Advertisement

Neuronal Control of Astrocyte Proliferation

  • Bernard Rogister
  • Pierre Leprince
  • Didier Martin
  • Jean Schoenen
  • Gustave Moonen
Part of the Altschul Symposia Series book series (ALSS, volume 2)

Abstract

Astroglial cells, which constitute the most numerous cellular population of the central nervous system (CNS) (Pope, 1978), exert a wide variety of functions (for a review, see (Fedoroff and Vernadakis, 1986)) including: i) a connective tissue-like role, ii) the ensheathment and hence the isolation of synaptic complexes, iii) the regulation of local extracellular ionic concentration and pH level, iv) the uptake, metabolism and compartmentalization of neurotransmitters, v) the control of blood-CNS exchanges through the astrocyte capillary investment and vi) the control of developmental neuronal migration through neuronal guidance. Given the variety and the importance of the functions devoted to astrocytes, it is likely that the proliferation of these cells during development and in adulthood must be under tight control in order to allow an harmonious ontogenesis and functioning of the CNS.

Keywords

Schwann Cell Dorsal Root Ganglion Neuron Astroglial Cell Cerebellar Granule Neuron Astrocyte Proliferation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abney, E.R., Bartlett, P.P., and Raff, M.C., 1981, Astrocytes, ependymal cells and oligodendrocytes develop on schedule in dissociated cell cultures of embryonnic rat brain, Dey. Biol. 83: 301.CrossRefGoogle Scholar
  2. Baird, A. and Bohlen, P., 1989, Fibroblast Growth Factors, in: “Peptides Growth Factor and their receptor”, M.B. Sporn and A.B. Roberts, eds., Springer Verlag, Berlin, pp. 369.Google Scholar
  3. Barotte, C., Eclancher, F., Ebel, A., Labourdette, G., Sensenbrenner, M., and Will, B., 1989, Effects of basic Fibroblast Growth Factor (bFGF) on choline acetyltransferase activity and astroglial reaction in adult rats after partial fimbria transection, Neurosci. Lett. 101: 197.PubMedCrossRefGoogle Scholar
  4. Behar, T., McMorris, F.A., Novotny, E.A., Barker, J.L., and Dubois-Dalcq, M., 1988, Growth and differentiation properties of O-2A progenitors purified from rat cerebral hemispheres, J. Neurosci. Res. 21: 168.PubMedCrossRefGoogle Scholar
  5. Beutler, B., 1990, Cachectin/tumor Necrosis Factor and Lymphotoxin, in: “Peptides Growth Factors and their Receptors”, M.B. Sporn and A.B. Roberts, eds., Springer-Verlag, Berlin, pp. 39.CrossRefGoogle Scholar
  6. Birchmeier, C., Sharma, S., and Wigler, M., 1987, Expression and rearrangement of the Ros I gene in human glioblastoma cells, Proc. Natl. Acad. Sci. USA. 84: 9270.PubMedCrossRefGoogle Scholar
  7. Birecree, E., King, L.E.Jr., and Nanney, L.B., 1991, Epidermal Growth Factor and its receptor in the developing nervous system, Del,. Brain Res. 60: 145.CrossRefGoogle Scholar
  8. Cameron, R.S. and Rakic, P., 1991, Glial cell lineage in the cerebral cortex: a review and a synthesis, Glia 4: 124.PubMedCrossRefGoogle Scholar
  9. Carpenter, G. and Wahl, M.I., 1989, The Epidermal Growth Factor family, in: “Peptides Growth Factor and their receptor”, M.B. Sporn and A.B. Roberts, eds., Springer Verlag, Berlin, pp. 69.Google Scholar
  10. David, S., Bouchard, C., Tsatas, O., and Giftochristos, N., 1990, Macrophages can modify the nonpermissive nature of the adult mammalian central nervous system, Neuron 5: 463.PubMedCrossRefGoogle Scholar
