Advertisement

Anoxia-Induced Extracellular Ion Shifts in Mammalian CNS White Matter

  • Daniel M. PhilbinJr.
  • Brunce R. Ransom
Part of the Altschul Symposia Series book series (ALSS, volume 2)

Abstract

Anoxia induces rapid changes in the interstitial ionic composition of gray matter (GM) which reflect the metabolic state of local brain tissue and can directly affect neural behavior (Siesjo, 1981). These ion shifts are crucial to an adequate understanding of anoxic or ischemic brain injury (Hansen, 1985).

Keywords

Glial Cell Spreading Depression Compound Action Potential White Matter Injury Intact Nerve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ames A. III., and Nesbett F.B. (1983), Pathophysiology of ischemic cell death. II. Changes in plasma membrane permeability and cell volume. Stroke 14: 227–233.PubMedCrossRefGoogle Scholar
  2. Ashcroft F.M. (1988), Adenosine 5’-triphosphate-sensitive potassium channels. Ann. Rev. Neurosci. 11: 97–118.PubMedCrossRefGoogle Scholar
  3. Benveniste H., Drejer J., Shousboe A., Diemer N.H. (1984), Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem. 43: 1369–1374.PubMedCrossRefGoogle Scholar
  4. Benveniste H., Jorgensen M.B., Diemer N.H., Hansen A.J. (1988), Calcium accumulation by glutamate receptor activation is involved in hippocampal cell damage after ischemia. Acta Neurol. Scand. 78: 529–536.PubMedCrossRefGoogle Scholar
  5. Black J.A., Waxman, S. G., Ransom B.R., and Feliciano M.D. (1986), A quantitative study of developing axons and glia in rat optic nerve. Brain Res. 380: 122–135.PubMedCrossRefGoogle Scholar
  6. Boyarsky G., Ransom B.R., Carlini W.C., and Boron W.R. (1988), Intracellular pH regulation in cultured mammalian astrocytes. Soc. Neurosci. Abstr. 14: 1057 (#425.8).Google Scholar
  7. Chesler M. (1990), The regulation and modulation of pH in the nervous system. Prog Neurobiol. 34: 401–427.PubMedCrossRefGoogle Scholar
  8. Chesler M., and Kraig R.P. (1987), Intracellular pH of astrocytes increases rapidly with cortical stimulation. Am. J. Physiol. 253: R666 - R670.Google Scholar
  9. Choi D.W. (1985), Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci. Lett. 58: 293–297.PubMedCrossRefGoogle Scholar
  10. Choi D.W. (1988), Glutamate neurotoxicity and diseases of the nervous system. Neuron 1: 623–634.PubMedCrossRefGoogle Scholar
  11. Connors B.W., Ransom B.R., Kunis D.M., and Gutnick M.J. (1982), Activity-dependent K+ accumulation in the developing rat optic nerve. Science 216: 1341–1343.PubMedCrossRefGoogle Scholar
  12. Davis P.K., and Ransom B. R. (1987), Anoxia in CNS white matter. In vitro studies using the rat optic nerve. Soc. Neurosci. Abstr. 13: 1634.Google Scholar
  13. Dietmer J.W., and Schlue W.R. (1987), The regulation of extracellular pH by identified glial cells and neurones in the central nervous system of the leech J. Physiol. 388: 261–283.Google Scholar
  14. Dietmer J.W., and Szatkowski M. (1990), Membrane potential dependence of intracellular pH regulation by identified glial cells in the leech central nervous system. J. Physiol. (London) 421: 617–631.Google Scholar
  15. Dingledine R., and Somjen G.G. (1981), Calcium dependence of synaptic transmission in the hippocampal slice. Brain Res. 207: 390–392.CrossRefGoogle Scholar
  16. Drejer J., Benveniste H., Diemer N.H., and Schousboe A. (1985), Cellular origin of ischemia-induced glutamate release from brain tissue in vivo and in vitro. J. Neurochem. 45: 145–151.CrossRefGoogle Scholar
