Advertisement

Human GSH-Transferase in Risk Assessment

  • H. M. Bolt
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 387)

Abstract

Human cytosolic glutathione-S-transferases (GST) are dimeric enzymes which have been classified, mainly by their isoelectric points, into four classes (Brockmöller et al. 1993):
  • class α (basic, GSTA);

  • class μ (near-neutral, new GSTM);

  • class π (acidic, GSTP);

  • class θ (slightly basic, GSTT).

Keywords

Ethylene Oxide Lung Cancer Risk Methyl Bromide Mandelic Acid Styrene Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandrie, A.K., Sundberg, M.J., Seidegård, J., Tornling, G., Rannug, A., 1994, Genetic susceptibility to lung cancer with special emphasis on CYP1A1 and GSTM1: A study on host factors in relation to age at onset, gender and histological cancer types, Carcinogenesis. 15: 1785–1790.PubMedCrossRefGoogle Scholar
  2. Bell, D.A., Taylor, J.A., Paulson, D.F. et al., 1993, Genetic risk and carcinogen exposure: a common inherited defect of the carcinogen-metabolism gene glutathione-S-transferase M 1 (GSTM1) that increases susceptibility to bladder cancer, Natl Cancer Inst USA. 85: 1159–1164.CrossRefGoogle Scholar
  3. Bell, D.A., Thompson, C.L., Taylor, J. et al., 1992, Genetic monitoring of human polymorphic cancer susceptibility genes by polymerase chain reaction: Application to glutathione transferase μ, Environ Health Perspect 98: 113–117.PubMedGoogle Scholar
  4. Bogaards, J.J.P., van Ommen, B., van Bladeren, P.J., 1993, Interindividual differences in the in vitro conjugation of methylene chloride with glutathione S-transferase in 22 human liver samples, Biochem Pharmacol 45: 2166–2169.PubMedCrossRefGoogle Scholar
  5. Bolt, H.M., Gansewendt, B., 1993, Mechanisms of carcinogenicity of methyl halides, CRC Crit Rev Toxicol 23: 237–253.CrossRefGoogle Scholar
  6. Bolt, H.M., 1994, Genetic and individual differences in the process of biotransformation and their relevance for occupational medicine, Med. Lavoro 85: 37–48.PubMedGoogle Scholar
  7. Brockmöller, J., Kerb, R., Drakoulis, N. et al., 1993, Genotype and phenotype of glutathione S-transferase class ¼ isoenzymes μ. and ψ in lung cancer patients and controls, Cancer Res, 53: 1004–1011.PubMedGoogle Scholar
  8. Caporaso, N., Landi, M.T., Vineis, P., 1991, Relevance of metabolic polymorphisms to human carcinogenesis: Evaluation of epidemiologic evidence, Pharmacogenetics, 1: 4–19.PubMedCrossRefGoogle Scholar
  9. van Doom, R., Bonn, P.J.A., Leijdekkers, C.M. et al., 1980, Detection and identification of S-methylcysteine in urine of workers exposed to methyl chloride, Int Arch Occup Environ Health, 46: 99–109.CrossRefGoogle Scholar
  10. Föst, U., Hallier, E., Ottenwälder, H. et al., 1991, Distribution of ethylene oxide in human blood and its implications for biomonitoring, Hum Exp Toxicol 10: 25–31.PubMedCrossRefGoogle Scholar
  11. Fuchs, J., Wullenweber, U., Hengstler, J.G., Bienfait, H.G., Hiltl, G., Oesch, F., 1994, Genotoxic risk for humans due to workplace exposure to ethylene oxide: remarkable individual differences in susceptibility, Arch Toxicol 68: 343–348.PubMedCrossRefGoogle Scholar
  12. Goergens, H.W., 1992, Stereochemische Aspekte bei der biologischen Überwachung beruflicher Styrolexpo-sition, Thesis, Universität des Saarlandes, Homburg/Saar, Germany.Google Scholar
  13. Grammer, L.C., Roberts, M., Nicholls, A.J. et al., 1984, IgE against ethylene oxide-altered human serum albumin in patients who have had acute dialysis reactions, J Allergy Clin Immunol 1984, 74: 544–549.CrossRefGoogle Scholar
