Skip to main content

Dielectric Study of the Hydration Process in Biological Materials

  • Chapter

Part of the book series: NATO ASI Series ((NSSB,volume 263))

Abstract

The sorption of water vapour by biological macromolecules is generally assumed to involve the binding of H2O molecules to specific hydrophilic sites at lower relative humidities, followed by condensation of multimolecular adsorption as the humidity increases. Several methods have been applied for the investigation and detailed study of the structure, mobility, extent and modes of binding of water molecules in various systems. Among them the most commonly used are IR and Raman spectroscopy (Luck, 1985), differential scanning calorimetry (Berlin et al., 1970), NMR spectroscopy (Kuntz and Kautzmann, 1974, Mathur de Vré, 1979), neutron scattering (Lehmann, 1984), sorption and desorption methods (Pethig, 1979) and dielectric methods (Bone and Pethig, 1982, Pethig and Kell, 1987, Grant et al. 1978, Kent and Meyer 1984). All of them yield some insight into the problem. One common feature observed in nearly all cases is that the relaxation times for reorientation and the diffusion constants of water molecules sorbed in various biological systems are much lower than the values observed for free water, while the enthalpy of vaporisation of the water sorbed is by about 100 cal g−1 higher than the value of liquid water (Berlin et al., 1970, Pethig, 1979, Grant et al., 1978). This behaviour suggests that the water molecules contributing to the first hydration layer exhibit restricted motion due to a significant decrease in the translational and rotational modes of motion caused by macromolecular-water interaction. Moreover, the dynamics of the material itself (relaxation and conductivity mechanisms) is strongly influenced by the presence of sorbed water.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anagnostopoulou-Konsta, A., Daoukaki-Diamanti, D., Pissis, P., and Sideris, E. G., 1988, Dielectric study of the interaction of DNA and water, in Proceedings of the 6th International Symposium on Electrets (ISE 6), D. K. Das-Gupta and A. W. Pattullo, ed., IEEE, New York, 271–275.

    Chapter  Google Scholar 

  2. Anagnostopoulou-Konsta, A., Daoukaki-Diamanti, D., Pissis, P., Loukakis, G., and Sideris, E. G., 1990, Dielectric study of DNA-water systems by the thermally stimulated currents method, in Proceedings of International Discussion Meeting on Relaxations in Complex Systems, Crete 1990 (in press).

    Google Scholar 

  3. Anagnostopoulou-Konsta, A. and Pissis, P., 1987, A study of casein hydration by the thermally stimulated depolarization currents method, J. Phys. D: Appl. Phys. 20, 1168–1174.

    Article  ADS  Google Scholar 

  4. Anagnostopoulou-Konsta, A. and Pissis, P., 1989, Dielectric study of the hydration process in wood, Holzforschung 43, 363–369.

    Article  Google Scholar 

  5. Apekis, L., 1988, Dielectric study of dry and hydrated micro crystalline cellulose, in Proceedings of the 6th International Symposium on Electrets, D. K. Das-Gupta and A. W. Pattullo, ed., IEEE, New York, 281–285.

    Chapter  Google Scholar 

  6. Apekis, L., Pissis, P., and Boudouris, G., 1983, Depolarization thermocur rents in ice Ih at low temperature depending on the electrode material. Polarization mechanism, Nuovo Cimento 2D, 932–946.

    Article  ADS  Google Scholar 

  7. Apekis, L. and Pissis, P., 1987, Study of the multiplicity of dielectric relaxation times in ice at low temperatures, in Proceedings of the VIIth Symposium on the Physics and Chemistry of Ice, J. de Physique C1, 127–133.

    ADS  Google Scholar 

  8. Berlin, E., Kliman, P. G., and Pallansch, M. J., 1970, Changes in state of water in proteinaceous systems, J. Colloid Interface Sci., 34, 488–494.

    Article  Google Scholar 

  9. Bonincontro, A., Caneva, R., and Pedone, F., 1987, Hydration properties of DNA-lysine gels by microwave dielectric measurements as a function of temperature, Eur. Biophys. J., 15, 59–63.

    Article  Google Scholar 

  10. Bone, S. and Pethig, R., 1982, Dielectric studies of protein hydration and hydration-induced flexibility, J. Mol. Biol., 181, 323–326.

    Article  Google Scholar 

  11. Bucci, C., Fieschi, R., and Guidi, G. 1966, Ionic thermocurrents in dielectrics, Phys. Rev., 148, 816–823.

    Article  ADS  Google Scholar 

  12. Christodoulides, C, 1985, Determination of activation energies by using the widths of peaks of thermoluminescence and thermally stimulated depolarization currents, J. Phys. D: Appl. Phys., 18, 1501–1510.

    Article  ADS  Google Scholar 

  13. Clementi, E, 1983, Structure of water and ions for DNA, in Structure and Dynamics: Nucleic Acids and Proteins, E. Clementi and R. H. Sarma, ed., Adenine Press, New York, 321–364.

    Google Scholar 

  14. Cross, T. E. and Pethig, R. 1983, Int. J. Quantum Chemistry: Quantum Biology Symposium 10, 143–152.

    Google Scholar 

  15. Daoukaki-Diamanti, D., Pissis, P., and Boudouris, G., 1984, Depolarization thermocurrents in frozen aqueous solutions of mono-and disaccharides, Chem. Phys. 91, 315–325.

    Article  Google Scholar 

  16. Foster, K., Stuchly, M. A., Kraszewski, A. and Stuchly, S. S., 1984, Microwave dielectric absorption of DNA in aqueous solution, Biopolymers, 23, 593–599.

