Lipid Membrane Curvature Elasticity and Protein Function

  • Sol M. Gruner
Part of the NATO ASI Series book series (NSSB, volume 263)


It is suggested that curvature elastic stress of the monolayers of biomembrane lipid bilayers can change the activity of certain imbedded membrane proteins and that this may be a rationale for the lipid compositions seen in cell membranes. Lipid monolayer curvature stress arises when lipids which are prone to exhibit nonlamellar mesomorphic phases are a large fraction of the lipids of bilayers. The stress builds as one approaches the boundry of a lamellar-nonlamellar phase transition form the lamellar side. A discussion is given of the competition governing the release of curvature stress during the formation of interfacially curved mesomorphs. The net stress energy in bilayers near to a transition is in the range of a few to perhaps ten times thermal (kT) energy per lipid molecule. Mechanisms of coupling this stress to protein conformational changes are given.


Lipid Bilayer Lipid Molecule Line Tension Lipid Monolayer Spontaneous Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Charvolin, J., 1990, Crystals of fluid films, Contemp. Phys. 31: 1–17.ADSCrossRefGoogle Scholar
  2. Cullis, P. R., Hope, M. J., de Kruijff, B., Verkleij, A. J. and Tilcock, C. P. S., 1985, Structural properties and functional roles of phospholipids in biological membranes, in: Phospholipids and Cellular Regulations, Vol. 1, J. F. Kuo, eds., CRC Press, Boca Raton, FL.Google Scholar
  3. Evans, E. A. and Skalak, R., 1979, Mechanics and thermodynamics of biomembranes, CRC Critical Rev. in Bioeng. 3: 180–419.Google Scholar
  4. Gruner, S. M., 1985, Curvature hypothesis: Does the intrinsic curvature determine biomembrane lipid composition. A role for non-bilayer lipids, Proc. Natl. Acad. Sci. (USA) 82: 3665–3669.ADSCrossRefGoogle Scholar
  5. Gruner, S. M., Tate, M. W., Kirk, G. L., So, P. T. C., Turner, D. C., Keane, D. T., Tilcock, C. P. S. and Cullis, P. R., 1988, X-ray diffractions study of the polymorphic behavior of N-methylated dioleoylphosphatidylethanolamine, Biochem. 27: 2853–2866.CrossRefGoogle Scholar
  6. Gruner, S. M., 1989, Stability of lyotropic phases with curved interfaces, J. Phys. Chem. 93: 7562–7570.CrossRefGoogle Scholar
  7. Gruner, S. M., 1991, Nonlamellar lipid phases, in: The Structure and Function of Cell Membranes, P. L. Yeagle, ed., Telford Press, Caldwell, NJ (in press).Google Scholar
  8. Helfrich, W., 1973, Elastic properties of lipid bilayers: Theory and possible experiments, Z. für Naturforschung 28c: 693–703.Google Scholar
  9. Helfrich, W., 1978, Steric interaction of fluid membranes in multilayer systems, Z. Naturforsch. 33a: 305–315.ADSGoogle Scholar
  10. Helfrich, W., 1980, Amphiphilic mesophases made of defects, in Physics of Defects, R. Balian, M. Kleman and J-P. Poirier, eds., North-Holland, Amsterdam.Google Scholar
  11. Hui, S. W., 1987, Non-bilayer forming lipids: Why are they necessary in biomem-branes?, Comments Mol. Cell. Biophys. 4: 233–248.MathSciNetGoogle Scholar
  12. Israelachvili, J. N., Marcelja, S. and Horn, R. G., 1980, Physical properties of membrane organization, Quart. Rev. Biophys. 13: 121–200.CrossRefGoogle Scholar
  13. Kirk, G. L., Gruner, S. M. and Stein, D. L., 1984, A thermodynamic model of the lamellar (L α) to inverse hexagonal (H II) phase transition of lipid membrane-water systems, Biochem. 23: 1093–1102.CrossRefGoogle Scholar
  14. Lindblom, G., Brentel, I., Sjoland, M., Wikander, G. and Wieslander, A., 1986, Phase equilibria of membrane lipids from Acholeplasma laidlawii: importance of a single lipid forming nonlamellar phases, Biochem. 25: 7502–7510.CrossRefGoogle Scholar
  15. Luzzati, V., 1968, X-ray diffraction studies of lipid-water systems, in Biological Membranes, Vol. 1, D. Chapman, ed., Academic Press, NY.Google Scholar
  16. McElhaney, R. N., 1989, The influence of membrane lipid composition and physical properties of membrane structure and function in acholeplasma laidlawii, CRC Crit. Rev. in Microbiol. 17: 1–32.CrossRefGoogle Scholar
  17. Petrov, A. G. and Bivas, I., 1984, Elastic and flexoelectric aspects of out-of-plane fluctuations in biological and model membranes, Prog, in Surf. Sci. 16: 389–512.ADSCrossRefGoogle Scholar
  18. Quinn, P. J. and Chapman, D., 1980, The dynamics of membrane structure, CRC Critical Rev. in Biochem. 8: 1–117.CrossRefGoogle Scholar
  19. Rand, R. P., Fuller, N. L., Gruner, S. M. and Parsegian, V. A., 1990, Membrane curvature, lipid segregation, and structural transitions for phospholipids under dual-solvent stress, Biochem. 29: 76–87.CrossRefGoogle Scholar
  20. Tartar, H. V., 1955, A theory of the structure of the micelles of normal paraffin chain salts in aqueous solution, J. Phys. Chem. 59: 1195–1199.CrossRefGoogle Scholar
  21. Tate, M. W. and Gruner, S. M., 1987, Lipid polymorphism of mixtures of dioleoylphosphatidylethanolamine and saturated and mono-unsaturated phosphatidylcholines of various chain lengths, Biochem. 26: 231–236.CrossRefGoogle Scholar
  22. Tate, M. W., Eikenberry, E. F., Turner, D. C., Shyamsunder, E. and Gruner, S. M., 1991, Nonbilayer phases of membrane lipids, Chem. Phys. Lipids (in press).Google Scholar
  23. Unwin, P. N. T. and Ennis, P. D., 1984, Two configurations of a channel-forming membrane protein, Nature 307: 609–613.ADSCrossRefGoogle Scholar
  24. Wieslander, A., Rilfors, L. and Lindblom, G., 1986, Metabolic changes of membrane lipid composition in Acholeplasma laidlawii by hydrocarbons, alcohols and detergents: Arguments for effects on lipid packing, Biochem. 25: 7511–7517.CrossRefGoogle Scholar
  25. Winsor, P. A., 1971, Liquid crystallinity in relation to composition and temperature in Amphiphilic systems, Molec. Cryst. & Liquid Crystals 12: 141–178.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Sol M. Gruner
    • 1
  1. 1.Department of PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations