Dielectric Study of the Hydration Process in Biological Materials

  • A. Anagnostopoulou-Konsta
  • L. Apekis
  • C. Christodoulides
  • D. Daoukaki
  • P. Pissis
Part of the NATO ASI Series book series (NSSB, volume 263)


The sorption of water vapour by biological macromolecules is generally assumed to involve the binding of H2O molecules to specific hydrophilic sites at lower relative humidities, followed by condensation of multimolecular adsorption as the humidity increases. Several methods have been applied for the investigation and detailed study of the structure, mobility, extent and modes of binding of water molecules in various systems. Among them the most commonly used are IR and Raman spectroscopy (Luck, 1985), differential scanning calorimetry (Berlin et al., 1970), NMR spectroscopy (Kuntz and Kautzmann, 1974, Mathur de Vré, 1979), neutron scattering (Lehmann, 1984), sorption and desorption methods (Pethig, 1979) and dielectric methods (Bone and Pethig, 1982, Pethig and Kell, 1987, Grant et al. 1978, Kent and Meyer 1984). All of them yield some insight into the problem. One common feature observed in nearly all cases is that the relaxation times for reorientation and the diffusion constants of water molecules sorbed in various biological systems are much lower than the values observed for free water, while the enthalpy of vaporisation of the water sorbed is by about 100 cal g−1 higher than the value of liquid water (Berlin et al., 1970, Pethig, 1979, Grant et al., 1978). This behaviour suggests that the water molecules contributing to the first hydration layer exhibit restricted motion due to a significant decrease in the translational and rotational modes of motion caused by macromolecular-water interaction. Moreover, the dynamics of the material itself (relaxation and conductivity mechanisms) is strongly influenced by the presence of sorbed water.


Microcrystalline Cellulose Static Permittivity Native Cellulose Dielectric Study Sorbed Water 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anagnostopoulou-Konsta, A., Daoukaki-Diamanti, D., Pissis, P., and Sideris, E. G., 1988, Dielectric study of the interaction of DNA and water, in Proceedings of the 6th International Symposium on Electrets (ISE 6), D. K. Das-Gupta and A. W. Pattullo, ed., IEEE, New York, 271–275.CrossRefGoogle Scholar
  2. 2.
    Anagnostopoulou-Konsta, A., Daoukaki-Diamanti, D., Pissis, P., Loukakis, G., and Sideris, E. G., 1990, Dielectric study of DNA-water systems by the thermally stimulated currents method, in Proceedings of International Discussion Meeting on Relaxations in Complex Systems, Crete 1990 (in press).Google Scholar
  3. 3.
    Anagnostopoulou-Konsta, A. and Pissis, P., 1987, A study of casein hydration by the thermally stimulated depolarization currents method, J. Phys. D: Appl. Phys. 20, 1168–1174.ADSCrossRefGoogle Scholar
  4. 4.
    Anagnostopoulou-Konsta, A. and Pissis, P., 1989, Dielectric study of the hydration process in wood, Holzforschung 43, 363–369.CrossRefGoogle Scholar
  5. 5.
    Apekis, L., 1988, Dielectric study of dry and hydrated micro crystalline cellulose, in Proceedings of the 6th International Symposium on Electrets, D. K. Das-Gupta and A. W. Pattullo, ed., IEEE, New York, 281–285.CrossRefGoogle Scholar
  6. 6.
    Apekis, L., Pissis, P., and Boudouris, G., 1983, Depolarization thermocur rents in ice Ih at low temperature depending on the electrode material. Polarization mechanism, Nuovo Cimento 2D, 932–946.ADSCrossRefGoogle Scholar
  7. 7.
    Apekis, L. and Pissis, P., 1987, Study of the multiplicity of dielectric relaxation times in ice at low temperatures, in Proceedings of the VIIth Symposium on the Physics and Chemistry of Ice, J. de Physique C1, 127–133.ADSGoogle Scholar
  8. 8.