    Article  Google Scholar 

  17. Gerhards, C. C., 1982, Effect of moisture content and temperature on the mechanical properties of wood: an analysis of immediate effects, Wood Fiber Sci. 14, 4–36.

    Google Scholar 

  18. Grant E. H., Sheppard R. J., and South, G. P., 1978, Dielectrical behaviour of biological molecules in solution, Clarendon Press, Oxford.

    Google Scholar 

  19. Kent, M. and Meyer, W., 1984, Complex permittivity spectra of protein powders as a function of temperature and hydration, J. Phys. D, 17, 1687–1698.

    Article  ADS  Google Scholar 

  20. Kollmann, F. F. and Côté, W. A. Jr, 1968, Principles of Wood Science and Technology, I, Solid Wood, Springer Verlag, 292-419.

    Google Scholar 

  21. Kuntz, I. D. and Kauzmann, W., 1974, Hydration of proteins and polypeptides, Adv. Protein Chem. 28, 239–345.

    Article  Google Scholar 

  22. Lehmann, M. S., 1984, Probing the protein-bound water with other small molecules using neutron small-angle scattering, J. Physique Colloque, C7, 235–239.

    Google Scholar 

  23. Luck, W. A. P., 1985, Spectroscopic attempts to determine the structure of water and of polymer hydration phenomena, Optica Pura Appl., 18, 71–82.

    MathSciNet  Google Scholar 

  24. Marky L. A., Snyder, G. S., and Breslauer, K. J., 1983, Calorimetric and spectroscopic investigation of drug-DNA interactions, Nucleic Acid Research, 11, 5701–15.

    Article  Google Scholar 

  25. Mathur-de-Vré, R., 1979, The NMR studies of water in biological systems, Prog. Biophys. J., 50, 213–219.

    Google Scholar 

  26. Pethig, R., 1979, Dielectric and Electronic Properties of Biological Materials, Wiley, Chichester.

    Google Scholar 

  27. Pethig, R. and Kell, D. B., 1987, The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology, Phys. Med. Biol., 32, 933–970.

    Article  Google Scholar 

  28. Pissis, P., 1989, Dielectric studies of protein hydration, J. Mol. Liq. 41, 271–289.

    Article  Google Scholar 

  29. Pissis, P., 1985, A study of sorbed water on cellulose by the thermally stimulated depolarization technique, J. Phys. D: Appl. Phys., 15, 1897–1908.

    Article  ADS  Google Scholar 

  30. Pissis, P. and Anagnostopoulou-Konsta, A., 1985, Depolarization thermocur rents in hydrated cellulose, in Proceedings of the 5th International Symposium on Electrets, G. M. Sessler and R. Gerhardt-Mulhaupt, ed., IEEE, New York 842–847.

    Google Scholar 

  31. Pissis, P. and Anagnostopoulou-Konsta, A., 1988, Thermally stimulated depolarization currents in hydrated casein solid samples, Progr. Colloid Polym. Sci., 78, 116–118.

    Article  Google Scholar 

  32. Pissis, P., Apekis, L., Christodoulides, C, and Boudouris, G., 1982, Depolarization thermocurrents in oil-in-water emulsions at subzero temperatures, J. Phys. D: Appl. Phys., 15, 2513–2522.

    Article  ADS  Google Scholar 

  33. Pissis, P., Apekis, L., Christodoulides, C, and Boudouris, G., 1983a, Dielectric study of dispersed ice microcrystals by the depolarization thermocurrent technique, J. Phys. Chem., 87, 4034–4037.

    Article  Google Scholar 

  34. Pissis, P., Diamanti, D., and Boudouris, G., 1983b, Depolarization thermocurrents in frozen aqueous solutions of glucose, J. Phys. D: Appl. Phys., 16, 1311–1322.

    Article  ADS  Google Scholar 

  35. Pissis, P., Anagnostopoulou-Konsta, A, and Apekis, L., 1987a, Binding modes of water in plant leaves: a dielectric study, Europhysics Letters, 3, 119–125.

    Article  ADS  Google Scholar 

  36. Pissis, P., Anagnostopoulou-Konsta, A., and Apekis, L., 1987b, A dielectric study of the state of water in plant stems, J. Exp. Botany, 38, 1528–1540.

    Article  Google Scholar 

  37. Pissis, P. and Daoukaki-Diamanti, D., 1988, Dielectric study of aqueous solutions and solid samples of methylcellulose, Progr. Colloid Polym. Sci., 78, 27–29.

    Article  Google Scholar 

  38. van Turnhout, J., 1980, Thermally stimulated discharge of electrets, in Topics in Applied Physics, Vol. 33: Electrets, G. M. Sessler, ed., Springer, Berlin, 81–215.

    Google Scholar 

  39. Vanderschueren, J. and Gasiot, J., 1979, Field-induced thermally stimulated currents”, in Topics in Applied Physics, Vol. 37: Thermally Stimulated Relaxations in Solids, P. Braunlich, ed., Springer, Berlin, 135–223.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anagnostopoulou-Konsta, A., Apekis, L., Christodoulides, C., Daoukaki, D., Pissis, P. (1991). Dielectric Study of the Hydration Process in Biological Materials. In: Peliti, L. (eds) Biologically Inspired Physics. NATO ASI Series, vol 263. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9483-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9483-0_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9485-4

  • Online ISBN: 978-1-4757-9483-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics