Advertisement

Blood-Brain Barrier Properties in Vitro as Related to the Neurotransmitter Serotonin

  • P. Brust
  • S. Matys
  • J. Wober
  • A. Friedrich
  • R. Bergmann
  • B. Ahlemeyer
Part of the Advances in Behavioral Biology book series (ABBI, volume 46)

Summary

There is evidence that the neurotransmitter serotonin (5-HT) is involved in the regulation of blood-brain barrier (BBB) functions. Therefore we have started to study the transport and the receptor binding of 5-HT at the BBB of pigs. The 5-HT uptake system was studied using [3H]imipramine and [3H]paroxetine as radiotracers. For both tracers specific binding to isolated brain microvessels was demonstrated indicating the presence of the 5-HT transporter at the BBB. In addition, the specific binding of [3H]paroxetine in freshly prepared brain endothelial cells and cells cultured for various time periods was measured. The finding supports the asssumption that the expression of the 5-HT transporter is not influenced by the conditions of cell culture. Furthermore we obtained evidence for the presence of specific serotonin receptor(s) at the brain endothelium. Binding studies with different types of radiotracers ([3H]ketanserin, [3H]mesulergine, [3H]OH-DPAT) indicate that the 5-HT receptor(s) belong(s) to the 5-HT2 subtype.