  17. Fisher C.M. (1965), Lacunes; small deep cerebral infarcts. Neurology 15: 774–784.PubMedCrossRefGoogle Scholar
  18. Fisher C.M. (1979), Capsular infarcts: the underlying vascular lesions. Arch Neurol. 36: 65–73.PubMedCrossRefGoogle Scholar
  19. Foster R.E., Connors B.W., and Waxman S.G. (1982), Rat optic nerve: electrophysiological, pharmacological, and anatomical studies during development. Dev. Brain Res. 3: 371–386.CrossRefGoogle Scholar
  20. Gehlert D.R., Mais D.E., Gackenheimer S.L., Krushinski J.H., and Robertson D.W. (1990), Localization of ATP-sensitive potassium channels in rat brain using a novel radioligand, [’251]iodoglibenclamide. Europ. J. Pharmacol. 186: 373–375.CrossRefGoogle Scholar
  21. Globus M.Y.-T., Busto R., Dietrich W.D., Martinez E., Valdes I., Ginsberg M.D. (1988), Effect of ischemia on the in vivo release of striatal dopamine, glutamate, and gamma-aminobutyric acid studied by intracerebral microdialysis. J. Neurochem. 51: 1455–1464.PubMedCrossRefGoogle Scholar
  22. Godfraind J.M., Kawamura H., Kmjevic K., and Pumain R. (1971), Actions of dinitrophenol and some other metabolic inhibitors on cortical neurons. J. Physiol. (London) 215: 199–222.Google Scholar
  23. Goldman S.A., Pulsinelli W.A., Clarke W.Y., Kraig R.P., and Plum F. (1989), The effects of extracellular acidosis on neurons and glia in vitro. J. Cereb. Blood Flow Metab. 9: 471–477.CrossRefGoogle Scholar
  24. Hansen A.J. (1978), The extracellular potassium concentration in brain cortex following ischemia in hypo-and hyperglycemic rats. Acta. Physiol. Scand. 102: 324–329.PubMedCrossRefGoogle Scholar
  25. Hansen A.J. (1985), Effect of anoxia on ion distribution in the brain. Physiol. Rev. 65: 101–148. Heinemann U., and Lux H.D. (1977), Ceiling of stimulus induced rises in extracellular potassium concentration in the cerebral cortex of cat. Brain Res. 120: 231–249.Google Scholar
  26. Hertz L. (1965), Possible role of neuroglia: a potassium-mediated neuronal-neuroglial-neuronal impulse transmission system. Nature 206: 1091–1094.PubMedCrossRefGoogle Scholar
  27. Hirsch J.A., and Gibson G.E. (1984), Selective alteration of neurotransmitter release by low oxygen in vitro. Neurochem. Res. 9: 1039–1049.CrossRefGoogle Scholar
  28. Hossmann K.A., Sakaki S., and Zimmermann V. (1977), Cation activities in reversible ischemia of the cat brain. Stroke 8; 77–81.PubMedCrossRefGoogle Scholar
  29. Kaila K., Saarikoski J., and Voipio J. (1990), Mechanism of action of GABA on intracellular pH and on surface pH in crayfish muscle fibres. J. Physiol. (London) 427: 241–260.Google Scholar
  30. Kass I. S., and Lipton P. (1982), Mechanisms involved in irreversible anoxic damage to the in vitro hippocampal slice. J. Physiol. (London) 332: 459–472.Google Scholar
  31. Kennealy J.A., McLennon J.E., London R.G., and McLaurin R.L. (1980), Hyperventilation-induced cerebral hypoxia. Am. Rev. Respir. Dis. 122: 407–412.PubMedGoogle Scholar
  32. Kettenmann H., and Schlue W.R. (1988), Intracellular pH regulation in cultured mouse oligodendrocytes. J. Physiol. 406: 147–162.PubMedGoogle Scholar
  33. Kimmelberg H.K., and Ransom B.R. (1986), Physiological and pathological aspects of astrocytic swelling. In: S. Fedoroff and A. Vemadakis (eds.), Astrocytes, Vol 3 ( Orlando: Academic Press ), pp. 129–166.Google Scholar
  34. Kraig R.P., and Nicholson C. (1978), Extracellular ionic variations during spreading depression. Neurosci. 3: 1045–1059.CrossRefGoogle Scholar
