Immunochemical Detection of Drug-Protein Adducts in Acetaminophen Hepatotoxicity

  • Jack A. Hinson
  • Dean W. Roberts
  • N. Christine Halmes
  • Jennifer D. Gibson
  • Neil R. Pumford
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 387)


In overdose the over-the-counter analgesic acetaminophen may produce a centrilobular hepatic necrosis (1,2). In addition this toxicity may be accompanied by nephrotoxicity (1,3). The mechanism of hepatotoxicity has been studied extensively in experimental animals. It was shown that inhibition of the drug metabolizing enzymes resulted in a diminution of the toxicity, whereas induction of the drug metabolizing enzymes resulted in an increase in the toxicity (4). These data indicated that metabolism of acetaminophen was critical in the development of the toxicity. Moreover, administration of radiolabeled acetaminophen resulted in covalent binding of radiolabel to protein in the necrotic hepatocytes (5). In vitro experiments revealed that the metabolism was by a cytochrome P-450 dependent mechanism (6). It was postulated that covalent binding of this metabolite to critical proteins was the mechanism of the hepatotoxicity.


Sodium Selenite Covalent Binding Western Immunoblot Reactive Metabolite Protein Adduct 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Hinson, J.A. 1980. Biochemical toxicology of acetaminophen. Revs. Biochem. Toxicol. 2: 103–129.Google Scholar
  2. 2.
    Boyd, E.M., and Bereczky, G.M. 1966. Liver necrosis from paracetamol. Brit. J. Pharmacol. 26: 606–614.PubMedGoogle Scholar
  3. 3.
    Davidson, D.G.D., and Eastham, W.N. 1966. Acute liver necrosis following overdose of paracetamol. Br. Med. J. 5512: 497–499.CrossRefGoogle Scholar
  4. 4.
    Mitchell, J.R., Jollow, D.J., Potter, W.Z., Davis, D.C., Gillette, J.R., and Brodie, B.B. 1973. Acetaminophen-induced hepatic necrosis. I. Role of drug metabolism. J. Pharmacol. Exp. Ther. 187: 185–194.Google Scholar
  5. 5.
    Jollow, D.J., Mitchell, J.R., Potter, W.Z., Davis, D.C., Gillette, J.R., and Brodie, B.B. 1973. Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J. Pharmacol. Exp. Ther. 187: 195–202.PubMedGoogle Scholar
  6. 6.
    Potter, W.Z., Davis, D.C., Mitchell, J.R., Jollow, D.J., Gillette, J.R., and Brodie, B.B. 1973. Acetaminophen-induced hepatic necrosis. III. Cytochrome P-450-mediated covalent binding in vitro. J. Pharmacol. Exp. Ther. 187: 203–210.PubMedGoogle Scholar
  7. 7.
    Mitchell J.R., Jollow, D.J., Potter, W.Z., Gillette, J.R., Brodie, B.B. 1973. Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. J. Pharmacol. Exp. Ther. 187: 211–217.Google Scholar
  8. 8.
    Prescott, L.F. 1983. Paracetamol overdosage. Pharmacological considerations and clinical management. Drugs 25: 290–314.Google Scholar
  9. 9.
    Blair, I.A., Boobis, A.R., Davies, D.S., and Cresp, T.M. 1980. Paracetamol oxidation: Synthesis and reactivity of N-acetyl-p-benzoquinone imine. Tetrahedron Lett. 21: 4947–4950.CrossRefGoogle Scholar
  10. 10.
    Potter, D.W. and Hinson, J.A. 1986. Reactions of N-acetyl-p-benzoquinone imine with reduced glutathione, acetaminophen, and NADPH. Mol. Pharmacol. 30: 33–41.PubMedGoogle Scholar
  11. 11.
    Hinson, J.A. Monks, T.J., Hong, M. Highet, R.J., and Pohl, L.R. 1982. 3-(Glutathion-S-yl)acetaminophen: A biliary metabolite of acetaminophen. Drug Metab. Dispos. 10: 47–50.PubMedGoogle Scholar
  12. 12.