  14. Hallier, E., Schröder, K., Asmuth, K., Dommermuth, A., Aust, B., Goergens, H.W., 1994, Metabolism of dichloromethane (methylene chloride) to formaldehyde in human erythrocytes: Influence of polymorphism of glutathione transferase theta (GSTT1-1). Arch Toxicol 68: 423–427.PubMedCrossRefGoogle Scholar
  15. Hallier, E., Deutschmann, S., Reichel, C., et al., 1990, A comparative investigation of the metabolism of methyl bromide and methyl iodide in human erythrocytes, Int Arch Occup Environ Health, 62: 221–225.PubMedCrossRefGoogle Scholar
  16. Hallier, E., Langhof, R., Dannappel, D. et al., 1993, Polymorphism of glutathione conjugation of methyl bromide, ethylene oxide and dichloromethane in human blood: influence on the induction of sister chromatid exchanges (SCE) in lymphocytes, Arch Toxicol 67: 173–178.PubMedCrossRefGoogle Scholar
  17. Idle, J.R., Armstrong, M., Boddy, A.V., et al., 1992, The pharmacogenetics of chemical carcinogenesis, Pharmacogenetics 2: 246–258.PubMedCrossRefGoogle Scholar
  18. Kihara, M., Noda, K., 1994, Lung cancer risk of GSTM1 null genotype is dependent on the extent of tobacco smoke exposure, Carcinogenesis 15: 415–418.PubMedCrossRefGoogle Scholar
  19. Nolan, R.J., Rick, D.L., Landry, T.D., et al., 1985, Pharmacokinetics of inhaled methyl chloride (CH3C1) in male volunteers, Fundam Appl Toxicol 5: 61–369.CrossRefGoogle Scholar
  20. Pemble, S., Schroeder, K.R., Spencer, S.R., Meyer, D.J., Hallier, E., Bolt, H.M., Ketterer, B., Taylor, J.B., 1994, Human glutathione S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism, Biochem J 300: 271–276.PubMedGoogle Scholar
  21. Peter, H., Deutschmann, S., Reichel, C, Hallier, E., 1989, Metabolism of methyl chloride in human erythrocytes, Arch Toxicol 63: 351–355.PubMedCrossRefGoogle Scholar
  22. Schröder, K., Hallier, E., Peter, H., Bolt, H.M., 1992, Dissociation of a new glutathione S-transferase activity in human erythrocytes, Biochem Pharmacol 43; 1671–1674.PubMedCrossRefGoogle Scholar
  23. Seidergård, J., De Pierre, J.W., Pero, R.W., 1985, Hereditary interindividual differences in the glutathione transferase activity towards trans-stilbene oxide in resting human mononuclear leucocytes are due to a particular isozyme(s), Carcinogenesis 6: 12–1216.Google Scholar
  24. Seidergård, J., Vorachek, W.R., Pero, R.W., Pearson, W.R., 1988, Hereditary differences in the expression of the human glutathione S-transferase activity on trans-stilbene oxide are due to a gene deletion, Proc Natl Acad Sci USA 85: 7293–7297.CrossRefGoogle Scholar
  25. Thier, R., Föst, U., Deutschmann, S., et al., 1989, Distribution of methylene chloride in humane blood, Arch Toxicol, Suppl. 14: 254–258.Google Scholar
  26. Thier, R., Taylor, J.B., Pemble, S.E. et al., 1993, Expression of the rat theta class glutathione S-transferase 5-5 in S. typhimurium TA 1535 leads to base-pair mutation upon exposure to dihalomethanes, Biol Chem Hoppe-Seyler 374: 796 (abstract F 105).Google Scholar
  27. Warholm, M., Guthenberg, C, Mannervik, B., 1983, Molecular and catalytic properties of glutathione transferase μ from human liver an enzyme conjugation epoxides, Biochem 22: 3610–3617.CrossRefGoogle Scholar
  28. Zhong, S., Wyllie, A.H., Barnes, D., Wolf, C.R., Spurr, N.K., 1994, Relationship between the GSTM1 genetic polymorphism and susceptibility to bladder, breast and colon cancer. Carcinogenesis 14: 1821–1824.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • H. M. Bolt
    • 1
  1. 1.Institut für ArbeitsphysiologieUniversität DortmundDortmundGermany

Personalised recommendations