    Berlin, E., Kliman, P. G., and Pallansch, M. J., 1970, Changes in state of water in proteinaceous systems, J. Colloid Interface Sci., 34, 488–494.CrossRefGoogle Scholar
  9. 9.
    Bonincontro, A., Caneva, R., and Pedone, F., 1987, Hydration properties of DNA-lysine gels by microwave dielectric measurements as a function of temperature, Eur. Biophys. J., 15, 59–63.CrossRefGoogle Scholar
  10. 10.
    Bone, S. and Pethig, R., 1982, Dielectric studies of protein hydration and hydration-induced flexibility, J. Mol. Biol., 181, 323–326.CrossRefGoogle Scholar
  11. 11.
    Bucci, C., Fieschi, R., and Guidi, G. 1966, Ionic thermocurrents in dielectrics, Phys. Rev., 148, 816–823.ADSCrossRefGoogle Scholar
  12. 12.
    Christodoulides, C, 1985, Determination of activation energies by using the widths of peaks of thermoluminescence and thermally stimulated depolarization currents, J. Phys. D: Appl. Phys., 18, 1501–1510.ADSCrossRefGoogle Scholar
  13. 13.
    Clementi, E, 1983, Structure of water and ions for DNA, in Structure and Dynamics: Nucleic Acids and Proteins, E. Clementi and R. H. Sarma, ed., Adenine Press, New York, 321–364.Google Scholar
  14. 14.
    Cross, T. E. and Pethig, R. 1983, Int. J. Quantum Chemistry: Quantum Biology Symposium 10, 143–152.Google Scholar
  15. 15.
    Daoukaki-Diamanti, D., Pissis, P., and Boudouris, G., 1984, Depolarization thermocurrents in frozen aqueous solutions of mono-and disaccharides, Chem. Phys. 91, 315–325.CrossRefGoogle Scholar
  16. 16.
    Foster, K., Stuchly, M. A., Kraszewski, A. and Stuchly, S. S., 1984, Microwave dielectric absorption of DNA in aqueous solution, Biopolymers, 23, 593–599.CrossRefGoogle Scholar
  17. 17.
    Gerhards, C. C., 1982, Effect of moisture content and temperature on the mechanical properties of wood: an analysis of immediate effects, Wood Fiber Sci. 14, 4–36.Google Scholar
  18. 18.
    Grant E. H., Sheppard R. J., and South, G. P., 1978, Dielectrical behaviour of biological molecules in solution, Clarendon Press, Oxford.Google Scholar
  19. 19.
    Kent, M. and Meyer, W., 1984, Complex permittivity spectra of protein powders as a function of temperature and hydration, J. Phys. D, 17, 1687–1698.ADSCrossRefGoogle Scholar
  20. 20.
    Kollmann, F. F. and Côté, W. A. Jr, 1968, Principles of Wood Science and Technology, I, Solid Wood, Springer Verlag, 292-419.Google Scholar
  21. 21.
    Kuntz, I. D. and Kauzmann, W., 1974, Hydration of proteins and polypeptides, Adv. Protein Chem. 28, 239–345.CrossRefGoogle Scholar
  22. 22.
    Lehmann, M. S., 1984, Probing the protein-bound water with other small molecules using neutron small-angle scattering, J. Physique Colloque, C7, 235–239.Google Scholar
  23. 23.
    Luck, W. A. P., 1985, Spectroscopic attempts to determine the structure of water and of polymer hydration phenomena, Optica Pura Appl., 18, 71–82.MathSciNetGoogle Scholar
  24. 24.
    Marky L. A., Snyder, G. S., and Breslauer, K. J., 1983, Calorimetric and spectroscopic investigation of drug-DNA interactions, Nucleic Acid Research, 11, 5701–15.CrossRefGoogle Scholar
  25. 25.
    Mathur-de-Vré, R., 1979, The NMR studies of water in biological systems, Prog. Biophys. J., 50, 213–219.Google Scholar
  26. 26.