  35. Kraig R.P., Ferreira-Filho C.R., and Nicholson C. (1983), Alkaline and acid transients in cerebellar microenvironment. J. Neurophysiol. 49: 831–850.PubMedGoogle Scholar
  36. Kraig R.P., Petito C.K., Plum F., and Pusinelli W.A. (1987), Hydrogen ions kill brain at concentrations reached in ischemia. J. Cereb Blood Flow Metab. 7: 379–386.PubMedCrossRefGoogle Scholar
  37. Kraig R.P., Pulsinelli W.A., and Plum R. (1985), Hydrogen ion buffering during complete brain ischemia. Brain Res. 342: 181–190.CrossRefGoogle Scholar
  38. Kmjevic K., Morris M.E., and Reiffenstein R.J. (1980), Changes in extracellular Ca++ and K+ activity accompanying hippocampal discharges. Can. J. Physiol. Pharmacol. 58: 579–583.CrossRefGoogle Scholar
  39. Loizou LA, Kendall BE, Marshall J. (1981), Subcortical arteriosclerotic encephalopathy: a clinical and radiological investigation. J. Neurol. Neurosurg. Psychiatry 44: 294–304.PubMedCrossRefGoogle Scholar
  40. MacDermott A.B., Mayer M.L., Westbrook G.L., et. al. (1986), NMDA-Receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321: 519–522.PubMedCrossRefGoogle Scholar
  41. MacVicar B.A., Tse R.W.Y., Crichton S.A. and Kettenmann H. (1989), GABA activated Cl-channels in astrocytes of hippocampal slices. J. Neurosci. 9: 3577–3583.PubMedGoogle Scholar
  42. Mayer M.L., and Westbrook G.L. (1987), The physiology of excitatory amino acids in the central nervous system. Prog. Neurobiol. 28: 197–276.PubMedCrossRefGoogle Scholar
  43. McCandless D.W., Dworsky S., Modak A.T., and Stravinoha W.B., (1987), Pentylenetetrazoleinduced changes in cerebral energy metabolism in Tupaia Glis. Epilepsia 28: 184–189.PubMedCrossRefGoogle Scholar
  44. McQuinn B.A. and O’Leary D.H. (1987), White matter lucencies on computed tomography, subacute arteriosclerotic encephalopathy (Binswanger’s disease), and blood pressure. Stroke 18:900–905.Google Scholar
  45. Murphy K.P.S.J., and Greenfield S. A. (1991), ATP-sensitive potassium channels counteract anoxia in neurones of the substantia nigra. Exp. Brain Res. 84: 355–358.PubMedCrossRefGoogle Scholar
  46. Mutch W.A.C., and Hansen A.J. (1984), Extracellular pH changes during spreading depression and cerebral ischemia: mechanisms of brain pH regulation. J. Cereb. Blood Flow Metab. 4: 17–27.PubMedCrossRefGoogle Scholar
  47. Newman E. A. (1985a), Voltage-dependent calcium and potassium channels in remal glial cells. Nature 317: 809–811.PubMedCrossRefGoogle Scholar
  48. Newman E. A. (1985b), Membrane physiology of retinal (Muller) cells. J. Neurosci. 5: 2225–2239.PubMedGoogle Scholar
  49. Newman E. A. (1986a), High potassium conductnce in astrocyte endfeet. Science 233: 453–454. Newman E. A. (1986b), The Muller Cell. In: S. Fedoroff and A. Vemadakis (eds.): Astrocytes, Vol. 2, pp. 1–49. Orlando: Academic press.Google Scholar
  50. Newman E. A., Frambach D. A., and Odette L. L. (1984), Control of extracellular potassium levels by retinal glial cell K+ siphoning. Science 225: 1174–1175.PubMedCrossRefGoogle Scholar
  51. Nishizaki T., Yamauchi R., Tanimoto M., and Okada Y. (1988), Effects of temperature on the oxygen consumption in thin slices from different brain regions. Neurosci. Let. 86: 301–305. Noma A. (1983), ATP-regulated K+ channels in cardiac muscle. Nature 305: 147–148.Google Scholar
  52. Paulson O.B., and Newman E. A. (1987), Does the release of potassium from astrocyte endfeet regulate cerebral blood flow? Science 237: 896–899.PubMedCrossRefGoogle Scholar
