Schauer, R., and Vliegenthart, J.F.G., 1982, Introduction, in: Sialic Acids—Chemistry, Metabolism and Function ( R. Schauer, ed.), Springer, New York, pp. 1–3.CrossRefGoogle Scholar
  240. Schauer, R., and Wember, M., 1985, Sialidase and sialate-8–0-methyltransferase in the starfish Asterias rubens, in: Glycoconjugates—Proc. Vlllth Int. Symp., Vol. 1 ( E. A. Davidson, J. C. Williams, and N. M. Di Ferrante, eds.), Praeger, New York, pp. 266–267.Google Scholar
  241. Schauer, R., Schoop, H. J., and Faillard, H., 1968, Zur Biosynthese der N-Glykolyl-Gruppe der N-Glykolylneuraminsäure. Die oxidative Umwandlung der N-Acetyl-Gruppe zur GlykolylGruppe, Hoppe-Seyler’s Z. Physiol. Chem. 349: 645–652.PubMedCrossRefGoogle Scholar
  242. Schauer, R., Reuter, G., Mühlpfordt, H., Andrade, A.F.B., and Pereira, M.E.A., 1983, The occurrence of N-acetyl and N-glycoloylneuraminic acid in Trypanosoma cruzi, Hoppe-Seyler’s Z. Physiol. Chem. 364: 1053–1057.CrossRefGoogle Scholar
  243. Schauer, R., Schröder, C., and Shukla, A. K., 1984a, New techniques for the investigation of structure and metabolism of sialic acids, Adv. Exp. Med. Biol. 174: 75–86.PubMedCrossRefGoogle Scholar
  244. Schauer, R., Shukla, A. K., Schröder, C., and Müller, E., 1984b, The anti-recognition function of sialic acids: Studies with erythrocytes and macrophages, Pure Appl. Chem. 56: 907–921.CrossRefGoogle Scholar
  245. Schauer, R., Reuter, G., and Stoll, S., 1988a, Sialate 0-acetylesterases, key enzymes in sialic acid catabolism, Biochimie 70: 1511–1519.PubMedCrossRefGoogle Scholar
  246. Schauer, R., Casals-Stenzel, J., Corfield, A. P., and Veh, R. W., 19886, Subcellular site of biosynthesis of 0-acetylated sialic acids in bovine submandibular gland, Glycoconj. J. 5: 257–270.Google Scholar
  247. Schauer, R., Reuter, G., Stoll, S., Posadas del Rio, F., Herrler, G., and Klenk, H.-D., I988c, Isolation and characterization of sialate 9(4)-O-acetylesterase from influenza C virus, Biol. Chem. Hoppe-Seyler 369: 1121–1130.Google Scholar
  248. Schauer, R., Reuter, G., Stoll, S., and Shukla, A. K., 1989, Isolation and characterization of sialate 9(4)-O-acetylesterase from bovine brain, J. Biochem. 106: 143–150.PubMedGoogle Scholar
  249. Schauer, R., Stoll, S., and Reuter, G., 1991, Differences in the amount of N-acetyl-and N-glycoloylneuraminic acid, as well as 0-acylated sialic acids, of fetal and adult bovine tissues, Carbohvdr. Res. 213: 353–359.CrossRefGoogle Scholar
  250. Schauer, R., Kelm, S., Reuter, G., and Shaw, L., 1993, New insights into the mode and role of enzymatic sialic acid modifications, Glycoconj. J. 10: 327.CrossRefGoogle Scholar
  251. Schengrund, C.-L., and Ringler, N. J., 1989, Binding of Vibrio cholerae toxin and the heat-labile enterotoxin of Escherichia coli to GM„ derivatives of GM„ and nonlipid oligosaccharide polyvalent ligands, J. Biol. Chem. 264: 13233–13237.PubMedGoogle Scholar
  252. Schenkman, S., and Eichinger, D., 1993, Trypanosoma cruzi trans-sialidase and cell invasion, Parasitol. Today 9: 218–222.CrossRefGoogle Scholar
  253. Schenkman, S., Jiang, M. S., Hart, G. W., and Nussenzweig, V., 1991, A novel cell surface transsialidase of Trypanosoma cruzi generates a stage-specific epitope required for invasion of mammalian cells, Cell 65: 1117–1125.PubMedCrossRefGoogle Scholar
  254. Schiavo, G., Demel, R., and Montecucco, C., 1991, On the role of polysialoglycosphingolipids as tetanus toxin receptors, Eur. J. Biochem. 199: 705–711.PubMedCrossRefGoogle Scholar
  255. Schlenzka, W., Shaw, L., and Schauer, R., I993a, Catalytic properties of the CMP-N-acetylneuraminic acid hydroxylase from the starfish Asterias rubens: Comparison with the mammalian enzyme, Biochim. Biophys. Acta 1161: 131–138.Google Scholar
  256. Schlenzka, W., Shaw, L., and Schauer, R., I993b, Purification of CMP-Neu5Ac hydroxylase from pig submandibular gland and inhibition of the enzyme by rabbit anti-(hydroxylase) antiserum, Biol. Chem. Hoppe-Seyler 374: 955.Google Scholar
  257. Schmelter, T., Ivanov, S., Wember, M., Stagier, P., Thiem, J., and Schauer, R., 1993, Partial purification and characterization of cytidine-5’-monophosphosialate synthase from rainbow trout liver, Biol. Chem. Hoppe-Seyler 374: 337–342.PubMedCrossRefGoogle Scholar
  258. Schneckenburger, P., Shaw, L., and Schauer, R., 1993, Purification and kinetic properties of CMPNeu5Ac hydroxylase from mouse liver, Biol. Chem. Hoppe-Seyler 374: 956.Google Scholar
  259. Sgroi, D., Varki, A., Braesch-Andersen, S., and Stamenkovic, I., 1993, CD22, a B-cell specific immunoglobulin superfamily member, is a sialic acid binding lectin, J. Biol. Chem. 268: 70117018.Google Scholar
  260. Shaw, L., and Schauer, R., 1988, The biosynthesis of N-glycoloylneuraminic acid occurs by the hydroxylation of the CMP-glycoside of N-acetylneuraminic acid, Biol_ Chem. Hoppe-Seyler 369: 477–486.PubMedCrossRefGoogle Scholar
  261. Shaw, L., and Schauer, R., 1989, Detection of CMP-N-acetylneuraminic acid hydroxylase activity in fractionated mouse liver, Biochem. J. 263: 355–363.PubMedGoogle Scholar
  262. Shaw, L., Yousefi, S., Dennis, J. W., and Schauer, R., 1991, CMP-N-acetylneuraminic acid hydroxylase activity determines the wheat germ agglutinin-binding phenotype in two mutants of the lymphoma cell line MDAYD2, Glycoconj. J. 8: 434–444.PubMedCrossRefGoogle Scholar
  263. Shaw, L., Schneckenburger, P., Carlsen, J., Christiansen, K., and Schauer, R., 1992, Mouse liver cytidine-5’-monophosphate-N-acetylneuraminic acid hydroxylase: Catalytic function and regulation, Eur. J. Biochem. 206: 269–277.PubMedCrossRefGoogle Scholar
  264. Shaw, L., Schneckenburger, P., Schlenzka, W., Carlsen, J., Christiansen, K., Jürgensen, D., and Schauer, R., 1994, Cytidine-5’-monophosphate-N-acetylneuraminic acid hydroxylase from mouse liver and pig submandibular glands: Interaction with membrane-bound and soluble cytochrome b5-dependent electron transport chains, Eur. J. Biochem. 219: 1001–1011.PubMedCrossRefGoogle Scholar
  265. Sherblom, A. P., Bharathan, S., Hall, P. J., Smagula, R. M., Moody, C. E., and Anderson, G. W., 1988, Bovine serum sialic acid: Age-related changes in type and content, Int. J. Biochem. 20: 1177–1183.PubMedCrossRefGoogle Scholar
  266. Shukla, A. K., and Schauer, R., 1986, Analysis of sialidase and N-acetylneuraminate pyruvate lyase substrate specificity by high-performance liquid chromatography, Anal. Biochem. 158: 158164.Google Scholar
  267. Shukla, A. K., Schröder, C., Nöhle, U., and Schauer, R., 1987, Natural occurrence and preparation of 0-acetylated 2,3-unsaturated sialic acids, Carbohydr. Res. 168: 199–209.PubMedCrossRefGoogle Scholar
  268. Siegelman, M., Van de Rijn, M., and Weissman, I. L., 1989, Mouse lymph node homing receptor cDNA clone encodes a glycoprotein revealing tandem interaction domains, Science 243: 1165 1172.Google Scholar
  269. Sjoberg, E. R., Manzi, A. E., Khoo, K. H., Dell, A., and Varki, A., 1992, Structural and immunological characterization of 0-acetylated GD2—Evidence that GD2 is an acceptor for ganglioside 0-acetyltransferase in human melanoma cell, J. Biol. Chem. 267: 16200–16211.PubMedGoogle Scholar
  270. Smirnova, G. P., Kochetkov, N. K., and Sadovskaya, V. L., 1987, Gangliosides of the starfish Aphelasterias japonica, evidence for a new linkage between two N-glycolylneuraminic acid residues through the hydroxy group of the glycolic acid residue, Biochem. Biophys. Acta 920: 47–55.PubMedCrossRefGoogle Scholar
  271. Song, Y., Kitajima, K., Inoue, S., and Inoue, Y., 1991, Isolation and structural elucidation of a novel type of ganglioside, deaminated neuraminic acid (KDN)-containing glycosphingolipid, from rainbow trout sperm—The first example of the natural occurrence of KDN-ganglioside, (KDN) GM3, J. Biol. Chem. 266: 21929–21935.PubMedGoogle Scholar
  272. Stamenkovic, I., and Seed, B., 1990, The B-cell antigen CD22 mediates monocyte and erythrocyte adhesion, Nature 345: 74–77.PubMedCrossRefGoogle Scholar
  273. Stamenkovic, I., Sgroi, D., Aruffo, A., Sy, M. S., and Anderson, T., 1991, The lymphocyte-B adhesion molecule CD22 interacts with leukocyte common antigen CD45RO on T-cells and a-2,6 sialyltransferase, CD75, on B-cells, Cell 66: 1133–1144.PubMedCrossRefGoogle Scholar
  274. Stamenkovic, I., Sgroi, D., and Aruffo, A., 1992, CD22 binds to a-2,6-sialyltransferase-dependent epitopes on COS cells, Cell 68: 1003–1004.PubMedCrossRefGoogle Scholar
  275. Stickl, H., Huber, W., Faillard, H., Becker, A., Holzhauser, R., and Graeff, H., 1991, Veränderung der Acylneuraminsäuregehalte auf T-Lymphozyten and im Plasma bei Erkrankung an Mamma-Karzinom, KIM. Wochenschr. 69: 5–9.CrossRefGoogle Scholar
  276. Strecker, G., Wieruszeski, J. M., Michalski, J.-C., Alonso, C., Boilly, B., and Montreuil, J., 1992a, Characterization of Lex, LeY and a Ley antigen determinants in KDN-containing 0-linked glycan chains from Pleurodeles waltlii jelly coat eggs, FEBS Leu. 298: 39–43.CrossRefGoogle Scholar
  277. Strecker, G., Wieruszeski, J.-M., Michalski, J.-C., Alonso, C., Leroi, Y., Boilly, B., and Montreuil, J., 1992b, Primary structure of neutral and acidic oligosaccharide-alditols derived from the jelly coat of the Mexican Axolotl. Occurrence of oligosaccharides with fucosyl(al-3)fucosyl(a 1–4)-3-deoxy-D-glycero-D-galacto-nonulosonic acid and galactosyl(a1–4)fucosyl(al-2)-galactosyl(3I-4)-N-acetylglucosamine sequences, Eur. J. Biochem. 207: 995–1002.PubMedCrossRefGoogle Scholar