  11. Delaunoy, J.P., Langui, D., Ghandour, S., Labourdette, G., and Sensenbrenner, M., 1988, Influence of basic fibroblast growth factor on carbonic anhydrase expression by rat glial cells in primary culture, Int. J. Dey. Neurosci. 6: 129.CrossRefGoogle Scholar
  12. Fedoroff, S. and Vernadakis, A., 1986, “Astrocytes. Vol. 1, 2, 3”, Acad.Press, Orlando. Ferrara, N., Ousley, F., and Gospodarowicz, D., 1988, Bovine Brain astrocytes express basic fibroblast growth factor, a neuronotrophic and angiogenic mitogen, Brain Res. 462: 223.Google Scholar
  13. Fujimoto, M., Sheridan, P.J., Sharp, Z.D., Weaker, F.J., Kagan-Hallet, K.S., and Story, J.L., 1989, Proto-oncogene analysis in brain tumors, J. Neurosurg. 70: 910.PubMedCrossRefGoogle Scholar
  14. Galileo, D.S., Gray, G.E., Owens, G.L., Majors, J., and Sanes, J.R., 1990, Neurons and glia arise from a common progenitor in chicken optic tectum: demonstration with two retroviruses and cell type-specific antibodies, Proc. Natl. Acad. Sci. USA 87: 458.PubMedCrossRefGoogle Scholar
  15. Giulian, D., Young, D.G., Woodward, J., Brown, D.C., and Lachman, L.B., 1988, Interleukin 1 is an astroglial growth factor in the developing brain, J. Neurosci. 8: 709.PubMedGoogle Scholar
  16. Gomez-Pinilla, F., Knauer, D.J., and Nieto-Sampedro, M., 1988, Epidermal growth factor receptor immunoreactivity in rat brain. Development and cellular localization, Brain Res. 438: 385.PubMedCrossRefGoogle Scholar
  17. Guentert-Lauber, B. and Honneger, P., 1985, Responsiveness of astrocytes in serum-free aggregate cultures to epidermal growth factor: dependance on the cell cycle and the epidermal growth factor concentration, Dev. Neurosci. 7: 286.PubMedCrossRefGoogle Scholar
  18. Hatten, M.E., 1987, Neuronal inhibition of astroglial cell proliferation is membrane mediated, J. Cell Biol. 104: 1353.PubMedCrossRefGoogle Scholar
  19. Heymann, J. and Unsicker, K., 1987, Neuroblastoma cells contain a trophic factor sharing biological and molecular properties with ciliary neurotrophic factor, Proc. Natl. Acad. Sci. USA 84: 7758.CrossRefGoogle Scholar
  20. Hirata, Y., Uchihashi, M., Nakajima, H., Fujita, T., and Matsukura, S., 1982, Presence of human epidermal growth factor in human cerebrospinal fluid, J. Clin. Endocrinol. Metab. 55: 1174.PubMedCrossRefGoogle Scholar
  21. Hughes, S.M., Lilien, L.E., Raff, M.C., Rohrer, H., and Sendtner, M., 1988, Ciliary neurotrophic factor induces type-2 astrocyte differentiation in culture, Nature 335: 70.PubMedCrossRefGoogle Scholar
  22. Hughes, S.M. and Raff, M.C., 1987, An inducer protein may control the timing of fate switching in a bipotential glial progenitor cell in rat optic nerve, Development 101: 157.PubMedGoogle Scholar
  23. Hunter, S.F. and Bottenstein, J.E., 1989, Bipotential glial progenitors are targets of neuronal cell line-derved growth factors, Dev. Brain Res. 49: 33.CrossRefGoogle Scholar
  24. Hunter, S.F. and Bottenstein, J.E., 1991, O-2A glial progenitors from mature brain respond to CNS neuronal cell-line-derived Growth Factors, J. Neurosc. Res. 28: 574.CrossRefGoogle Scholar
  25. Ingraham, C.A. and McCarthy, K.D., 1989, Plasticity of process-bearing glial cell cultures of neonatal rat cerebral cortical tissue, J. Neurosc. 9: 63.Google Scholar
  26. James, C.D., Carlbom, E., Dumanski, J.P., Hansen, M., Nordenskjord, M., Collins, V.P., and Cavanee, W.K., 1988, Clonal genomic alterations in glioma malignancy stages, Cancer Res. 48: 5546.PubMedGoogle Scholar
  27. Janzer, R.C. and Raff, M.C., 1988, Astrocytes induce blood-brain barrier properties in endothelial cells, Nature 325: 253.CrossRefGoogle Scholar
  28. Kinzler, K.W., Bigner, S.H., Bigner, D.D., Trent, J.M., Law, M.L., O’Brien, J.J., Wong, A.J., and Vogelstein, B., 1987, Identification of an highly expressed gene in a human glioma, Science 236: 70.PubMedCrossRefGoogle Scholar
  29. Kniss, D.A. and Burry, R.W., 1988, Serum and Fibroblast Growth Factor stimulate quiescent astrocytes to re-enter the cell cycle, Brain Res. 439: 281.PubMedCrossRefGoogle Scholar
  30. Knott, J.C.A. and Pilkington, G.J., 1990, A2B5 surface ganglioside binding distinguishes between two GFAP-positive clones from a human glioma derived cell line, Neurosci. Len. 118: 52.CrossRefGoogle Scholar
  31. Laiho, M., De Capprio, J.A., Ludlow, J.W., Livingston, D.M., and Massague, J., 1990, Growth inhibition by TGFf3 linked to suppression of retinoblastoma protein phosphorylation, Cell 62: 175.PubMedCrossRefGoogle Scholar
  32. Lemke, G.E. and Brockes, J.P., 1984, Identification and purification of glial growth factor, J. Neurosci. 4: 75.PubMedGoogle Scholar
  33. Leutz, A. and Schachner, M., 1981, Epidermal growth factor stimulates DNA synthesis of astrocytes in primary cerebellar cultures, Cell Tissue Res. 220: 393.PubMedCrossRefGoogle Scholar
  34. Levi, G., Gallo, V., and Ciotti, M.T., 1986, Bipotential precursors of putative fibrous astrocytes and oligodendrocytes in rat cerebellar cultures express distinct surface proteins and “neuron-like” gamma-aminobutyric acid transport, Proc. Natl. Acad. Sci. USA 83: 1504.PubMedCrossRefGoogle Scholar
  35. Levine, J.M., 1989, Neuronal influences on glial progenitor cell development, Neuron 3: 103.PubMedCrossRefGoogle Scholar
  36. Liberman, T.A., Nusbaum, H.R., Razon, N., Kris, R., Lax, I., Soreq, H., Whittle, N., Waterfield, M.D., Ullrich, A., and Schlessinger, J., 1984, Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumors of glial origin, Nature 310: 144.Google Scholar
  37. Lillien, L.E., Sendtner, M., Rohrer, H., Hughes, S.M., and Raff, M.C., 1988, Type-2 astrocyte development in rat brain cultures is initiated by a CNTF-like protein produced by type-1 astrocytes, Neuron 1: 485.PubMedCrossRefGoogle Scholar
  38. Lillien, L.E., Sendtner, M., and Raff, M.C., 1990, Extracellular matrix associated molecules collaborate with ciliary neuronotrophic factor to induce type 2 astrocyte development, J. Cell. Biol. 111: 635.PubMedCrossRefGoogle Scholar
  39. Lim, R., Miller, J.F., Hicklin, D.J., and Andresen, A.A., 1985, Purification of bovine glia maturation factor and characterization with monoclonal antibody, Biochem. 24: 8070.CrossRefGoogle Scholar
  40. Lindholm, D., Hengerem, B., Zafra, F., and Thoenen, H., 1990, Transforming growth factor ßl stimulates expression of nerve growth factor in the rat CNS, Neuroreport 1: 9.PubMedCrossRefGoogle Scholar
  41. Martin, D., Detree, P., Schoenen, J., Rogister, B., Rigo, J.M., Leprince, P., Stevenaert, A., and Moonen, G., 1991a, Transplants of syngeneic adult dorsal root ganglion neurons to the spinal cord of rats with acute traumatic paraplegia: morphological analyses, Rest. Neurol. Neurosci. 2: 303.Google Scholar