  53. Pellegrino M., Pellegrini M., Simoni A., Gargini C. (1990), Stretch-activated cation channels with large unitary conductance in leech central neurons. Brain Res. 525: 322–326.PubMedCrossRefGoogle Scholar
  54. Philbin, D.M Jr. (1992), (abstr.) The contribution of glial cells to the changes in extracellular K+ and pH induced by anoxia in mammalian central white matter: a thesis submitted to the Yale University School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Medicine. Yale J. Biol. Med.,in press.Google Scholar
  55. Phillips J.M., and Nicholson C. (1979), Anion permeability in spreading depression investigated with ion-sensitive microelectrodes. Brain Res. 173: 567–571.PubMedCrossRefGoogle Scholar
  56. Plum F. (1983), What causes infarction in ischemic brain? Neurology 33: 222–223.PubMedCrossRefGoogle Scholar
  57. Plum F., and Pulsinelli W.A. (1986) Cerebral metabolism and hypoxic-ischemic brain injury. In: Diseases of the Nervous System Vol II., A. Asbury, G. McKhann, and W. McDonald (eds.), Saunders, Philadelphia, 1086–1100.Google Scholar
  58. Ransom B.R., and Carlini W.G. (1986), Electrophysiological properities of astrocytes. In: S. Fedoroff and A. Vemadakis (eds.): Astrocytes, Vol. 2, pp. 1–49. Orlando: Academic press.Google Scholar
  59. Ransom B.R., and Philbin D.M. Jr. (1992), Anoxia-induced extracellular ionic changes in CNS White Matter: the role of glial cells. Can. J. Physiol. Pharm.,in press.Google Scholar
  60. Ransom B.R., and Yamate C.L. (1984), The rat optic nerve following enucleation: A pure preparation of mammalian glia. Soc. Neurosci. Abstr. 10: 949.Google Scholar
  61. Ransom B.R.,Carlini W.G., and Connors B.W. (1986), Brain extracellular space: developmental studies in rat optic nerve. Ann. NYAcad. Sci. 481: 87–105.Google Scholar
  62. Ransom B.R., Stys P.K., and Waxman S.G. (1990a), The pathophysiology of anoxic injury in CNS white matter. Stroke 21 (suppl III): 52–57.CrossRefGoogle Scholar
  63. Ransom B.R., Walz W., Davis P.K. and Carlini W.G. (1992), Anoxia-induced changes in extracellular K+ and pH in mammalian central white matter. J. Cereb. Blood Flow Metab. 12: 593–602.PubMedCrossRefGoogle Scholar
  64. Ransom B.R., Waxman S.G., and Davis P.K. (1990b), Anoxic injury of CNS white matter: protective effect of ketamine. Neurology 40: 1399–1403.PubMedCrossRefGoogle Scholar
  65. Ransom B.R., Waxman S.G, and Stys P.K. (1992), Anoxic injury of central myelinated axons: ionic mechanisms and pharmacology. In: Molecular and Cellular Approaches to the Treatment of Neurological Disease. S. Waxman (ed.), Raven Press, New York, 1993.Google Scholar
  66. Ransom B.R., Yamate C.S., and Connors B.W. (1985), Acivity-dependent shrinkage of extracellular space in rat optic nerve: a developmental study. J. Neurosci. 5: 532–535.PubMedGoogle Scholar
  67. Rossen R., Kabat H., and Anderson J.P. (1943), Acute arrest of cerebral circulation in man. Arch. Neurol. Psychiatry 50: 510–528.CrossRefGoogle Scholar
  68. Rothman S.M., Olney J.W. (1986), Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann. Neurol. 19: 105–111.PubMedCrossRefGoogle Scholar
  69. Schlue W.R., and Wuttke W. (1983), Potassium activity in leech neuropile glial cells changes with external potassium concentration. Brain Res. 270: 368–372.PubMedCrossRefGoogle Scholar
  70. Schlue W.R., Schliep A., and Walz W. (1980), Florescence marking of neuropile glial cells in the central nervous system of the leech. Cell Tiss. Res. 209: 257–269.Google Scholar
  71. Schurr A., West C.A., Reid K.G., Tseng M.T., Reiss S.J., and Rigor B.M. (1987), Increased glucose improves recovery of neuronal function after cerebral hypoxia in vitro. Brain Res. 421: 135–139.CrossRefGoogle Scholar