  278. Strecker, G., Wieruszeski, J.-M., Plancke, Y., and Michalski, J.-C., 1993, Comparative study of the 0-linked carbohydrate chains released from the jelly coat of amphibian eggs, Glycoconj. J. 10: 345.CrossRefGoogle Scholar
  279. Strittmatter, P., Spatz, L., Corcoran, D., Rogers, M. J., Setlow, B., and Redline, R., 1974, Purification and properties of rat liver microsomal stearoyl-CoA desaturase, Proc. Natl. Acad. Sci. USA 71: 4565–4569.PubMedCrossRefGoogle Scholar
  280. Suguri, T., Kelm, S., Schauer, R., and Reuter, G., 1993, Detection of N-acetyl-9–0-acetylneuraminic acid on human lymphocytes, Glycoconj. J. 10: 331.CrossRefGoogle Scholar
  281. Suzuki, M., Suzuki, A., Yamakawa, T., and Matsunaga, E., 1985, Characterization of 2,7-anhydroN-acetylneuraminic acid in human wet cerumen, J. Biochem. 97: 509–515.PubMedGoogle Scholar
  282. Svensson, L., 1992, Group-C rotavirus requires sialic acid for erythrocyte and cell receptor binding, J. Virol. 66: 5582–5585.PubMedGoogle Scholar
  283. Tanaka, H., Ito, F., and Iawasaki, T., 1992, Purification and characterization of a sialidase from Bacteroides fragilis SBT3182, Biochem. Biophys. Res. Commun. 189: 524–529.PubMedCrossRefGoogle Scholar
  284. Terada, T., Kitazume, S., Kitajima, K., Inoue, S., and Ito, F., 1993, Synthesis of CMP-deaminoneuraminic acid (CMP-KDN) using the CMP-3-deoxynonulosonat cytidylyltransferase from rainbow trout testis—Identification and characterization of a CMP-KDN synthetase, J. Biol. Chem. 268: 2640–2648.PubMedGoogle Scholar
  285. Teufel, M., Roggentin, P., and Schauer, R., 1989, Properties of sialidase isolated from Actinomyces viscosus DSM 43798, Biol. Chem. Hoppe-Seyler 370: 435–443.PubMedCrossRefGoogle Scholar
  286. Thurin, J., Herlyn, M., Hindsgaul, O., Strömberg, N., Karlsson, K.-A., Elder, D., Steplewski, Z., and Koprowski, H., 1985, Proton NMR and fast-atom bombardment mass spectrometry analysis of the melanoma-associated ganglioside 9-O-acetyl-GD3, J. Biol. Chem. 260: 1455614563.Google Scholar
  287. Tiemeyer, M., Yasuda, Y., and Schnaar, R. L., 1989, Ganglioside-specific binding protein on rat brain membranes, J. Biol. Chem. 264: 1671–1681.PubMedGoogle Scholar
  288. Tiemeyer, M., Swank-Hill, P., and Schnaar, R. L., 1990, A membrane receptor for gangliosides is associated with central nervous system myelin, J. Biol. Chem. 265: 11990–11999.PubMedGoogle Scholar
  289. Tiemeyer, M., Swiedler, S. J., Ishihara, M., Moreland, M., Schweingruber, H., Hirtzer, P., and Brandley, B. K., 1991, Carbohydrate ligands for endothelial leukocyte adhesion molecule-1, Proc. Natl. Acad. Sci. USA 88: 1138–1142.PubMedCrossRefGoogle Scholar
  290. Titani, K., Takio, K., Kuwada, M., Nitta, K., Sakakibara, F., Kawauchi, H., Takayanagi, G., and Hakomori, S.-i., 1987, Amino acid sequence of sialic acid binding lectin from frog (Rana catesbeiana) eggs, Biochemistry 26: 2189–2194.PubMedCrossRefGoogle Scholar
  291. Torres, R. M., Law, C. L., Santos-Argumedo, L., Kirkham, P. A., Grabstein, K., Parkhouse, R.M.E., and Clark, E. A., 1992, Identification and characterization of the murine homologue of CD22, a lymphocyte-B-restricted adhesion molecule, J. Immunol. 149: 2641–2649.PubMedGoogle Scholar