Keywords

Specific Binding Serotonin Transporter Brain Endothelial Cell Brain Microvessels Porcine Brain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Il est établi que le neurotransmetteur sérotonine (5-HT) est impliqué dans la régulation de la barrière hémato-encéphalique (BHE). Aussi avons-nous étudié, au niveau de la BHE de porc, le transport de la 5-HT ainsi que la pharmacologie de ce neurotransmetteur au moyen de la (3H)imipramine et de la (3H)paroxetine.Ces deux types de ligands des récepteurs de la 5-HT se fixent de manière spécifique sur les microvaisseaux cérébraux isolés, démontrant l’existence d’un recepteur de la sérotonine au niveau de la BHE. De plus, la liaison spécifique de la paroxetine a pu être démontrée sur des cellules endothéliales cérébrales fraîchement isolées ou après differents temps de culture. Ces resultats semblent montrer que l’expression du récepteur de la sérotonine dans des cultures de cellules endothéliales cérébrales n’est pas modifiée par les conditions de culture. De plus, nous avons démontré la présence de récepteur(s) spécifique(s) sur l’endothelium cérébral. Des etudes pharmacologiques avec différents types de ligands tritiés ([3H]ketansérine, (3H)mésulergine, (3H)OH-DPAT) semblent montrer que les cellules endothéliales cérébrales expriment le récepteur sérotoninergique de type 5-HT2.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crone, C., and Olesen, S.-P., Autacoids and changes of capillary permeability, Prog. Appl. Microcirc. 10: 21–31, 1986.Google Scholar
  2. 2.
    Sharma, H.S., Olsson, Y., and Dey, P.K., Changes in blood-brain barrier and cerebral blood flow following elevation of circulation serotonin level in anesthetized rats, Brain Res. 517: 215–223, 1990.PubMedCrossRefGoogle Scholar
  3. 3.
    Sharma, H.S., Westman, J., Nyberg, F., Cervos-Navarro, J., and Dey, P.K., Role of serotonin and prostaglandine in brain edema induced by heat stress. An experimental study in the young rat, Acta Neurochir. [Suppl.] 60: 65–70, 1994.Google Scholar
  4. 4.
    Banks, W. A., and Kastin A. J., Effect of neurotransmitters on the system that transports Tyr-MIF-1 and the enkephalins across the blood-brain barrier: a dominant role for serotonin, Psychopharmacology 98: 380–385, 1989.PubMedCrossRefGoogle Scholar
  5. 5.
    Marcusson, J., Fowler, C.J., Hall, H., Ross, S.B., and Winblad, B., Specific binding of [3H]imipramine to protease-sensitive and protease-resistant sites, J. Neurochem. 44: 705–711, 1985.PubMedCrossRefGoogle Scholar
  6. 6.
    Underwood, M. D., Bakalian, M. J., Arango, V, Smith, R. W., and Mann, J. J., Regulation of cortical blood flow by the dorsal raphe nucleus: topographic organization of cerebrovascular regulatory regions, J. Cereb. Blood Flow Metab. 12: 664–673, 1992.PubMedCrossRefGoogle Scholar
  7. 7.
    Spatz, M., Maruki, C., Abe, T., Rausch, W.-D., Abe, K., and Merkel, N., The uptake and fate of the radiolabeled 5-hydroxytryptamine in isolated cerebral microvessels, Brain Res. 220: 214–219, 1981.PubMedCrossRefGoogle Scholar
  8. 8.
    Schuldiner, S., A molecular glimpse of vesicular monoamine transporters, J. Neurochem. 62: 2067–2078, 1994.PubMedCrossRefGoogle Scholar
  9. 9.
    Blakely, R.D., Defelice, L.J., and Hartzell, H.C., Molecular physiology of norepinephrine and serotonin transporters, J. Exp. Biol. 196: 263–281, 1994.PubMedGoogle Scholar
  10. 10.
    Langer, S.Z., Moret, C., Raisman, R., Dubocovich, M.L., and Briley, M., High-affinity [3H]imipramine binding in rat hypothalamus: association with uptake of serotonin but not norepinephrine, Science 210: 1133–1135, 1980.PubMedCrossRefGoogle Scholar
  11. 1.
    I. Hrdina, P. D., Differentiation of two components of specific [3H]imipramine binding in rat brain, Eur. J. Pharmacol. 102: 481–488, 1984.PubMedCrossRefGoogle Scholar
  12. 12.
    Reith, M.E.A., Sershen, H., Allen, D., and Lajtha, A., High-and low-affinity binding of [3H]imipramine in mouse cerebral cortex, J. Neurochem. 40: 389–395, 1983.PubMedCrossRefGoogle Scholar
  13. 13.
    Biessen, E.A.L., Norder, J. A., Horn, A.S., and Robillard, G.T., Evidence for the existence of at least two different binding sites for 5HT-reuptake inhibitors within the 5HT-reuptake system from human platelets, Biochem. Pharmacol. 37: 3959–3966, 1988.PubMedCrossRefGoogle Scholar
  14. 14.
    Brust, P., Bergmann, R., and Johannsen, B., Specific binding of [3H]imipramine indicates the presence of a specific serotonin transport system on endothelial cells of porcine brain, Neurosci. Lett. 194: 1–4, 1995.CrossRefGoogle Scholar
  15. 15.