  72. Schwartz E.A., and Tachibana M. (1990), Electrophysiology of glutamate and sodium co-transport in a glial cell of the salamander retina. J. Physiol. (Load.) 426: 43–80.Google Scholar
  73. Sieben A.W., and Boron W.F. (1989), Depolarization-induced alkalinization in proximal tubules. I. Characteristics and dependence on Nat. Am. J. Physiol. 256: F342 - F353.Google Scholar
  74. Siemkowicz E., and Hansen A.J. (1981), Brain extracellular ion composition and EEG acivity following 10 minutes ischemia in normo-and hyperglycemic rats. Stroke 12: 236–240.PubMedCrossRefGoogle Scholar
  75. Siesjo B.K. (1981), Cell damage in the brain: a speculative synthesis. J. Cereb. Blood Flow Metab. 1: 155–185.PubMedCrossRefGoogle Scholar
  76. Sokabe M., Sachs F., and Jing ZQ (1991), Quantitative video microscopy of patch clamped membranes stress, strain, capacitance, and stretch channel activation. Biophys. J. 59: 722–728.PubMedCrossRefGoogle Scholar
  77. Staub R., Baethmann A., Peters J., Weight H., and Kempski O. (1990), Effects of lactoacidosis on glial cell volume and viability. J. Cereb. Blood Flow Metab. 10: 866–876.PubMedCrossRefGoogle Scholar
  78. Stys P.K., Ransom B.R., Waxman S.G. (1991a), Compound action potential of nerve recorded by suction electrode: a theoretical and experimental analysis. Brain Res. 546: 18–32.PubMedCrossRefGoogle Scholar
  79. Stys P.K., Ransom B.R., Waxman S.G., and Davis P.K. (1990), The role of extracellular calcium in anoxic injury of mammalian white matter. Proc. Natl. Acad. Sci. 87: 4212–4216.PubMedCrossRefGoogle Scholar
  80. Stys P.K., Waxman S.G., and Ransom B.R. (1991b), Na+-Ca++ exchanger mediates Ca++ influx during anoxia in mammalian CNS white matter. Ann Neurol. 30: 375–380.PubMedCrossRefGoogle Scholar
  81. Swanson R.A., Sagar S. M., and Sharp R.R. (1989), Regional brain glycogen and metabolism during complete global ischaemia. Neurol. Res. 11: 24–28.PubMedGoogle Scholar
  82. Tang C.M., Dichter M., and Morad M. (1990), Modulation of the N-methyl-D-aspartate channel by extracellular H+. Proc. Natl. Acad. Sci. USA 87: 6445–6449.PubMedCrossRefGoogle Scholar
  83. Walz W. (1989), Role of glial cells in the regulation of the brain ion microenvironment. Prog. Neurobiol. 33: 309–333.PubMedCrossRefGoogle Scholar
  84. Walz W., and Mukherjì S. (1988a), Lactate production and release in cultured astrocytes. Neurosci. Lett. 86: 296–300.PubMedCrossRefGoogle Scholar
  85. Walz W., and Mukherji S. (1988b), Lactate release from cultured astrocytes and neurons: a comparison. Glia 1: 366–370.PubMedCrossRefGoogle Scholar
  86. Walz W., and Schlue W.R. (1982), External ions and membrane potential of leech neuropile glial cells. Brain Res. 239: 119–138.PubMedCrossRefGoogle Scholar
  87. Waxman S.G., Ransom B.R., and Stys P.K. (1991), Non-synaptic mechanisms of calcium-mediated injury to CNS white matter. Trends Neurosci. 14: 461–468.PubMedCrossRefGoogle Scholar
  88. Yang X.C., and Sachs F. (1990), Characterization of stretch-activated ion channels in Xenopus oocytes. J. Physiol. (London) 431: 103–122.Google Scholar
  89. Yellen G. (1979), Single Ca++-activated nonselective cation channels in neuroblastoma. Nature 296: 357–359.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Daniel M. PhilbinJr.
    • 1
  • Brunce R. Ransom
    • 1
  1. 1.Department of NeurologyYale University School of MedicineNew HavenUSA

Personalised recommendations