  292. Townsend, R. R., Hardy, M. R., Hindsgaul, O., and Lee, Y. C., 1988, High performance anion-exchange chromatography of oligosaccharides using pellicular resins and pulsed amperometric detection, Anal. Biochem. 174: 459–470.PubMedCrossRefGoogle Scholar
  293. Traving, C., Schauer, R., and Roggentin, P., 1993, The primary structure of the “large” sialidase isoenzyme of Clostridium perfringens A99 and its comparison with further sialidases, Glycoconj. J. 10: 238–239.CrossRefGoogle Scholar
  294. Troy, F. A., 1992, Polysialylation from bacteria to brains, Glycobiology 2: 5–23.PubMedCrossRefGoogle Scholar
  295. Tyrrell, D., James, P., Rao, N., Foxall, C., Abbas, S., Dasgupta, F., Nashed, M., Hasegawa, A., Kiso, M., Asa, D., Kidd, J., and Brandley, B. K., 1991, Structural requirements for the carbohydrate ligand of E-selectin, Proc. Natl. Acad. Sci. USA 88: 10372–10376.PubMedCrossRefGoogle Scholar
  296. Uchida, Y., Taikada, Y., and Sugimori, T., 1979, Enzymic properties of a neuraminidase from Arthrobacter ureafaciens, J. Biochem. 86: 1573–1585.Google Scholar
  297. Unland, F., and Müthing, J., 1993, Separation of isomeric gangliosides by anion exchange HPLC, Biol. Chem. Hoppe-Seyler 374: 961.Google Scholar
  298. Vamecq, J., Mestdagh, N., Henichart, J.-P., and Poupaert, J., 1992, Subcellular distribution of glycosyltransferases in rodent liver and their significance in special reference to the synthesis of N-glycolylneuraminic acid, J. Biochem. 111: 579–583.PubMedGoogle Scholar
  299. Van den Berg, T. K., Breve, J.J.P., Damoiseaux, J.G.M.C., Dopp, E. A., Kelm, S., Crocker, P. R., Dijkstra, C. D., and Kraal, G., 1992, Sialoadhesin on macrophages—Its identification as a lymphocyte adhesion molecule, J. Exp. Med. 176: 647–655.PubMedCrossRefGoogle Scholar
  300. van den Eijnden, D. H., and Joziasse, D. H., 1993, Enzymes associated with glycosylation, Curr. Opin. Struct. Biol. 3: 711–721.CrossRefGoogle Scholar
  301. Vann, W. F., Zapata, G., Roberts, I., Boulnois, G., and Silver, R. P., 1993, Structure and function of enzymes in sialic acid metabolism in polysialic producing bacteria, in: Polysialic Acid ( J. Roth, U. Rutishauser, and F. A. Troy II, eds.), Birkhäuser Verlag, Basel, pp. 125–136.Google Scholar
  302. Varki, A., 1992a, Diversity in the sialic acids, Glycobiology 2: 24–40.Google Scholar
  303. Varki, A., 19926, Selectins and other mammalian sialic acid-binding lectins, Curr. Opin. Cell Biol. 4: 257–266.Google Scholar
  304. Varki, A., 1993, Biological roles of oligosaccharides—All of the theories are correct, Glycobiology 3: 97–130.PubMedCrossRefGoogle Scholar
  305. Varki, A., and Diaz, S., 1984, The release and purification of sialic acids from glycoconjugates: Methods to minimize the loss and migration of 0-acetyl groups, Anal. Biochem. 137: 236–247.PubMedCrossRefGoogle Scholar
  306. Varki, A., and Higa, H. H., 1993, Studies of the 0-acetylation and (in)stability of polysialic acid, in: Polysialic Acid ( J. Roth, U. Rutishauser, and F. A. Troy II, eds.), Birkhäuser Verlag, Basel, pp. 165–170.Google Scholar
  307. Varki, A., and Kornfeld, S., 1980, An autosomal dominant gene regulates the extent of 9–0acetylation of murine erythrocyte sialic acids: A probable explanation for the variation in capacity to activate the alternate complement pathway, J. Exp. Med. 152: 532–544.PubMedCrossRefGoogle Scholar
  308. Varki, A., Hooshmand, F., Diaz, S., Varki, N. M., and Nedrick, S. M., 1991, Developmental abnormalities in transgenic mice expressing a sialic acid-specific 9–0-acetylesterase, Cell 65: 65–74.PubMedCrossRefGoogle Scholar
  309. Vlasak, R., Krystal, M., Nacht, M., and Palese, P., 1987, The influenza C virus glycoprotein (HE) exhibits receptor-binding (hemagglutinin) and receptor-destroying (esterase) activities, Virology 160: 419–425.PubMedCrossRefGoogle Scholar
  310. Vlasak, R., Luytjes, W., Spaan, W., and Palese, P., 1988, Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses, Proc. Natl. Acad. Sci. USA 85: 4526–4529.PubMedCrossRefGoogle Scholar
  311. Vliegenthart, J.F.G., Dorland, L., van Halbeek, H., and Haverkamp, J., 1982, NMR spectroscopy of sialic acids, in: Sialic Acids—Chemistry, Metabolism and Function ( R. Schauer, ed.), Springer, New York, pp. 127–172.CrossRefGoogle Scholar
  312. Vliegenthart, J.F.G., Dorland, L., and van Halbeek, H., 1983, High-resolution, ‘H-nuclear magnetic resonance spectroscopy as a tool in the structural analysis of carbohydrates related to glycoproteins, Adv. Carbohydr. Chem. Biochem. 41: 209–374.CrossRefGoogle Scholar
  313. von Itzstein, M., Wu, W.-Y., Kok, G. B., Pegg, M. S., Dyason, J. C., Jin, B., Van Phan, T., Smythe, M. L., White, H. F., Oliver, S. W., Colman, P. M., Varghese, J. N., Tyan, D. M., Woods, J. M., Bethell, R. C., Hotham, V. J., Cameron, J. M., and Penn, C. R., 1993, Rational design of potent sialidase-based inhibitors of influenza virus replication, Nature 363: 418–423.CrossRefGoogle Scholar
  314. Walz, G., Aruffo, A., Kolanus, W., Bevilacqua, M., and Seed, B., 1990, Recognition by ELAM-1 of the sialyl-Le“ determinant on myeloid and tumor cells, Science 250: 1132–1135.PubMedCrossRefGoogle Scholar
  315. Wang, X. C., Vertino, A., Eddy, R. L., Byers, M. G., Janisait, S. N., Shows, T. B., and Lau, J.T.Y., 1993, Chromosome mapping and organization of the human beta-galactoside alpha 2,6sialyltransferase gene—Differential and cell-type specific usage of upstream exon sequences in B-lymphoblastoid cells, J. Biol. Chem. 268: 4355–4361.PubMedGoogle Scholar
  316. Warren, L., 1963, Distribution of sialic acids in nature, Comp. Biochem. Physiol. 10: 153–171.PubMedCrossRefGoogle Scholar
  317. Warren, L., 1964, N-Glycolyl-8-O-methylneuraminic acid: A new form of sialic acid in the starfish Asterias forbesi, Biochim. Biophys. Acta 83: 129–132.Google Scholar
  318. Watson, S. R., Fennie, C., and Lasky, L. A., 1991, Neutrophil influx into an inflammatory site inhibited by a soluble homing receptor–IgG chimaera, Nature 349: 164–166.PubMedCrossRefGoogle Scholar
  319. Weinstein, J., Lee, E. U., McEntee, K., Lai, P.-H., and Paulson, J. C., 1987, Primary structure of ß-galactoside a2,6-sialyltransferase, J. Biol. Chem. 262: 17735–17743.PubMedGoogle Scholar
  320. Wen, D. X., Livingston, B. D., Medzihradszky, K. F., Kelm, S., Burlingname, A. L., and Paulson, J. C., 1992, Primary structure of Gal31,3(4)G1cNAc a2,3-sialyltransferase determined by mass spectrometry sequence analysis and molecular cloning, J. Biol. Chem. 267: 21011–21019.PubMedGoogle Scholar
  321. Wilson, G. L., Fox, C. H., Fauci, A. S., and Kehrl, J. H., 1991, cDNA cloning of the B cell membrane protein CD22: A mediator of B–B cell interactions, J. Exp. Med. 173: 137–146.Google Scholar
  322. Wilson, G. L., Najfeld, V., Kozlow, E., Menniger, J., Ward, D., and Kehrl, J. H., 1993, Genomic structure and chromosomal mapping of the human CD22 gene, J. Immunol. 150: 5013–5024.PubMedGoogle Scholar
  323. Yeung, M. K., 1993, Complete nucleotide sequence of the Actinomyces viscosus T14V sialidase gene: Presence of a conserved repeating sequence among strains of Actinomyces ssp., Infect. Immun. 61: 109–116.PubMedGoogle Scholar
  324. Yuen, C. T., Lawson, A. M., Chai, W. G., Larkin, M., Stoll, M. S., Stuart, A. C., Sullivan, F. X., Ahern, T. J., and Feizi, T., 1992, Novel sulfated ligands for the cell adhesion molecule E-selectin revealed by the neoglycolipid technology among 0-linked oligosaccharides on an ovarian cystadenoma glycoprotein, Biochemistry 31: 9126–9131.PubMedCrossRefGoogle Scholar
  325. Zeng, F. Y., and Gabius, H. J., 1991, Carbohydrate-binding specificity of calcyclin and its expres-sion in human tissues and leukemic cells, Arch. Biochem. Biophys. 289: 137–144.PubMedCrossRefGoogle Scholar
  326. Zeng, F. Y., and Gabius, H. J., 1992a, Mammalian fetuin-binding proteins sarcolectin, aprotinin and calcyclin display differences in their apparent carbohydrate specificity, Biochem. Int. 26: 17–24.PubMedGoogle Scholar
  327. Zeng, F. Y., and Gabius, H. J., 1992b, Sialic acid-binding proteins—Characterization, biological function and application, Z. Naturforsch. 47c: 641–653.Google Scholar
  328. Zenz, K. I., Roggentin, P., and Schauer, R., 1993, Isolation and comparison of the natural and the recombinant sialidase from Clostridium septicum NC0054714, Glycoconj. J. 10: 50–56.PubMedCrossRefGoogle Scholar
  329. Zhou, Q., Moore, K. L., Smith, D. F., Varki, A., McEver, R. P., and Cummings, R. D., 1991, The selectin GMP-140 binds to sialylated, fucosylated lactosaminoglycans on both myeloid and nonmyeloid cells, J. Cell Biol. 115: 557–564.PubMedCrossRefGoogle Scholar
  330. Zimmer, G., Reuter, G., and Schauer, R., 1992, Use of influenza C virus for detection of 9–0acetylated sialic acids on immobilized glycoconjugates by esterase activity, Eur. J. Biochem. 204: 209–215.PubMedCrossRefGoogle Scholar
  331. Zimmer, G., Suguri, T., Reuter, G., Yu, R. K., and Schauer, R., 1994, Modification of sialic acids by 9–0-acetylation is detected in human leucocytes using the lectin property of influenza C virus, Glycobiology 4: 343–349.PubMedCrossRefGoogle Scholar
  332. Zingales, B., Carniol, C., de Lederkremer, R., and Colli, W., 1987, Direct sialic acid transfer from a protein donor to glycolipids of trypomastigote forms of Trypanosoma cruzi, Mol. Biochem. Parasitol. 26: 135–144.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Roland Schauer
    • 1
  • Sörge Kelm
    • 1
  • Gerd Reuter
    • 1
  • Peter Roggentin
    • 1
  • Lee Shaw
    • 1
  1. 1.Biochemistry InstituteUniversity of KielKielGermany

Personalised recommendations