Morphological Changes in Partially Polymerized Vesicles

  • M. Mutz
  • D. Bensimon
Part of the NATO ASI Series book series (NSSB, volume 263)


Phospholipid molecules spontaneously form giant unilamellar vesicles when dispersed in an aqueous solution. These are often used as models of biological cells, e. g. the red blood cell and have technological applications as drug delivery systems. To stabilize these vesicles, polymerizable phospholipids have been developped1–3.


Concentric Vesicle Spontaneous Curvature Shape Transformation Folding Transition Dumbbell Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. S. Johnson, S. Sanghera, M. Pons and D. Chapman, Biochim. Biophys. Acta 602, 57 (1980)CrossRefGoogle Scholar
  2. 2.
    E. Sackmann, P. Eggl, C. Fahn, H. Bader, H. Ringsdorf and M. Schollmeier, Ber. Bunsenges. Phys. Chem. 89, 1198 (1985).CrossRefGoogle Scholar
  3. 3.
    H. Ringsdorf, B. Schlarb and J. Venzemer, Angew. Chem. 27, 113 (1988).CrossRefGoogle Scholar
  4. 4.
    M. Mutz, D. Bensimon and M. J. Brienne, ENS preprint (1990).Google Scholar
  5. 5.
    D. R. Nelson and L. Radzihovsky, preprint (1990).Google Scholar
  6. 6.
    M. Mutz, D. Bensimon, Phys. Rev. A (in press).Google Scholar
  7. 7.
    Ou-Yang Zhong-can, Phys. Rev. A 41, 4517 (1990).Google Scholar
  8. 8.
    T. G. Burke, P. E. Schoen, C. Davis, R. R. Pice and A. Singh, Chem. Phys. Lipids 48, 215 (1988).CrossRefGoogle Scholar
  9. 9.
    P. Yager, P. E. Schoen, C. Davis, R. R. Pice and A. Singh, Biophys. J. 48, 899 (1985).CrossRefGoogle Scholar
  10. 10.
    P. Yager, R. R. Price, J. M. Schnur, P. E. Schoen, A. Singh and D. G. Rhodes, Chem. Phys. Lipids 46, 171 (1988).CrossRefGoogle Scholar
  11. 11.
    U. Seifert, Proceeding of the International Workshop on Geometry and Interfaces, to appear in J. Phys. Colloq. France.Google Scholar
  12. 12.
    For a review on Willmore surfaces, see U. Pinkall and I. Sterling, Math. Intelligencer 9, 38 (1987).MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    L. Miao, B. Fourcade, M. Rao, M. Wortis and R. K. P. Zia, preprint (1990).Google Scholar
  14. 14.
    U. Seifert, K. Berndl and R. Lipowsky, preprint 1990.Google Scholar
  15. 15.
    W. Wiese and W. Helfrich, J. Phys. Cond. Matter, in press.Google Scholar
  16. 16.
    K. Berndl, J. Käs, R. Lipowsky, E. Sackmann and U. Seifert, Europhys. Lett. 13, 659 (1990).ADSCrossRefGoogle Scholar
  17. 17.
    W. Helfrich, Z. Naturforschung 28c, 693 (1973).Google Scholar
  18. 18.
    H. J. Deuling and W. Helfrich, J. Phys. (Paris) 37, 1335 (1976).CrossRefGoogle Scholar
  19. 19.
    W. Helfrich, Z. Naturforschung 29 c, 510 (1974).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • M. Mutz
    • 1
  • D. Bensimon
    • 1
  1. 1.Ecole Normale SupérieureLaboratoire de Physique StatistiqueParis Cedex 05France

Personalised recommendations