    Strolin Benedetti, M., and Dostert, P., Monoamine oxidase-from physiology and pathophysiology to the design and clinical application of reversible inhibitors, Adv. Drug Res. 23: 65–125, 1992.Google Scholar
  16. 16.
    Helmeste, D.M., and Tang, S.W., Kinase inhibitors compete with imipramine for binding and inhibition of serotonin transport, Eur. J. Pharmacol. 239–242, 1994.Google Scholar
  17. 17.
    Habert, E., Graham D., Tahraoui, L., Claustre, Y., and Langer, S.Z., Characterization of [3H]paroxetine binding to rat cortical membranes. Eur. J. Pharmacol. 118: 107–114, 1985.PubMedCrossRefGoogle Scholar
  18. 18.
    Graham, D., and Langer, S.Z., The neuronal sodium-dependent serotonin transporter: studies with [3H]imipramine and [3H]paroxetine, in: Neuronal Serotonin, N.N. Osborne, and M. Hamon, eds., Wiley, New York, pp. 367–391, 1988.Google Scholar
  19. 19.
    Cheetham, S.C., Viggers, J.A., Slater, N.A., Heal, D.J., and Buckett, W.R., [3H]paroxetine binding in rat frontal cortex strongly correlates with [3H]5-HT uptake–effect of administration of various antidepressant treatments, Neuropharmacology 32: 737–743, 1993.Google Scholar
  20. 20.
    Cool, D.R., Leibach, F.H., and Ganapathy, V., High-affinity paroxetine binding to the human placental serotonin transporter, Am. J. Physiol. 259: C196 - C204, 1990.PubMedGoogle Scholar
  21. 21.
    Sette, M., Briley M. S., and Langer, S.Z., Complex inhibition of [3H]imipramine binding by serotonin and nontricyclic serotonin uptake blockers, J. Neurochem. 40: 622–628, 1983.PubMedCrossRefGoogle Scholar
  22. 22.
    Cool, D.R., Leibach, F.H., and Ganapathy, V., Interaction of fluoxetine with the human placental serotonin transporter, Biochem. Pharmacol. 40: 2161–2167, 1990.PubMedCrossRefGoogle Scholar
  23. 23.
    Hrdina, P.D., and Vu, T.B., Chronic fluoxetine treatment upregulates 5-HT uptake sites and 5-HT2 receptors in rat brain–an autoradiographic study, Synapse 14: 324–331, 1993PubMedCrossRefGoogle Scholar
  24. 24.
    Kalaria, R.N., and Harik, S.I., Blood-brain barrier monoamine oxidase: enzyme characterization in cerebral microvessels and other tissues from six mammalian species, including human, J. Neurochem. 49: 856–867, 1987.PubMedCrossRefGoogle Scholar
  25. 25.
    Hoyer, D., Clarke, D.E., Fozard, J.R., Hartig, P.R., Martin, G.R., Mylecharane, E.J., Saxena, P.R., and Humphrey, P.P.A., International union of pharmacology classification of receptors for 5-hydroxytryptamine (serotonin), Pharmacol. Rev. 46: 157–203, 1994.PubMedGoogle Scholar
  26. 26.
    Hoyer, D., Pazos, A., Probst, A., and Palacios, J.M., Serotonin receptors in the human brain. I. Characterization and autoradiographic localization of 5-HTIA recognition sites. Apparent absence of 5-HTin recognition sites, Brain Res. 376: 85–96, 1986.PubMedCrossRefGoogle Scholar
  27. 27.
    Hall, M.D., El Mestikawy, S., Emerit, M.B., Pichat, L., Hamon, M., and Gozlan, H., [3H]8-Hydroxy-2(di-n-propylamino)tetralin binding to pre-and postsynaptic 5-hydroxytryptamine sites in various regions of the rat brain, Eur. J. Pharmacol. 100: 263–276, 1984.PubMedCrossRefGoogle Scholar
  28. 28.
    Leysen, J.E., Niemeegers, C.J.E., Van Nueten, J.M., Laduron, P.M., [3H]ketanserin (R41468), a selective ligand for serotonin2 receptor binding sites. Binding properties, brain distribution, and functional role, Mol. Pharmacol. 21: 301–314, 1982.PubMedGoogle Scholar
  29. 29.
    Hoyer, D., Engel, G., and Kalkman, H.O., Molecular pharmacology of 5-HT! and 5-HT2 recognition sites in rat and pig brain membranes: radioligand binding studies with [3H]5-HT, [31–1]8-OH-DPAT, (-)[’25l]iodocyanopindolol, [3H]mesulergine and [3H]ketanserin, Eur. J. Pharmacol. 118: 13–23, 1985.PubMedCrossRefGoogle Scholar
  30. 30.
    Yagaloff, K.A., and Hartig, P.R., 1251-Lysergic acid diethylamide binds to a novel serotonergic site on rat choroid plexus epithelial cells. J. Neurosci. 5: 3178–3183, 1985.PubMedGoogle Scholar
  31. 31.
    Barker, E. L., and Sanders-Bush, E., 5-Hydroxytryptaminelc receptor density and mRNA levels in choroid plexus epithelial cells after treatment with mianserin and (-)-1-(4-bromo-2,5-dimethoxyphenyl)-2-aminopropane, Molec. Pharmacol. 44: 725–730, 1993.Google Scholar
  32. 32.
    Havlik, S., and Peroutka, S.J., Differential radioligand binding properties of [3H]5-hydroxytryptamine and [3H]mesulergine in a clonal 5-hydroxytryptamineic cell line, Brain Res. 584: 191–196, 1992.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • P. Brust
    • 1
  • S. Matys
    • 1
  • J. Wober
    • 1
  • A. Friedrich
    • 1
  • R. Bergmann
    • 1
  • B. Ahlemeyer
    • 1
  1. 1.Research Center Rossendorf Institute of Bioinorganic and Radiopharmaceutic ChemistryDresdenGermany

Personalised recommendations