  42. Martin, D., Schoenen, J., Delree, P., Leprince, P., Rogister, B., and Moonen, G., 1991b, Grafts of syngenic cultured, adult DRG-derived Schwann cells to the injured spinal cord of adult rats: preliminary morphological studies, Neurosci. Lett. 124: 44.PubMedCrossRefGoogle Scholar
  43. Martin, D., Schoenen, J., Delree, P., Gilson, V., Rogister, B., Leprince, P., Stevenaert, A., and Moonen, G., 1992, Experimental acute traumatic injury of the adult rat spinal cord by a subdural inflatable balloon, J. Neurosci. Res. (In Press)Google Scholar
  44. Metcalf, D., 1989, The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells, Nature 329: 585.Google Scholar
  45. Mikkelsen, T. and Cavanee, W.K., 1990, Suppressors of the malignant phenotype, Cell Growth and Differentiation 1: 201.PubMedGoogle Scholar
  46. Miller, R.H., Abney, E.R., David, S., ffrench-Constant, C., Lindsay, F., Patel, R., Stone, J., and Raff, M.C., 1986, Is reactive gliosis a property of a distinct subpopulation of astrocytes? J. Neurosci. 6: 22.PubMedGoogle Scholar
  47. Morrison, R.S., de Vellis, J., Lee, Y.L., Bradshaw, R., and Eng, L.F., 1985, Hormones and Growth Factors induce the synthesis of glial fibrillary acidic protein in rat brain astrocytes, J. Neurosci. Res. 14: 167.PubMedCrossRefGoogle Scholar
  48. Nielsch, U. and Keen, P., 1989, Reciprocal regulation of tachykinin-and vasoactive intestinal peptide-gene expression in rat sensory neurones following cut and crush injury, Brain Res. 481: 25.PubMedCrossRefGoogle Scholar
  49. Nieto-Sampedro, M., 1988, Astrocyte mitogen inhibitor related to Epidermal Growth Factor Receptor, Science 240: 1784.PubMedCrossRefGoogle Scholar
  50. Nister, M., Heldin, C.H., and Westermark, B., 1986, Clonal variation in the production of plateletderived growth factor-like protein and expression of corresponding receptors in a human malignant glioma, Cancer Res. 46: 332.PubMedGoogle Scholar
  51. Noble, M., Murray, K., Stroobant, P., Waterfield, M., and Riddle, D., 1988, Platelet-derived Growth Factor promotes division and motility, and inhibits premature differentiation of the oligodendrocyte-type-2 astrocyte progenitor cell, Nature 333: 560.PubMedCrossRefGoogle Scholar
  52. Noble, M. and Murray, K., 1984, Purified astrocytes promote the in vitro division of a bipotential glial progenitor cell, EMBO J. 3: 2243.PubMedGoogle Scholar
  53. O’Callaghan, J.P., Miller, D.B., and Reinhard, J.F., 1990, Characterization of the origins of astrocyte response to injury using the dopaminergic neurotoxicant, 1-methyl-4phenyl-1,2,3,6,-tetrahydropyridine, Brain Res. 521: 73.PubMedCrossRefGoogle Scholar
  54. Perraud, F., Besnard, F., Pettmann, B., Sensenbrenner, M., and Labourdette, G., 1988a, Effect of acidic and basic Fibroblast Growth Factor (aFGF and bFGF) on the proliferation and the glutamine synthetase expression of rat astroblasts in culture, Glia 1: 124.PubMedCrossRefGoogle Scholar
  55. Perraud, F., Labourdette, G., Miehe, M., Loret, C., and Sensenbrenner, M., 1988b, Comparison of morphological effects of acidic and basic Fibroblast Growth Factors on rat astroblasts in culture, J. Neurosc. Res. 20: 1.CrossRefGoogle Scholar
