Cell Movement and Automatic Control

  • Hans Gruler
Part of the NATO ASI Series book series (NSSB, volume 263)


An important concept for the understanding of biological phenomena is given by cybernetics, also known as the theory of automatic control [1]. It is shown that chemotaxis, galvanotaxis, galvanotropism, contact guidance, etc., are functions of cells having a goal-seeking system which is an automatic controller having a closed-loop feedback system. The model is verified by means of galvanotaxis, chemotaxis and contact guidance data of granulocytes [2, 3, 4].


Directed Movement Applied Electric Field Neural Crest Cell Polar Field Neurospora Crassa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Wiener, Cybernetics: or Control and Communication in Animal and the Machine, M.I.T. Press, Cambridge (1961).zbMATHCrossRefGoogle Scholar
  2. 2.
    K. Franke and H. Gruler, Galvanotaxis of human granulocytes: Electric field jump studies, Eur. Biophys. J. 18: 335 (1990).CrossRefGoogle Scholar
  3. 3.
    H. Gruler and K. Franke, Automatic Control and Directed Cell Movement, Z. Naturforsch. 45c: 1241 (1990).Google Scholar
  4. 4.
    H. Gruler, Chemokinesis, chemotaxis and galvanotaxis, in: Biological Motion, W. Alt and G. Hoffmann, Eds. in: Lecture Notes in Biomathematics, Springer Verlag, Berlin, Heidelberg, New York (1990).Google Scholar
  5. 5.
    P. C. Wilkinson, Chemotaxis and Inflammation, Churchill, London (1974).Google Scholar
  6. 6.
    B. Rapp, A. de Boisfleury-Chevance, and H. Gruler, Galvanotaxis of human granulocytes. Dose-response curve. Eur. Biophys. J. 16: 313 (1988).CrossRefGoogle Scholar
  7. 7.
    J. P. Trinkaus, Cells into Organs, Prentice-Hall Inc., Englewood Cliffs (1984).Google Scholar
  8. 8.
    R. Nuccitelli, Transcellular ion currents: Signals and effectors of cell polarity, Modern Cell Biology, 2: 451 (1983).Google Scholar
  9. 9.
    R. T. Tranquillo and D. A. Lauffenburger, Stochastic model for leukocyte chemosensory movement, J. Math. Biol. 25: 229 (1987).MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    R. T. Tranquillo, D. A. Lauffenburger, and S. H. Zigmond, A Stochastic model for Leukocyte Random Mobility and Chemotaxis Based on Receptorbinding Fluctuations, J. Cell Biol. 106: 303 (1988).CrossRefGoogle Scholar
  11. 11.
    E. L. Becker, H. J. Showell, P. H. Naccache, and R. Sha’afi, Enzymes in Granulocyte Movement: Preliminary Evidence for the Involvement of Na+, K+ AT-Pase, in Leukocyte Chemotaxis, J. I. Gallin and P. G. Quie, eds. Raven Press, New York (1978).Google Scholar
  12. 12.
    H. Gruler, Cell Movement Analysis in a Necrotactic Assay, Blood Cells 10: 107 (1984).Google Scholar
  13. 13.
    H. Risken, The Fokker-Planck Equation, Springer Verlag, Heidelberg (1985).Google Scholar
  14. 14.
    H. Gruler and R. Nuccitelli, New insights into galvanotaxis and other directed cell movements an analysis of the translocation distribution function, in: Ionic Currents in Development, R. Nuccitelli, ed. A. R. Liss, New York (1986).Google Scholar
  15. 15.
    H. Gruler and R. Nuccitelli, Neural Crest Cell Galvanotaxis: New Data and Novel Approach to the Analysis of Both Galvanotaxis and Chemotaxis, Cell Motility and Cytoskeleton, 19: (1991).Google Scholar
  16. 16.
    H. Gruler, Biophysics of Leukocytes: Neutrophil Chemotaxis, Characteristics and Mechanisms, in: The Cellular Biochemistry and Physiology of Neutrophil, M. B. Hallen, ed., CRC-Press UNISCIENCE, (1989).Google Scholar
  17. 17.
    H. Gruler and N. A. R. Gow, Directed Growth of Fungal Hyphae in an Electric Field, Z. Naturforsch. 45c: 306 (1990).Google Scholar
  18. 18.
    H. Gruler, Cell Movement and Symmetry of the Cellular Environment, Z. Naturforsch. 43c: 754 (1988).Google Scholar
  19. 19.
    C. J. Brokaw, Chemotaxis of Bracken Spermatozoids, J. Exp. Biol. 35: 197 (1958).Google Scholar
  20. 20.
    S. H. Zigmond, Ability of Polymorphonuclear Leukocytes to orient in Gradients of Chemotactic Factors, J. Cell Biol. 75: 606 (1977).CrossRefGoogle Scholar
  21. 21.
    H. Gruler and A. de Boisfleury-Chevance, Chemokinesis and Necrotaxis of Human Granulocytes: the Important Cellular Organelles, Z. Naturforsch. 42c: 1126 (1987).Google Scholar
  22. 22.
    T. Matthes and H. Gruler, Analysis of cell locomotion. Contact guidance of human polymorphonuclear leukocytes, Eur. Biophys. J. 15: 343 (1988).CrossRefGoogle Scholar
  23. 23.
    M. Abercrombie, The Crawling Movernent of Metazoan Cells, in: Cell Behaviour, R. Bellairs, A. Curtis, and G. Dunn, eds., Cambridge University Press, Cambridge (1982).Google Scholar
  24. 24.
    C. A. Erickson and R. Nuccitelli, Embryonic Fibroblast Motility and Orientation Can Be Influenced by Physiological Electric Fields, J. Cell Biol. 98: 296 (1984).CrossRefGoogle Scholar
  25. 25.
    S. E. Malawista and A. de Boisfleury-Chevance, The cytokineplast: purified, stable and functional motile machinery from human blood polymorphonuclear leukocytes, J. Cell Biol. 95: 960 (1982).CrossRefGoogle Scholar
  26. 26.
    E. L. Becker, Y. Kanaho, and J. C. Kermode, Nature and Functioning of the Pertrussis Toxin-Sensitive G Protein of Neutrophils, Biomedicine and Pharmacotherapy, 41: 289 (1987).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Hans Gruler
    • 1
  1. 1.Department of BiophysicsUniversity of UlmUlmGermany

Personalised recommendations