A Reduction in the Transfer of Amino Acids Across the Blood-Brain Barrier Might Not be the Sole Mechanism by Which Vasopressin Affects Amino Acid Levels within the Brain

  • A. Reichel
  • D. J. Begley
  • A. Ermisch
Part of the Advances in Behavioral Biology book series (ABBI, volume 46)


Arginine vasopressin (AVP) changes the kinetic parameters of the blood-brain barrier (BBB) transport of large neutral amino acids (LNAA). The effect is believed to result from the occupation of V1 receptors at the luminal surface of brain endothelial cells which in turn induces allosteric changes in the LNAA transporter, the L system. These changes result in a diminished unidirectional influx of all LNAA to the brain. In addition, circulating AVP is also known to reduce amino acid levels in brain extracellular fluid (ECF) as measured in cerebrospinal fluid (CSF). In the present paper we discuss the extent to which changes in BBB transport might account for the observed changes in the CSF concentrations of LNAA. A comparative analysis of our data suggests that the reduced influx of LNAA across the BBB cannot fully explain the observed reduction in CSF levels. Thus other effects induced by the peptide such as changes in the production rate of ECF and CSF or a stimulation of amino acid uptake by brain cells might be involved.


Amino Acid Level Arginine Vasopressin Amino Acid Uptake Large Neutral Amino Acid Brain Extracellular Fluid 


La vasopressine arginine (VPA) modifie les paramètres cinétiques du transport des «grands» amino-acides neutres (GAAN) par la barrière hémato-encéphalique. L’occupation des récepteurs V1 présents sur la membrane luminale des cellules endothéliales cérébrales par la VPA semble induire une modification de type allostérique du transporteur des GAAN, le système L. Il en résulte une diminution de la pénétration cérébrale de tous les GAAN. De plus, après mesure dans le liquide céphalo-rachidien (LCR), la VAP circulante induit une diminution de la concentration du liquide extracellulaire cérébral (LEC) en amino-acides. Dans cette étude, nous avons étudié dans quelle mesure la VPA, en modifiant les paramètres du transport des acides aminés par le système L au niveau de la BHE, pouvait modifier la concentration du LCR en GAANs. Nos resultats suggèrent que ce phénomène ne peut à lui seul expliquer la réduction de la concentration du LCR en GAANs. Ainsi d’autres effets connus de la VPA, tels que des modifications de la quantité de LCR et de LEC secrétés ou une stimulation de la captation par le cerveau des acides aminés, pourraient être impliqués dans ce phénomène.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brust, P. Changes in regional blood-brain transfer of L-leucine elicited by arginine vasopressin. J. Neurochem., 46 (1986) 534–547PubMedCrossRefGoogle Scholar
  2. 2.
    Ermisch, A., Reichel, A. and Brust, P. Changes in the blood-brain barrier transfer of L-phenylalanine elicited by arginine vasopressin. Endocr. Regul., 26 (1992) 11–16PubMedGoogle Scholar
  3. 3.
    Brust, P., Shaya, E.K., Jeffries, K.J., Dannals, R.F., Raven, H.T., Wilson, A.A., Conti, P.S., Wagner, H.N., Gjedde, A., Ermisch, A. and Wong, D.F. Effects of vasopressin on blood-brain transfer of methionine in dogs. J. Neurochem., 59 (1992) 1421–1429PubMedCrossRefGoogle Scholar
  4. 4.
    Reichel, A., Begley, D.J. and Ermisch, A. Arginine Vasopressin reduces the blood-brain transfer of L-tyrosine and L-valine: further evidence of the effect of the peptide on the L system transporter at the blood-brain barrier. (submitted) Google Scholar
  5. 5.
    Oldendorf, W.H. Measurement of brain uptake of radiolabelled substances using a tritiated water internal standard. Brain. Res., 24 (1970) 372–376PubMedCrossRefGoogle Scholar
  6. 6.
    Gjedde, A., Hansen, A.J. and Siemkowicz, E. Rapid simultaneous determination of regional blood flow and blood-brain glucose transfer in brain of rat Acta Physiol. Scand., 108 (1980) 321–330PubMedCrossRefGoogle Scholar
  7. 7.
    Ermisch, A., Brust, P., Kretzschmar, R. and Rühle H.-J. Peptides and blood-brain barrier. Physiol. Rev., 73 (1993) 489–527PubMedGoogle Scholar
  8. 8.
    Reichel, A., Begley, D.J. and Ermisch, A. Changes in amino acid levels in rat plasma, cisternal cerebrospinal fluid and brain tissue induced by intravenously infused arginine vasopressin. Peptides, 16 (1995) 965–971PubMedCrossRefGoogle Scholar
  9. 9.
    Dayson, H., Welch, K., Segal, M.B. The Physiology and Pathophysiology of the Cerebrospinal Fluid. New York: Churchill Livingstone, 1987Google Scholar
  10. 10.
    DePasquale, M., Patlak, C.S. and Cserr, H.F. Brain ion and volume regulation during acute hypernatremia in Brattleboro rats. Am. J. Physiol., 256 (1989) F1059 - F1066PubMedGoogle Scholar
  11. 11.
    Faraci, F.M., Mayhan, W.G. and Heistad, D.D. Effect of vasopressin on production of cerebrospinal fluid: possible role of vasopressin (V1)-receptors. Am. J. Physiol., 258 (1990) R94 - R98PubMedGoogle Scholar
  12. 12.
    Zlokovic, B.V., Segal, M.B., McComb, J.G., Hyman, S., Weiss, M.H. and Dayson, H. Kinetics of circulating vasopressin uptake by choroid plexus. Am. J. Physiol., 260 (1991) F216 - F224PubMedGoogle Scholar
  13. 13.
    Bohus B. Physiological functions of vasopressin in behavioural and autonomic responses to stress. In: J.P.H. Burbach & D. DeWied Brain (Eds.) Functions ofNeuropeptides. pp. 15–40, Parthenon Publ. Group: New York, 1993Google Scholar
  14. 14.
    Eriksson T. and Carlsson A. Adrenergic influence on rat plasma concentrations of tyrosine and tryptophan. Life Sci., 40 (1982) 1465–1472CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • A. Reichel
    • 1
  • D. J. Begley
    • 1
  • A. Ermisch
    • 2
  1. 1.Physiology Group, Biomedical Sciences DivisionKing’s College LondonLondon
  2. 2.Section of BiosciencesUniversity of LeipzigLeipzigGermany

Personalised recommendations