  56. Pettmann, B., Weibel, M., Daune, G., Sensenbrenner, M., and Labourdette, G., 1982, Stimulation of proliferation and maturation of rat astrocytes in serum free culture by an astroglial growth factor, J. Neurosci. Res. 8: 463.PubMedCrossRefGoogle Scholar
  57. Pettmann, B., Labourdette, G., Weibel, M., and Sensenbrenner, M., 1986, The brain basic fibroblast growth factor FGF and localization in neurons, Neurosci. Lett. 68: 175.PubMedCrossRefGoogle Scholar
  58. Pope, A., 1978, Neuroglia: quantitative aspects, in: “Dynamic properties of Glia cells”Google Scholar
  59. E. Schoffeniels, G. Franck, D.B. Tower, and L. Hertz, eds., Pergamon Press, Oxford, pp. 13.Google Scholar
  60. Raff, M.C., Miller, R.H., and Noble, M., 1983, A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on the culture medium, Nature 303: 390.PubMedCrossRefGoogle Scholar
  61. Raff, M.C., Abney, E.R., and Fok-Seang, J., 1985, Reconstitution of a developmental clock in vitro: a critical role for astrocytes in the timing of oligodendrocyte differentiation, Cell 42: 61.PubMedCrossRefGoogle Scholar
  62. Raff, M.C., Lilien, L.E., Richardson, W.D., Burnes, J., and Noble, M., 1988, Platelet-derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture, Nature 333: 562.PubMedCrossRefGoogle Scholar
  63. Reier, P.J., Eng, L.F., and Jakemen, L., 1989, Reactive astrocyte and axonal outgrowth in the injured CNS, in: “Neural regeneration and transplantation, Frontiers of Clinical Neuroscience, Vol.6”, F.J. Seil, ed., Alan R. Liss, New York, pp. 183.Google Scholar
  64. Reynolds, B.A. and Weiss, S., 1992, Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system, Science 255: 1707.PubMedCrossRefGoogle Scholar
  65. Richardson, W.D., Pringle, N., Mosley, M., Westermark, B., and Dubois-Dalcq, M., 1988, A role for platelet-derived growth factor in normal gliogenesis in the central nervous system, Cell 53: 309.PubMedCrossRefGoogle Scholar
  66. Rogister, B., Leprince, P., Pettman, B., Labourdette, G., Sensenbrenner, M., and Moonen, G., 1988, Brain basic fibroblast growth factor stimulates the release of plasminogen activators by cultured astroglial cells, Neurosci. Lett. 91: 321.PubMedCrossRefGoogle Scholar
  67. Rogister, B., Leprince, P., Bonhomme, V., Rigo, J.M., Delree, P., Colige, A., and Moonen, G., 1990, Cultured neurons release an inhibitor of astroglia proliferation (astrostatine), J. Neurosci. Res. 25 (1): 58.PubMedCrossRefGoogle Scholar
  68. Rosenblum, M.L. and Wilson, C.B., 1984, “Progress in experimental tumor research: brain tumor therapy”, Karger, Basel.Google Scholar
  69. Schaudies, R.P., Christian, E.L., and Savage, C.R., 1989, Epidermal Growth Factor (EGF) immunoreactive material in the rat brain: localization and identification of multiple species, J. Biol. Chem. 264: 10447.PubMedGoogle Scholar
  70. Schubert, D., Heinemann, S., Carlisle, W., Parikas, H., Kines, B., Patrick, J., Steinbach, J.H., CulpGoogle Scholar
  71. W., and Brandt, B.L., 1974, Clonal cell lines from the rat central nervous system, Nature 249: 224.CrossRefGoogle Scholar
  72. Sharifi, B.G., Johnson, J.C., Kuurana, V.K., Bascom, C.C., Fleenor, T.J., and Chou, H.H., 1986, Purification and characterization of a bovine cerebral cortex cell surface sialoglycopeptide that inhibits cell proliferation and metabolism, J. Neurochem. 46 (2): 461.PubMedCrossRefGoogle Scholar
  73. Spranger, M., Lindholm, D., Bandtlow, C., Heumann, R., Gnahn, H., Naher-Noe, M., and Thoenen, H., 1990, Regulation of nerve growth factor (NGF) synthesis in the rat central nervous system: comparison between the effects of interleukin-1 and various growth factors in astrocyte cultures and in vivo, Eur. J. Neurosci. 2: 69.PubMedCrossRefGoogle Scholar
  74. Tourbah, A., Olivier, L., Jeanny, J.C., and Gumpel, M., 1991, Acidic Fibroblast Growth Factor (aFGF) is expressed in the neuronal and glial spinal cord cells of adult mice, J. Neurosc. Res. 29: 560.CrossRefGoogle Scholar
  75. Trent, J., Meltzer, P., Rosenblum, M., Harsh, G., Kinzer, K., Mashhal, R., Feinberg, A., and Vogelstein, B., 1986, Evidence for rearrangement, amplification and expression of c-Myc in a human glioblastoma, Proc. Natl. Acad. Sci. USA. 83: 470.PubMedCrossRefGoogle Scholar
  76. Van Den Eijden-Van Raaij, A.J.M., Koorneef, I., Van Oostwaard, T.M.J., Feyen, A., Kruijer, W., De Laat, S.W., and Van Zoelen, E.J.J., 1989, Purification of a growth factor related to platelet derived growth factor and a type ß transforming growth factor secreted by mouse neuroblastoma cells, Biochem. J. 257: 375.Google Scholar
  77. Vilcek, J., 1990, Interferons, in: “Peptide Growth Factors and their Receptors”, M.B. Sporn and A.B. Roberts, eds., Springer-Verlag, Berlin, pp. 3.CrossRefGoogle Scholar
  78. Walicke, P., Cowan, W.M., Ueno, N., Baird, A., and Guillemin, R., 1986, Fibroblast growth factor promotes survival of dissociated hippocampal neurons and enhances neurite extension, Proc. Natl. Acad. Sci. USA 83: 3012.PubMedCrossRefGoogle Scholar
  79. Walicke, P.A. and Baird, A., 1989, Neuronotrophic effects of basic and acidic fibroblast growth factors are not mediated through glial cells, Dev. Brain Res. 40: 71.CrossRefGoogle Scholar
  80. Walker, A.E., Robins, M., and Wainfeld, F.D., 1985, Epidemiology of brain tumors: the national survey of intracranial neoplasms, Neurology 35: 219.PubMedCrossRefGoogle Scholar
  81. Watanabe, K., Nagai, M., Wakai, S., Frai, T., and Kawashima, K., 1990, Loss of constitutionnal heterozygoty in chromosome 10 in human glioblastoma, Acta Neuropathol. (Berl) 80: 251.CrossRefGoogle Scholar
  82. Weibel, M., Pettmann, B., Labourdette, G., Miehe, M., Bock, E., and Sensenbrenner, M., 1985, Morphological and Biochemical maturation of rat astroglial cells grown in a chemically defined medium: influence of an astroglial growth factor, Devel. Neurosci. 3: 617.CrossRefGoogle Scholar
  83. Williams, B.P., Abney, E.R., and Raff, M.C., 1985, Macroglial cell development in embryonnic rat brain: studies using monoclonal antibodies, flurescence activated cell sorting, and cell culture, Devel. Biol. 112: 126.CrossRefGoogle Scholar
  84. Wolburg, H., Neuhaus, J., Pettmann, B., Labourdette, G., and Sensenbrenner, M., 1986, Decrease of the density of orthogonal arrays of particules in membrane of cultured rat astroglial cells by the brain Fibroblast Growth Factor, Neurosci. Lett. 72: 25.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Bernard Rogister
    • 1
  • Pierre Leprince
    • 1
  • Didier Martin
    • 1
  • Jean Schoenen
    • 1
  • Gustave Moonen
    • 1
  1. 1.Human Physiology and Pathophysiology, Neurosurgery, and NeurologyUniversity of LiegeLiegeBelgium

Personalised recommendations