Functional Expression of Multidrug Resistance P-Glycoprotein in Cellular Models of Physiological Barriers

  • Delphine Lechardeur
  • Pierre Wils
  • Bertrand Schwartz
  • Daniel Scherman
Part of the Advances in Behavioral Biology book series (ABBI, volume 46)

Summary

The P-glycoprotein mdr (P-gp) is expressed not only in tumoral cells, but also in several non-transformed cells, specially in the apical plasma membrane of the intestinal, kidney or hepatic epithelium or of the blood-brain barrier endothelial cells. This apical localization is thought to be responsible for the net flux of hydrophobic compounds toward the intestinal lumen or from the brain to the blood, reflecting the protective role of P-gp at the epithelial and endothelial barriers. Many efforts are presently spent by several groups for the obtention of cellular models of intestinal epithelium or of the blood-brain barrier, in order to determine drug absorption by a predictive in vitro assay.

We have observed the functional expression of the mdr P-glycoprotein in the human intestinal epithelial cell line, Caco-2. On confluent monolayers in dual culture chambers, the expression of P-gp was apical, leading to a polarized basal-to-apical transport of P-gp substrates such as vinblastine, taxotere and pristinamycine I-A. Moreover, we have studied the P-gp expression in confluent monolayers of primary cultures of rat and bovine brain capillary endothelial cells. On the contrary of other specific cerebral endothelial cell markers such as gamma-glutamyl transpeptidase, the P-gp espression is maintained and functional in primary cultures of bovine cerebral endothelial cells. P-gp expression could also be induced in rat brain capillary endothelial cell line immortalized by chromosomal insertion of the SV 40 T gene controlled by the human vimentin promoter.

Keywords

Permeability Lymphoma Retina Doxorubicin Luminal 

Résumé

La P-glycoprotéine de résistance multidrogue (P-gp) n’est pas seulement exprimée dans certaines cellules tumorales mais aussi au niveau de nombreuses cellules normales telles que la membrane apicale des cellules épithéliales de l’intestin, du rein ou du foie ou des cellules endothéliales de la barrière hémato-encéphalique. L’expression polarisée de la P-gp serait responsable du flux net de nombreuses molécules lipophiles de l’épithélium intestinal vers la lumière intestinale ou des cellules endothéliales de la BHE vers le sang ce qui reflèterait un rôle physiologique de protection pour la P-gp contre les xénobiotiques au niveau des barrières cellulaires formées par les épithéliums et les endothéliums. Le développement de modèles cellulaire permettant la prédiction in vitro de lapénétration intestinale ou cérébrale de molécules à visée thérapeutique est en pleine expansion. Le rôle protecteur de la P-gp au niveau des barrières physiologiques montre que de tels modèles ne peuvent être validés que si la P-gp y est exprimée de façon fonctionnelle et polarisée. Nous avons étudié l’expression fonctionnelle de la P-gp dans la lignée cellulaire d’épithélium intestinal humain. la lignée Caco-2. Cultivées sur des supports poreux dans dans des inserts de culture, les cellules Caco-2 à confluence expriment la P-gp au niveau apical ainsi que le montre le transport polarisé de la membrane basale vers la membrane apicale de substrats de la P-gp tels que la vinblastine, le taxotère ou la pristinamycine 1A. De plus, nous avons aussi étudié l’expression de la P-gp dans des cultures primaires de cellules endothéliales de capillaires cérébraux de rat er de boeuf. A la différence d’autres marqueurs spécifiques de la BHE tels que la gamma-glutamyl transpeptidase, l’expression de la P-gp est maintenue et fonctionnelle dans les cultures d’origine bovine. L’expression de la P-gp a pu aussi être induite dans une lignée de cellules endothéliales cérébrales de rat immortalisée par insertion chromosomique du gene T de SV 40 sous contrôle du promoteur humain de la vimentine.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atursson P (1990) Epithelial transport of drugs in cell culture. I: a model for studying the passive diffusion of drugs over absorbtive (Caco-2) cells. JPharm Sci. 79: 476–482.CrossRefGoogle Scholar
  2. Audus KL (1986) Borchardt RT. Bovine brain microvessel endothelial cell monolayers as a model system for the blood-brain barrier. Ann N YAcad Sci, 17: 9–18.Google Scholar
  3. Beck WT (1987) The cell biology of the multidrug resistance. Biochern Pharmacy, 36: 2879–2887.CrossRefGoogle Scholar
  4. Begley DJ, Squires LK, Zlokovic BV, Mitrovic DM, Hughes CCW, Revest PA, Greenwood J (1990) Perme-ability of the blood-brain barrier to the immunosuppressive cyclic peptide cyclosporin A. J Neuro-chem, 55: 1222–1230.Google Scholar
  5. Cordon-Cardo C, O’Brien JP, Casals D, Rittman-Grauer L, Biedler JL, Melamed MR, Bertino JR (1989) Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Nat! Acud Sci USA, 86: 695–698.CrossRefGoogle Scholar
  6. Cordon-Cardo C, O’Brien JP, Boccia J, Cassais D, Bertino JR, Melamed MR (1990) Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J. Histochem. Cytochem., 38: 1277–1287.PubMedCrossRefGoogle Scholar
  7. Dehouck MP, Meresse S, Dehouck B, Fruchart JC, Cecchelli R (1992) In vitro reconstituted blood-brain barrier. J. Controlled Release, 21: 81–92.CrossRefGoogle Scholar
  8. Fojo AT, Ueda K, Slamon D, Poplack DG, Gottesman MM, Pastan I (1987) Expression of multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci USA., 84: 265–269.PubMedCrossRefGoogle Scholar
  9. Greenwood J (1992) Characterization of a rat retinal endothelial cell culture and the expression of P-glycoprotein in brain and retinal endothelium in vitro. J Neuroimmunol., 39: 123–132.PubMedCrossRefGoogle Scholar
  10. Greig NH, Soncrant TT, Shetty U, Momma S, Smith QR, Rappoport, SI. (1990) Brain uptake and anticancer activities of vincristine and vinblastine are restricted by their low cerebrovascular permeability and binding to plasma constituents in rat. Cancer Chemother Pharmacol, 26: 263–268.PubMedCrossRefGoogle Scholar
  11. Hidalgo IJ, Raub TJ and Borchardt RT (1989) Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology, 96: 736–749.PubMedGoogle Scholar
  12. Hsing S, Gatmaitan Z, Arias IM. (1992) The function of Gp 170 the multidrug-resistance gene product, in the brush border of rat intestinal mucosa. Guctroenterologv, 102: 879–885.Google Scholar
  13. Huet C, Sahuquillo-Merino C, Coudrier E and Louvard D (1987) Absorptive and mucus-secreting subclones isolated from a multipotent intestinal cell line (HT-29) provide new models for cell polarity and terminal differentiation. J Cell Biol, 105: 345–357.PubMedCrossRefGoogle Scholar
  14. Hunter J, Jepson MA, Tsuruo T, Simmons NL and Hirst BH (1993) Functional expression of P-glycoprotein in apical membranes of human intestinal Caco-2 cells. J Biol Chem 268: 14991–14497.PubMedGoogle Scholar
  15. Janzer R C and Raff MC (1987) Astrocytes induce blood-brain barrier properties in endothelial cells. Nature, 325: 253–257.PubMedCrossRefGoogle Scholar
  16. Lechardeur D, Schwartz B, Paulin D and Scherman D (1995) Induction of blood-brain barrier differentiation in a rat brain derived endothelial cell line. Exp. Cell Rea, 220: 161- I 70.Google Scholar
  17. Lechardeur D and Scherman D (1995) Functional expression of the P-glycoprotein mdr in primary cultures of bovine capillary endothelial cells. Cell Biol Tax, 11: 219–230.Google Scholar
  18. Lechardeur D and Scherman D Detection of the multidrug resistance P-glycoprotein in healthy tissues: the example of the blood-brain barrier. Annales de Biologie Cliniques (in press).Google Scholar
  19. Levin UA (1980) Relationships of octanol/water partition coefficient and molecularweight to rat brain capillary permeability. J Med Chem, 23: 682–684.PubMedCrossRefGoogle Scholar
  20. Pardridge WM (1990) Peptide drug delivery to the brain. New- Pork: Raven Press: 280–302.Google Scholar
  21. Pileri SA, Sabattini E, Falini B, Tazzari PL, Gherlinzoni F, Michieli MG, Damiani D, Zucchini L, Gobbi M, Tsuruo T and Baccarani M (1991) Immunohistochemical detection of the multidrug transport protein P170 in human normal tissues and malignant lymphomas. Histopathologe. 19: 131–140.CrossRefGoogle Scholar
  22. Pinto M, Robine-Léon S, Appay MD, Kedinger M, Triadou N, Dussaulx E, Lacroix B, Simon-Assmann P, Haffen K, Fogh J and Zweibaum A (1983) Enterocytc-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol Cell, 47, 323–330.Google Scholar
  23. Roux F., Durieu-Trautmann O, Chaverot N, Claire M, Mailly P, Bourre J.M, Strosberg AD and Couraud PO (1994) Regulation of gamma-glutamyl transpeptidase and alkaline phosphatase activities in immortalized rat brain microvessel endothelial cells. J Cell Phesiol, 159: 101–113.CrossRefGoogle Scholar
  24. Rubin LL, Hall DE, Porter S, Barbu K, Cannon C, Homer HC, Janatpour M, Liaw CW, Manning K, Morales J, Tanner LI, Tomaselli KJ and Bard F (1991) A cell culture model of the blood-brain barrier. J Cell Biol, 115: 1725–1735.PubMedCrossRefGoogle Scholar
  25. Safa AR and Tamai I (1990) Competitive interaction of cyclosporins with the vinca alcaloid-binding site of P-glycoprotein in multidrug resistant cells. J Biol Chem, 265: 16509–16513.PubMedGoogle Scholar
  26. Schinkel AH, Smit JJL, Van Tellingen 0, Beijnen JH, Wagenaar E, Van Deemter L, Mol CAAM, Van der Valk MA, Robanus-Maandag EC, Te Riele HPJ, Berns AJM and Borst P (1994) Disruption of the mouse mdrl a P-glycoprotein gene leads to a defieciency in the blood-brain barrier and to increased sensitivity to drugs. Cell, 77: 491–502.PubMedCrossRefGoogle Scholar
  27. Schwartz B, Vicart P, Delouis C. and Paulin D (1991). Mammalian cell lines can be efficiently established in vitro upon expression of the SV40 large T antigen driven by a promoter sequence derived from the human vimentin gene. Biol Cell, 73: 7–14.PubMedCrossRefGoogle Scholar
  28. Shimabuku AM, Nishimoto T, Ueda K, Komano T (1992) P-glycoprotein. J Biol Chem, 267: 4308–4311.PubMedGoogle Scholar
  29. Van Bree JB, De Boer AG, Danhof M, Ginsel LA, Breimer DD (1988) Characterization of an in vitro blood-brain barrier: effects of molecular size and lipophilicity on cerebrovascular endothelial trans-port rates of drugs. J Pharmacol Exp Theo, 247: 1233–1239.Google Scholar
  30. Wits P, Legrain S, Frenois E and Scherman D (1993) HT29–18-CI intestinal cells: a new model for studying the epithelial transport of drugs. Biochim Biophvs Acta, 1117: 134–138.Google Scholar
  31. Wils P, Warnery A, Phung-Ba V, Legrain S and Scherman D (1994a) High lipophilicity decreases drug transport across intestinal epithelial cells. J Pharmacol Exp Therr: 269, 654–658.Google Scholar
  32. Wils P, Phung-Ba V, Warnery A, Lechardeur D, Raeissi S, Hidalgo 1,1, Scherman D 1994b ) Polarized transport of docetaxel and vinblastine mediated by P-glycoprotein in human intestinal epithelial cell monolayer. Bioehern Pharmacol., 48: 1528–1530.Google Scholar
  33. Wils P., Phung-BA V., Warnery A., Raeissi S., Hidalgo 1.. et Schennan D. (1995) Interaction of pristinamycin IA with P-glycoprotein in human intestinal epithelial cells.Ear: JPharmacol, 288: 187–192.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Delphine Lechardeur
    • 1
  • Pierre Wils
    • 1
  • Bertrand Schwartz
    • 1
  • Daniel Scherman
    • 1
  1. 1.UMR 133 CNRS/Rhône-Poulenc RorerCentre de Recherche de Vitry-AlfortvilleVitry/SeineFrance

Personalised recommendations