    Pethig, R., 1979, Dielectric and Electronic Properties of Biological Materials, Wiley, Chichester.Google Scholar
  27. 27.
    Pethig, R. and Kell, D. B., 1987, The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology, Phys. Med. Biol., 32, 933–970.CrossRefGoogle Scholar
  28. 28.
    Pissis, P., 1989, Dielectric studies of protein hydration, J. Mol. Liq. 41, 271–289.CrossRefGoogle Scholar
  29. 29.
    Pissis, P., 1985, A study of sorbed water on cellulose by the thermally stimulated depolarization technique, J. Phys. D: Appl. Phys., 15, 1897–1908.ADSCrossRefGoogle Scholar
  30. 30.
    Pissis, P. and Anagnostopoulou-Konsta, A., 1985, Depolarization thermocur rents in hydrated cellulose, in Proceedings of the 5th International Symposium on Electrets, G. M. Sessler and R. Gerhardt-Mulhaupt, ed., IEEE, New York 842–847.Google Scholar
  31. 31.
    Pissis, P. and Anagnostopoulou-Konsta, A., 1988, Thermally stimulated depolarization currents in hydrated casein solid samples, Progr. Colloid Polym. Sci., 78, 116–118.CrossRefGoogle Scholar
  32. 32.
    Pissis, P., Apekis, L., Christodoulides, C, and Boudouris, G., 1982, Depolarization thermocurrents in oil-in-water emulsions at subzero temperatures, J. Phys. D: Appl. Phys., 15, 2513–2522.ADSCrossRefGoogle Scholar
  33. 33.
    Pissis, P., Apekis, L., Christodoulides, C, and Boudouris, G., 1983a, Dielectric study of dispersed ice microcrystals by the depolarization thermocurrent technique, J. Phys. Chem., 87, 4034–4037.CrossRefGoogle Scholar
  34. 34.
    Pissis, P., Diamanti, D., and Boudouris, G., 1983b, Depolarization thermocurrents in frozen aqueous solutions of glucose, J. Phys. D: Appl. Phys., 16, 1311–1322.ADSCrossRefGoogle Scholar
  35. 35.
    Pissis, P., Anagnostopoulou-Konsta, A, and Apekis, L., 1987a, Binding modes of water in plant leaves: a dielectric study, Europhysics Letters, 3, 119–125.ADSCrossRefGoogle Scholar
  36. 36.
    Pissis, P., Anagnostopoulou-Konsta, A., and Apekis, L., 1987b, A dielectric study of the state of water in plant stems, J. Exp. Botany, 38, 1528–1540.CrossRefGoogle Scholar
  37. 37.
    Pissis, P. and Daoukaki-Diamanti, D., 1988, Dielectric study of aqueous solutions and solid samples of methylcellulose, Progr. Colloid Polym. Sci., 78, 27–29.CrossRefGoogle Scholar
  38. 38.
    van Turnhout, J., 1980, Thermally stimulated discharge of electrets, in Topics in Applied Physics, Vol. 33: Electrets, G. M. Sessler, ed., Springer, Berlin, 81–215.Google Scholar
  39. 39.
    Vanderschueren, J. and Gasiot, J., 1979, Field-induced thermally stimulated currents”, in Topics in Applied Physics, Vol. 37: Thermally Stimulated Relaxations in Solids, P. Braunlich, ed., Springer, Berlin, 135–223.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • A. Anagnostopoulou-Konsta
    • 1
    • 2
  • L. Apekis
    • 1
    • 2
  • C. Christodoulides
    • 1
    • 2
  • D. Daoukaki
    • 1
    • 2
  • P. Pissis
    • 1
    • 2
  1. 1.Department of PhysicsNational Technical University of AthensGreece
  2. 2.E. G. SiderisBiology Institute NCSR ”Democritos”Greece

Personalised recommendations