    Coles, B. Wilson, I., Wardman, P., Hinson, J.A., Nelson, S.D., and Ketterer, B. 1988. The spontaneous and enzymatic reaction of N-acetyl-p-benzoquinoneimine with glutathione: A stopped-flow kinetic study. Arch. Biochem. Biophys. 264: 253–260.PubMedCrossRefGoogle Scholar
  13. 13.
    Harvison, P.J., Guengerich, F.P., Rashed, M.S., and Nelson, S.D. 1988. Cytochrome P-450 isozyme selectivity in the oxidation of acetaminophen. Chem. Res. Toxicol. 1: 49–52.CrossRefGoogle Scholar
  14. 14.
    Raucy, J.L., Lasker, J.M., Lieber, C.S., and Black, M. 1989. Acetaminophen activation by human liver cytochromes P450IIE1 and P450IA2. Arch. Biochem. Biophys. 271: 270–283.PubMedCrossRefGoogle Scholar
  15. 15.
    Patten C.J., Thomas, P.E., Guy, R.L., Lee, M., Gonzalez, F.J., Guengerich, F.P., and Yang, C.S. 1993. Cytochrome P450 enzymes involved in acetaminophen activation by rat and human liver microsomes and their kinetics. Chem. Res. Toxicol. 6: 511–518.PubMedCrossRefGoogle Scholar
  16. 16.
    Hoffman, K.J., Streeter, A.J., Axworthy, D.B., and Baille, T.A. 1985. Structural characterization of the major covalent adduct formed in vitro and in vivo between acetaminophen and mouse liver proteins. Mol. Pharmacol. 27: 566–573.Google Scholar
  17. 17.
    Donnelly, P.J., Walker, R.M., and Racz, W.J. 1994. Inhibition of mitochondrial respiration in vivo is an early event in acetaminophen-induced hepatotoxicity. Arch. Toxicol. 68: 110–118.PubMedCrossRefGoogle Scholar
  18. 18.
    Moore, M. Tjhor, H., Moore, G., Nelson, S., Orrenius, S. 1985. The toxicity of acetaminophen and N-acetyl-p-benzoquinone imine in isolated hepatocytes is associated with thiol depletion and increased cytosolic Ca2+. J. Biol. Chem. 260: 13035–13040.PubMedGoogle Scholar
  19. 19.
    Tsokos-Kuhn, J.O., Hughes, H., Smith, C.V., and Mitchell, J.R. 1988. Alkylation of the liver plasma membrane and inhibition of the Ca2+ ATPase by acetaminophen. Biochem. Pharmacol. 37: 2125–2131.PubMedCrossRefGoogle Scholar
  20. 20.
    Roberts, D.W., Pumford, N.R., Potter, D.W., Benson, R.W., and Hinson, J.A. 1987. A sensitive immunochemical assay for acetaminophen-protein adducts. J. Pharmacol. Exp. Ther. 241: 182–189.Google Scholar
  21. 21.
    Pumford, N.R., Hinson, J.A., Potter, D.W., Rowland, K.L., Benson, R.W., and Roberts, D.W. 1989. Immunochemical quantitation of 3-(cystein-S-yl)acetaminophen adducts in serum and liver proteins of acetaminophen-treated mice. J. Pharmacol. Exp. Ther. 248: 182–189.PubMedGoogle Scholar
  22. 22.
    Pumford, N.R., Roberts, D.W., Benson, R.W., and Hinson, J.A. 1990. Immunochemical quantitation of 3-(cystein-S-yl)acetaminophen protein adducts in subcellular liver fractions following a hepatotoxic dose of acetaminophen. Biochem. Pharmacol. 40: 573–579.PubMedCrossRefGoogle Scholar
  23. 23.
    Bartolone, J.B., Sparks, K., Cohen, S.D., and Khairallah, E.A. 1987. Immunochemical detection of acetaminophen-bound liver proteins. Biochem. Pharmacol. 36: 1193–1196.PubMedCrossRefGoogle Scholar
  24. 24.
    Bartolone, J.B., Birge, R.B., Sparks, K., Cohen, S.D., and Khairallah, E.A. 1988. Immunochemical detection of acetaminophen covalent binding to proteins. Biochem. Pharmacol. 37: 4763–4774.PubMedCrossRefGoogle Scholar
  25. 25.
    Bartolone, J.B., Cohen, S.D., and Khirallah, E.A. 1989. Immunohistochemical localization of acetaminophen-bound liver proteins. Fundam. Appl. Toxicol. 13: 859–862.PubMedCrossRefGoogle Scholar
  26. 26.
    Roberts, D.W., Bucci, T.J., Benson, R.W., Warbritton, A.R., McRae, T.A., Pumford, N.R., and Hinson, J.A. 1991. Immunohistochemical localization and quantification of the 3-(cystein-S-yl)acetaminophen-protein adduct in acetaminophen hepatotoxicity. Am. J. Pathol. 138: 359–371.PubMedGoogle Scholar
  27. 27.
    Pumford, N.R., Hinson, J.A., Benson, R.W., and Roberts, D.W. 1990. Immunoblot analysis of protein containing 3-(cystein-S-yl)acetaminophen adducts in serum and subcellular liver fractions from acetaminophen-treated mice. Toxicol. Appl. Pharmacol. 104: 521–532.PubMedCrossRefGoogle Scholar
  28. 28.
    Pumford, N.R., Martin, B.M., and Hinson, J.A. 1992. A metabolite of acetaminophen covalently binds to the 56 kDa selenium binding protein. Biochem. Biophys. Res. Comm. 182: 1348–1355.PubMedCrossRefGoogle Scholar
  29. 29.
    Bansal, M., Mukhopadhyay, T., Scoitt, J., Cook, R.G., Mukhopadhyay, R., and Medina, D. 1990. DNA sequencing of a mouse liver protein that binds selenium: Implications for selenium’s mechanism of action in cancer prevention. Carcinogenesis 11: 2071–2073.PubMedCrossRefGoogle Scholar
  30. 30.
    Bansal, M.P. Oborn, C.J., Danielson, K.G., and Medina, D. 1989. Evidence for two selenium-binding proteins distinct from glutathione peroxidase in mouse liver. Carcinogenesis 10: 541–546.PubMedCrossRefGoogle Scholar
  31. 31.
    Schnell, R.C., Park, K.S., Davies, M.H., Merrick, B.A., and Weir, S.W. 1988. Protective effects of selenium on acetaminophen hepatotoxicity of the rat. Toxicol. Appl. Pharmacol. 95: 1–11.PubMedCrossRefGoogle Scholar
  32. 32.
    Bartolone, J.B., Birge, R.B., Bulera, S.J., Bruno, M.K., Nishanian, E.V., Cohen, S.D., and Khairallah, E.A. 1992. Purification, antibody production, and partial amino acid sequence of the 58 kDa acetamino-phen-binding liver proteins. Toxicol. Appl. Pharmacol. 113: 19–29.PubMedCrossRefGoogle Scholar
  33. 33.
    Lanfear, J., Fleming, J., Walker, M., and Harrison. P. 1993. Different patterns of regulation of the genes encoding the closely related 56 kDa selenium-and acetaminophen-binding proteins in normal tissues and during carcinogenesis. Carcinogenesis 14: 335–340.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Jack A. Hinson
    • 1
  • Dean W. Roberts
    • 1
    • 2
  • N. Christine Halmes
    • 1
  • Jennifer D. Gibson
    • 1
  • Neil R. Pumford
    • 1
  1. 1.Division of ToxicologyUniversity of Arkansas for Medical SciencesLittle RockUSA
  2. 2.Division of Biochemical ToxicologyNational Center for Toxicological ResearchJeffersonUSA

Personalised recommendations